Aalto University
School of Electrical
Engineering

ELEC-E8126: Robotic Manipulation Motion Planning

Ville Kyrki

24.1.2022

Today

- Robot motion planning problems.
- Graph search and discretization of continuous space.
- Sampling methods.
- A little bit about optimization based methods.

Learning goals

- Understand problems of motion planning as planning of trajectories in search space.
- Understand how discretization can be used to solve planning problems in continuous search space.
- Especially sampling based discretization approaches.

Motion planning (re-cap)

- Problem: Find actions that result in a path between two configuration space points while avoiding work space
 obstacles.
- Configuration (state) space: set of all transformations that can be applied to the robot.
- Work space (world): Space that robot occupies. Obstacles usually represented as Cartesian space regions.

Example:

Workspace vs configuration space

School of Electrical
Engineering

Recap: Path vs motion planning

- Path planning: Find a collision free path in configuration space from start to end configuration.
- Motion planning: Find actions (control inputs), possibly with constraints on controls, duration, motion.
- Paths created by path planning can be turned into feasible trajectories by a trajectory planner.
- Trajectory planner determines time scale (velocity) over the path.

Discretization of configuration space

- Combinatorial vs sampling-based approaches
- Combinatorial: Divide free space and represent as graph.
- Common in mobile robotics. Today a little bit of this.
- Sampling-based: Create a search tree incrementally by doing collision detection.
- Can handle typically higher dimensions. Today mostly about this.

Continuous space planning by discretization

- Discretization builds a roadmap.
- Roadmap graph: a set of routes in free space.
- After discretizing a continuous space, use discrete planning approaches such as Dijkstra, A*.

- How to discretize?
- Does discretization affect solution in terms of feasibility/optimality?

Discretization approaches for polygonal obstacles in planning space

Visibility graph

- Shortest path length

Voronoi diagram

- Maximal clearance

Discretization by cell decomposition

Exact cell decomposition

- Divide space into cells
- Determine which are adjacent

Approximate cell decomposition

- Divide space into cells of predefined shape
- Determine if each cell is free

Pros and cons of combinatorial approaches

- Complete approaches.
- Cannot handle well high-dimensional configuration spaces.
- Combinatorial explosion (exponential number of states).
- Cannot handle easily non-linearities.
- Obstacles cannot be easily represented with e.g. polygons.

Sampling based search

- Idea: Build search graph iteratively.
- Draw random samples of configuration space.
- Use collision detection to determine if a state is free.
- Two common approaches:

Offline

- Probabilistic roadmaps (Kavraki 1992) ${ }^{\text { }}$
- Rapidly exploring random trees (LaValle \& Kuffner, 1999)

On-line

Probabilistic roadmaps

- Idea: Build search graph (roadmap) iteratively (off-line).
- Draw random samples of configuration space.
- Check if they are free, and add to search graph if they are.
- Try to connect nearby nodes using local planner.
- Continues until roadmap dense enough.
- Local planner checks if straight-line trajectory is free.
- On-line operation:
- Find paths from start and end configurations to nearby roadmap nodes using local planner.
- Use the roadmap for the rest of the path.

How many nodes are needed? Sampling dense sequences

- Sampling has to be dense to allow each part of configuration space to be reachable from the roadmap.
- Denseness - getting arbitrarily close to any point in space.
- Can you give an example?
- Random sequences are often dense with probability 1.
- Random sampling of e.g. orientations requires care.
- Is it better to sample in configuration or workspace?

Local planner

- Check path between two points for collisions.
- Number of points infinite.
- Local planner typically only checks discrete points along the path.
- What would be a good order to
 check the points?

Connecting nodes

- Try to connect to points in a neighborhood using local planner.
- K-nearest or inside a radius

PRM pros and cons

- Pros:
- Probabilistically complete.
- Applicable to high-dimensional configuration space.
- Cons:

- Does not work well for some problems, e.g. narrow passages.
- High-dimensional configuration space requires very many samples.
- Many extensions of PRMs exist.

Rapidly exploring random trees (RRT)

- Idea: Explore configuration incrementally from starting state.
- Builds a tree rooted at starting state.

