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Dynamic models, state-space representation, 
system responses



 Consider physical modelling of involved parameters in electrical circuits, 
mechanical systems (both linear and rotary motion) and flow systems.

 This review focuses on simple linear components, leaving, for example, 
thermal and energy considerations outside the scope of the review.

Physical modelling



Basic components of electrical circuits

 Resistor (resistance)

 Coil (inductance)

 Capacitor (capacitance)
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Example.  Electrical circuit

 Making a model for the electrical 
circuit

 The input, or impulse, is v0 (t) and 
the output quantities, i.e., the 
voltages V1 (t) and V2 (t).

 Electric currents and resistors can 
be modelled as

 Kirchoff's First Law

 Second Kirchoff law
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Example.  Electrical circuit

 This model has voltages as states (memory elements), so it is advisable 
to eliminate the electrical currents as unnecessary variables from the 
developed equations
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Basic components of mechanical systems

Linear Motion:

 Mass (inertia)

 Spring

 Damper
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Example.  Mechanical system

 Make a model for a mechanical 
system in which two mass pieces 
are connected together with a 
spring and a damper

 The input is an external force F 
(T) and the position of the second 
mass x2(t) is the output

 First mass force equation:

 Second mass force equation:

B

k

m2 m1

x2(t) x1(t)

F(t)

 
2

1 1 2
1 1 22

( ) ( ) ( )
( ) ( ) ( ) ( )

d x t dx t dx t
m t B k x t x t F t

dt dt dt
      
 

 
2

2 1 2
2 1 22

( ) ( ) ( )
( ) ( ) ( )

d x t dx t dx t
m t B k x t x t

dt dt dt
     
 



Basic components of mechanical systems

Rotational motion:

 Moment of inertia

 Torque Spring

 Torque Damper
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Example.  Mechanical system

 Make a model for the rotating 
system shown in the figure. The 
excitation is torque T (t) and the 
response is angles 1(t) and2(t)
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Basic components of flow systems

 Flow tank 

 Ideal Mixer 

 Pipe flow delay 

 Flow through an orifice
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Example.  Flow System

 The flow system is shown in the diagram.  
There is the input flow concentration C1 (t) 
and the concentration of the output flow is 
C3(t).  Flow and volumes are constants 

 The flow branching point can be 

 Considering ideal sensor and pipe flow 

 Eliminating the variable C2(t) and F3 : 
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Example.  Flow System Simulation

 Configuring simulation model for flow system with Simullink

Step response

Impulse 
response

V= 0.2

Vp= 2

F1= 1

F2= 2



State Space Representation

 The state space representation is a compact way of representing high-
order differential equations/systems.

 The instantaneous state of the system is a complete description of the 
system.  If the initial state (state quantities at the beginning) and all the 
input quantities are known from the beginning, then the system state and 
the output quantities can be determined at an arbitrary time.  It follows 
that the state space representation is very suitable for simulation.

 The control of state variables allows for better system control compared 
with the control of the system's output quantities. 

 The state space representation is a standard-format representation, so 
the management mechanisms can be standardized independently of the 
system (equations are independent of the individual system number and 
parameters)

 The state space representation is suitable for modeling and managing 
multivariate systems



State Space Representation

 In a state space representation, an arbitrary order differential equation/system is 
represented as a group of first-order differential equations.

 The selection of spaces can be made in infinitely different ways = > The state 
space representation is not unique but many different state variables can 
describe the same input/output model.

 The general state space representation is of the format

 x(t) is the state, u(t) the control input y(t) output - All these quantities can be 
vectors or scalars. 

 f(x(t),u(t)) is the system equation (describing system dynamics) and g(x(t),u(t)) is 
the starting description (explains how the output quantities depend on the input 
and the state)

 If u(t) is a scalar u(t) and y(t) is a scalar y(t), then this is a SISO system-
regardless of the vector x(t)’s dimension.
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Example. Flow System in State Space representation

 The flow process is mixed with antifreeze 
(dilute solution with a chemical 
concentration of C1 in a spring solution with 
a concentration of C2).

 The objective is to obtain the desired 
production volume (flow F) of the product 
(with concentration C) that meets the 
specifications, using the flow rate (F1 and 
F2).

