

ELEC-E8126: Robotic Manipulation Motion Planning

Ville Kyrki 24.1.2022

- Robot motion planning problems.
- Graph search and discretization of continuous space.
- Sampling methods.
- A little bit about optimization based methods.

Learning goals

- Understand problems of motion planning as planning of trajectories in search space.
- Understand how discretization can be used to solve planning problems in continuous search space.
 - Especially sampling based discretization approaches.

How to move a robot from A to B?

Motion planning (re-cap)

 Problem: Find actions that result in a path between two configuration space points while avoiding work space obstacles.

- Configuration (state) space: set of all transformations that can be applied to the robot.
- Work space (world): Space that robot occupies. Obstacles usually represented as Cartesian space regions.

Example: Workspace vs configuration space

Recap: Path vs motion planning

- Path planning: Find a collision free path in configuration space from start to end configuration.
- Motion planning: Find actions (control inputs), possibly with constraints on controls, duration, motion.
- Paths created by path planning can be turned into feasible trajectories by a trajectory planner.
- Trajectory planner determines time scale (velocity) over the path.

Discretization of configuration space

- Combinatorial vs sampling-based approaches
- Combinatorial: Divide free space and represent as graph.
 - Common in mobile robotics. Today a little bit of this.
- Sampling-based: Create a search tree incrementally by doing collision detection.
 - Can handle typically higher dimensions. Today mostly about this.

Continuous space planning by discretization

- Discretization builds a *roadmap*.
 - Roadmap graph: a set of routes in free space.
- After discretizing a continuous space, use discrete planning approaches such as Dijkstra, A*.
- How to discretize?
 - Does discretization affect solution in terms of feasibility/optimality?

Discretization approaches for polygonal obstacles in planning space

Visibility graph

Shortest path length

Voronoi diagram

Maximal clearance

Discretization by cell decomposition

Exact cell decomposition

- Divide space into cells
- Determine which are adjacent

Approximate cell decomposition

- Divide space into cells of predefined shape
- Determine if each cell is free

Pros and cons of combinatorial approaches

- Complete approaches.
- Cannot handle well high-dimensional configuration spaces.
 - Combinatorial explosion (exponential number of states).
- Cannot handle easily non-linearities.
 - Obstacles cannot be easily represented with e.g. polygons.

Sampling based search

- Idea: Build search graph iteratively.
 - Draw random samples of configuration space.
 - Use collision detection to determine if a state is free.
- Two common approaches:

Offline

On-line

- Probabilistic roadmaps (Kavraki 1992)⁴
- Rapidly exploring random trees (LaValle & Kuffner, 1999)

Probabilistic roadmaps

- Idea: Build search graph (roadmap) iteratively (off-line).
 - Draw random samples of configuration space.
 - Check if they are free, and add to search graph if they are.
 - Try to connect nearby nodes using *local planner*.
 - Continues until roadmap dense enough.
- Local planner checks if straight-line trajectory is free.
- On-line operation:
 - Find paths from start and end configurations to nearby roadmap nodes using local planner.
 - Use the roadmap for the rest of the path.

How many nodes are needed? Sampling dense sequences

- Sampling has to be *dense* to allow each part of configuration space to be reachable from the roadmap.
- Denseness getting arbitrarily close to any point in space.
 - Can you give an example?
- Random sequences are often dense with probability 1.
- Random sampling of e.g. orientations requires care.
 - Is it better to sample in configuration or workspace?

Local planner

- Check path between two points for collisions.
 - Number of points infinite.
- Local planner typically only checks discrete points along the path.
- What would be a good order to check the points?

Connecting nodes

- Try to connect to points in a neighborhood using local planner.
 - K-nearest or inside a radius

PRM pros and cons

- Pros:
 - Probabilistically complete.
 - Applicable to high-dimensional configuration space.
- Cons:
 - Does not work well for some problems, e.g. narrow passages.
 - High-dimensional configuration space requires very many samples.
- Many extensions of PRMs exist.

- Idea: Explore configuration incrementally from starting state.
 - Builds a tree rooted at starting state.

- Begin by choosing a random state.
 - Sample from bounded region around starting state.
 - Other sampling strategies also possible.

- 1 $G.init(q_0)$
- 2 repeat

 $q_{near} \leftarrow \text{NEAREST}(G, q_{rand})$

5 |
$$G.add_edge(q_{near}, q_{rand})$$

- Choose the nearest point in existing tree.
 - Choice of distance function affects.
 - Other similar strategies also possible.

Algorithm 1: RRT

- 1 $G.init(q_0)$
- 2 repeat
- $\mathbf{s} \quad \boxed{q_{rand} \to \text{RANDOM}_\text{CONFIG}(\mathcal{C})}$
- 4 $q_{near} \leftarrow \text{NEAREST}(G, q_{rand})$
- 5 $G.add_edge(q_{near}, q_{rand})$
- 6 until condition

- Check for collision free path using local planner.
 - If it exists, connect nodes.
 - It not, connect to last state before obstacle.

Check in linear order!

 From time to time, choose goal state instead of the random, to check if a solution can be found.

- Many extensions available.
 - For example, expand both from starting and goal states (BiRRT).
- Easy to implement.
- Probabilistically complete.
- Unknown rate of convergence.
- Widely used.
- Narrow corridors still problematic.

G
3

When a new node is added, tree can be locally rewired in small area around added node.

This will optimize path lengths.

Aalto University School of Electrical Engineering

Kinematic vs dynamic planning

- So far planning considered as finding a state-space path, without considering constraints on dynamics.
- If inverse dynamics is available, it can be used to solve actions for a path.

always exist?

- RRTs can be turned into *control-based* planners by substituting sampling of state by sampling of control.
- How to sample controls is a central question.
- This approach can be used for general continuous space planning problems.

Aalto University School of Electrical Engineering

With dynamic planning, more constraints and optimization criteria are relevant.

Motion planning as optimization

- Motion planning can be solved as nonlinear optimization
- **Optimal paths**, fast computation when good initial guess available, **possible local minima**.

Motion planning as optimization

- Methods e.g. TRAJOPT, CHOMP.
- Typical solution uses sequential convex optimization.
 - Iterate solving convex approximations of non-convex problem around current solution.
 - For example, handle constraints by turning into penalties.

- Open motion planning library (OMPL) encapsulates many motion planning algorithms.
- In robotics, ROS Movelt uses OMPL.
- https://vimeo.com/58709589
- https://www.youtube.com/watch?v=eUpvbOxrbwY

- Kinematic motion planning searches for admissible state space trajectories.
- Search in continuous state space requires discretization.
- In high dimensional state spaces stochastic discretization often applicable.
- Controls can be sampled instead of states to solve more general planning problems.

Next time: Motion control

- Readings:
 - Lynch & Park, Chapter 11-11.3.2

Note: Non-holonomic motion planning

- Robot is *underactuated*, if control space has fewer dimensions than configuration space.
 - E.g. a car.
- Robot is *nonholonomic*, if its motion is constrained by a non-integrable equation of form $f(q,\dot{q})=0$
 - What's the constraint for a car?