45 iterations

Rapidly exploring random trees (RRT)

- Begin by choosing a random Algorithm 1: RRT state.
${ }_{1} G$.init $\left(q_{0}\right)$
- Sample from bounded region around starting state.
- Other sampling strategies also possible.

Rapidly exploring random trees (RRT)

- Choose the nearest point in

Algorithm 1: RRT existing tree.

- Choice of distance function affects.
- Other similar strategies also possible.
$1 G . \operatorname{init}\left(q_{0}\right)$
2 repeat
$3 \quad q_{\text {rand }} \rightarrow$ RANDOM_CONFIG (\mathcal{C})
$q_{\text {near }} \leftarrow \operatorname{NEAREST}\left(G, q_{\text {rand }}\right)$
G.add_edge $\left(q_{\text {near }}, q_{\text {rand }}\right)$
6 until condition

Rapidly exploring random trees (RRT)

- Check for collision free path using local planner.
- If it exists, connect nodes.
- It not, connect to last state before obstacle.

Check in linear order!

Rapidly exploring random trees (RRT)

- From time to time, choose goal state instead of the random, to check if a solution can be found.

Algorithm 1: RRT	
$\mathbf{1}$	$G . \operatorname{init}\left(q_{0}\right)$
$\mathbf{2}$	repeat
$\mathbf{3}$	$q_{\text {rand }} \rightarrow$ RANDOM_CONFIG (\mathcal{C})
4	$q_{\text {near }} \leftarrow \operatorname{NEAREST}\left(G, q_{\text {rand }}\right)$
$\mathbf{5}$	$G . a d d _$edge $\left(q_{\text {near }}, q_{\text {rand }}\right)$
$\mathbf{6}$	until condition

Rapidly exploring random trees (RRT)

- Many extensions available.
- For example, expand both from starting and goal states (BiRRT).
- Easy to implement.
- Probabilistically complete.
- Unknown rate of convergence.
- Widely used.

- Narrow corridors still problematic.

RRT*

When a new node is added, tree can be locally rewired in small area around added node.
This will optimize path lengths.

RRT*

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Aalto University
School of Electrical
Engineering

Kinematic vs dynamic planning

- So far planning considered as finding a state-space path, without considering constraints on dynamics.
- If inverse dynamics is available, it can be used to solve actions for a path.

Do inverse dynamics always exist?

- RRTs can be turned into control-based planners by substituting sampling of state by sampling of control.
- How to sample controls is a central question.
- This approach can be used for general continuous space planning problems.

With dynamic planning, more constraints and optimization criteria are relevant.

Motion planning as optimization

- Motion planning can be solved as nonlinear optimization
- Optimal paths, fast computation when good initial guess available, possible local minima.

Motion planning as optimization

- Methods e.g. TRAJOPT, CHOMP.
- Typical solution uses sequential convex optimization.
- Iterate solving convex approximations of non-convex problem around current solution.
- For example, handle constraints by turning into penalties.

$$
\begin{gathered}
\min _{u, q} J_{\text {TOT }}(u, q) \\
J_{\text {TOT }}(u, q)=J_{\text {SOL }}(u, q)+\mu J_{\text {CONSTR }}(u, q)
\end{gathered}
$$

Solution cost,
e.g. trajectory length

Large enough factor

Constraint cost, e.g. penetration depth

Software

- Open motion planning library (OMPL) encapsulates many motion planning algorithms.
- In robotics, ROS Movelt uses OMPL.
- https://vimeo.com/58709589
- https://www.youtube.com/watch?v=eUpvbOxrbwY

Summary

- Kinematic motion planning searches for admissible state space trajectories.
- Search in continuous state space requires discretization.
- In high dimensional state spaces stochastic discretization often applicable.
- Controls can be sampled instead of states to solve more general planning problems.

Next time: Motion control

- Readings:
- Lynch \& Park, Chapter 11-11.3.2

Note: Non-holonomic motion planning

- Robot is underactuated, if control space has fewer dimensions than configuration space.
- E.g. a car.
- Robot is nonholonomic, if its motion is constrained by a non-integrable equation of form $f(q, \dot{q})=0$
- What's the constraint for a car?