 The mixing tank is connected to a discharge  
valve open to atmospheric pressure = > The 
removal flow is proportional to the square 
root of the surface:
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Example. Flow System in State Space representation

 A balance equation is formed (simplified volume balance) and 
component balance
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Example. Flow System in State Space representation

 Obtain a simple equation group of first-order differential equations

 Choose H and C for state , F1 and F2 for input and output quantities as F 
and C

 These variable selections can be used to write directly in the standard 
format:


  

   

R
S
||

T
||

dh t

dt A
F t F t k h t

dC t

dt Ah t
C C t F t C C t F t

( )
( ) ( ) ( )

( )

( )
( ) ( ) ( ) ( )

1

1

1 2

1 1 2 2

d i
b g b gc h

 ( ) ( ( ), ( ))

( ) ( ( ), ( ))

x f x u

y g x u

t t t

t t t




RST

x u y( )
( )

( )

( )

( )
, ( )

( )

( )

( )

( )
, ( )

( )

( )

( )

( )
t

x t

x t

h t

C t
t

u t

u t

F t

F t
t

y t

y t

F t

C t


L
NM

O
QP 

L
NM

O
QP 

L
NM

O
QP 

L
NM

O
QP 

L
NM

O
QP 

L
NM

O
QP

1

2

1

2

1

2

1

2



Example. Flow System in State Space representation

 Writing the system equation:

 For the initial description, the dependency of the output variables on state 
variables

 Initial description: 
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Example. Flow System in State Space representation

 The flow process state space representation can be

 In this example, the selection of modes was easy because the 
appropriate state variables were obtained directly from the system 
model.  Examining other methods for selecting variables in connection 
with linear mode representation.
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Linear mode representation

 The previous example described a non-linear state space 
representation.  If the system being viewed is linear, its variables and 
parameters can be assembled into separate vectors and matrix to obtain 
a standard linear mode representation.

 The parameter array A is called system matrix, B control matrix, C output 
matrix, and D as a direct effect matrix.  Often D = 0, in which case the 
entire direct effect term disappears from the state representation. (This is 
done with a strictly proper system).

 ( ) ( ( ), ( )) ( ) ( )

( ) ( ( ), ( )) ( ) ( )

x f x u Ax Bu

y g x u Cx Du

t t t t t

t t t t t

  
  

RST



Linear mode representation

 Differential equations

 Can be presented as an array equation
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Electrical Circuit State Space representation

 Examine the electrical circuits of previous example and develop the state

 The natural selection of state variables is the voltages of the capacitors 
(because they are represented with first order differential equations).  
Only the voltage of the second capacitor is now selected as the output 
v2.

 These choices provide
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State-space representation of an electrical circuit

 And thus:
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Forming a State Space representation

 How to generate a state space representation systematically?   
 Choosing physical and rational state variables from model equations (as in 

previous examples)

 Using a derivative operator p

 Using canonical forms

 Physically correct state variables 
 Often the easiest way

 Using the "derivatives" operator 
 can be formed e.g. Canonical shape, or in some cases a diagonal shape, 

should be controlled or observed 



Forming a State Space representation

 Examining the mechanical System 

 Physically relevant state variables
 Select position x and speed v = dx/dt

 Determining the derivatives of the selected state variables
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Forming a State Space representation

 Second method: Use the p operator
 You write the original equation using the p operator whenever there is a 

differentiation:
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Differential equation to transfer function

The differential equation can also be used as a shortcut to the 
transfer function.  Common linear differential equation

is Laplace-transformed (and assuming initial values as zeros)

This makes it easy to create a transfer function

Similarly, the transfer function can be re-transformed to 
differential equations
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Example: Mass block

Specify the transfer function and weighting function in the 
previous example

The weighting function is now the same as the unit impulse 
response
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Determination of response

When the transfer function is known, the response (forced  
response) is calculated as follows

 Laplace conversion of external control u(t)

 Solve for output Y(s) in Laplace domain

 Take inverse Laplace transform of output 

Or:

U s L u t( ) ( ) l q
Y s G s U s( ) ( ) ( ) 

y t L Y s( ) ( ) 1l q

y t L G s L u t( ) ( ) ( ) 1 l qm r



Example: Mass block

Determine the unit step and ramp responses for the mass 
position.  A transfer function was previously assigned to the 
system as:

Unit step:

Response:

Taking partial fractions:
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Example: Mass block

The response can be:

Ramp input:

As before, taking partial fractions and solving:
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Steady State Response

Steady state response tells you how much the signal is 
strengthened or dampened after passing through the system
 With the unit step response, steady state amplification indicates to which level 

the response will remain (asymptotically stable system)

 With the ramp response, the amplification  indicates the continuity of the slope 
of the response (Asymptotically stable system)

Steady state response can be calculated from the transfer 
function using the limit value theorem.  Steady state 
response can also be set for unstable system transfer 
functions, but it does not have a physical interpretation that is 
linked to the end value of the response.

Steady state response (static gain) is: k G s
s




lim ( )
0
l q



Example: Mass block

Evaluating the mass block system for Steady State response:

Also seen in time domain as t tends to ꚙ
 Unit Step Response

 Ramp response
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MATLAB: Models, Inputs and Responses 

 Enter a template function in the workspace:
 One can write in transfer function or state space tf, zpk & ss –commands.

 For example, consider the mechanical system in example 2:
 The system depicts a differential equation:

 Entering in workspace as: sys=tf(1,[1 2 5])
Transfer function:         1

-------------
s^2 + 2 s + 5

 Examining Impulse and step responses
[imp1,t1]=impulse(sys);
(Tai: [imp1,t1]=impulse(tf(1,[1 2 5])); )
[ste2,t2]=step(sys);
plot(t1,imp1)
plot(t2,ste2)

( ) ( ) ( ) ( ) ( ) 2 ( ) 5 ( ) ( )mx t Bx t kx t F t x t x t x t u t         



MATLAB: Models, Inputs and Responses 

 Output responses:

 For confirmation:
 k=dcgain(sys)

k =0.2000

 Responses can also be examined in 
ltiview-LTI window
 ltiview

 file -> import -> sys

 edit -> plot configurations



MATLAB: Models, Inputs and Responses 

 In addition to the basic responses, the MATLAB's 
workspace allows you to calculate responses to 
arbitrary control inputs using the lsim command.
 Ramp response 

 ram=lsim(sys,t2,t2);

 plot(t2,ram)

 Sine response
 osc=lsim(sys,sin(10*t2),t2);

 plot(t2,osc)

 lsim–For a command, you can use some other 
command to take a calculated time vector, or generate 
one yourself, either by using a generic Matlab
command (colons) or by using a special linspace
command
 t3=(0:0.1:10)';

 t3=linspace(0,10,101)';



MATLAB: Models, Inputs and Responses 

 In earlier lectures, it was told that the basic responses 
were derived from each other by either derivation or 
integration. Now, we see how well this works 
numerically

 Take the base response as step function and 
find out impluse response by derivation and 
slope (ramp) response by integration:
 The numerical derivative of a step response:
 imp2=diff(ste2)./diff(t2);

 plot(t2,[0;imp2],t1,imp1)
 Step Response Numerical Integral:
 delta=mean(diff(t2))

 ram2=cumsum(ste2)*delta;
 plot(t2,[ram2 ram])

 Numerical derivatives and integration work reasonably 
well in this (undisturbed) case.



From State Space to Transfer Function form

The solution of convolution integration is laborious and often easier to
achieve if the state equation is left on Laplace form, with the time domain
function just written as Laplace inverse form (just as in the overall
response)

The output is obtained accordingly:
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From State Space to Transfer Function form

Given below is a formula to define a transfer function from a state space 
representation (the transfer function was defined as dependent on the 
input quantities and outputs in the Laplace plane – when the initial values 
are not taken into consideration)

Often the feedforward term D is zero, in which case the formula is even 
simpler to form:

1( ) ( )s s   G C I A B D

1( ) ( )s s  G C I A B



Example: Mass block

 Solving a mass block Unit step response (forced response) using the 
transfer function

 The response
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Models and conversions between them:

Lineaarinen
differentiaaliyhtälö

Epälineaarinen
tilaesitys

Todellinen
systeemi

Lineaarinen
tilaesitys

Siirtofunktio

Tilansiirtomatriisi

Tilaesityksen 
yleinen ratkaisu

Painofunktio eli
impulssivaste

Askelvaste

Pengervaste

Epälineaarinen
differentiaaliyhtälö

Linearisointi Linearisointi

Tilojen valinta

Tilojen valinta

Tilojen eliminointi

Tilojen eliminointi
L{   } L-1{   }

L{   }L-1{   }

Kanoniset muodot

G=C(sI-A)-1B+D

 =eAt

d/dt

d/dt

Real 
System

Non Linear 
Differential Equations

Linear Differential 
Equations

Transfer Functions 
(Laplace domain

Time domain 
impulse response

Step 
response

Ramp 
response

Non Linear 
State Space 

Linear State 
Space 

General State 
Space solution

Transfer Function 
matrix

DE to SS

DE to SS

SS to DE

SS to DE

Canonical forms

Linearize


