ECON-C4100 - Capstone: Econometrics I Lectures 10&11: Causal parameters part II - Instrumental variables regression

Otto Toivanen

Learning outcomes

- At the end of these lectures, you understand
- 1 what simultaneous causality means
- 2 what is meant by an **endogeneity** problem
- 3 why it causes bias in the parameters
- 4 what an instrumental variable is and why it solves the endogeneity problem
- 5 what characteristics are required of an instrumental variable
- 6 what one should pay attention to when using an instrumental variable

- At the end of these lectures, you understand
- 7 what a reduced form equation/parameter is
- 8 what a **structural** equation/parameter is
- 9 how to "manually" estimate a model with simultaneous causality
- 10 what **2SLS** estimation means, how you do it and why it is used

Overview

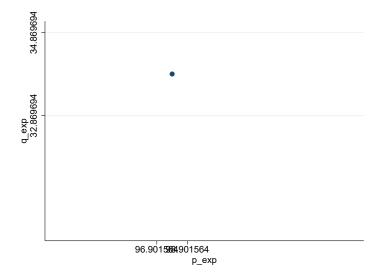
- Demand experiment, market data analysis.
- Simultaneous causality.
- IV regression and 2SLS.
- NOTE: Instrumental variables are used in a large variety of contexts.
- We are exploring it in a particular but historically and practically very important setting.
- In *Applied Microeconometrics I* and *II* you will learn more about IV, its use and the interpretation of results.

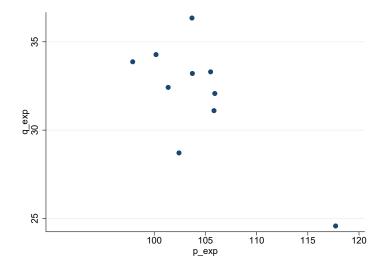
- Your task is to estimate the demand function for a homogeneous good sold at unit price.
- How would you do this in an experiment?

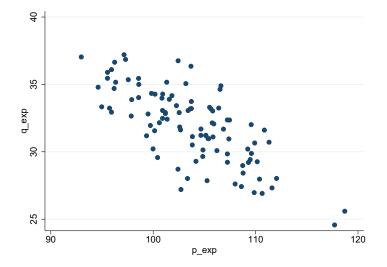
- Your task is to estimate the demand function for a homogeneous good sold at unit price.
- How would you do this in an experiment?
- By changing the price yourself ("at random") and observing how many units are sold at each price.

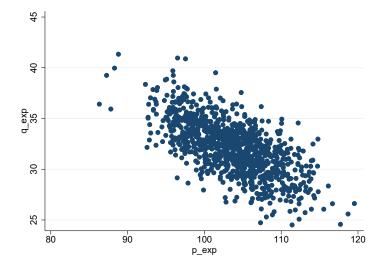
- What does "choosing prices" at random mean?
 - 1 We offer different randomized prices to individual consumers
 - 2 We offer different randomized prices each to a group of consumers
 - **3** Think either of geographically separate markets, or a given market over time.

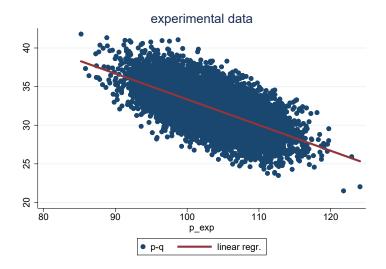
- We record quantity sold at different prices
- We study the outcomes
- For illustration, I have conducted such an experiment in my computer.
- We will get to the details of how I do it later, but now just imagine I have conducted the experiment in a real market.











• Question: why does sold quantity vary between two experiments where the prices are identical?

- Question: why does sold quantity vary between two experiments where the prices are identical?
- Answer: Demand is stochastic from the viewpoint of the econometrician.
- Let's study a simple set-up (the one I used in the experiment) in more detail.

Linear demand

• Demand function

$$Q_i = a - bP_i + \epsilon_i$$

- *a* = average intercept.
- b = slope.
- ϵ_i = market specific deviation from the average intercept.
- i = a particular market realisation.
- Question: Where does this demand function come from?
- Answer: From consumers making utility-maximizing choices.
- Exercise: What does the utility function look like that produces a linear demand function?

Toivanen

• Inverse demand function

$$P_i = \frac{a}{b} - \frac{1}{b}Q_i + \frac{1}{b}\epsilon_i = \alpha + \beta Q_i + \tilde{\epsilon}_i$$

Regression analysis

. regr q_exp p_exp

Source	SS	df			er of obs	=	10,000
Model Residual	27500.3163 39645.8875	1 9,998	27500.3163 3.96538183	B Prob B R-sq	9998) > F uared R-squared	=	6935.10 0.0000 0.4096 0.4095
Total	67146.2038	9,999	6.71529191		-	=	1.9913
q_exp	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
p_exp _cons	3329958 66.65341	.0039986 .4145481		0.000 0.000	340833 65.8408		3251577 67.466

Robustness analysis

. gen p_exp2 = p_exp^2

. regr q_exp p_exp*

Source	SS	df	MS		er of obs 9997)	=	10,000 3468.48
Model Residual	27506.3195 39639.8843	2 9,997	13753.159 3.9651779	B Prob B R-sc	> F puared R-squared	=	0.0000 0.4096 0.4095
Total	67146.2038	9,999	6.7152919:		: MSE	=	1.9913
q_exp	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
p_exp p_exp2 _cons	4806486 .0007134 74.27605	.1200668 .0005798 6.208917	-4.00 1.23 11.96	0.000 0.219 0.000	716003 000423 62.1053	1	2452935 .0018498 86.44677

Parameters for inverse demand function

- . scalar alpha_exp = _b[_cons] / _b[p_exp] . scalar beta_exp = -1 / _b[p_exp] . scalar list alpha_exp beta_exp alpha exp = 200.16291
- beta_exp = 3.003041

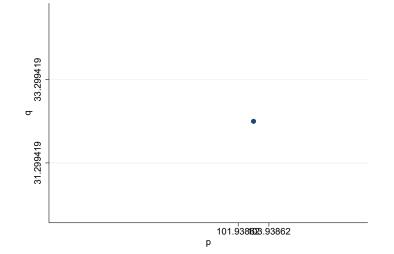
• Assume you are an outside observer of a market say a prospective buyer of a firm or the competition authority.

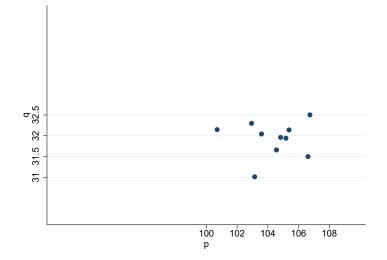
 \rightarrow you cannot run experiments.

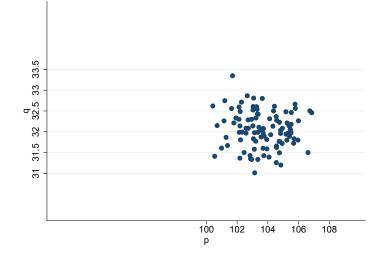
• You would still want to know demand (to calculate e.g. price cost margins, consumer surplus).

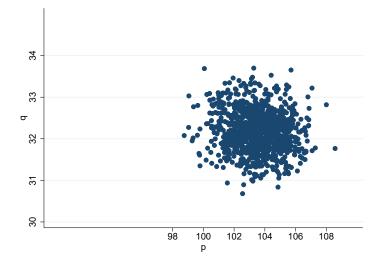
Market outcomes

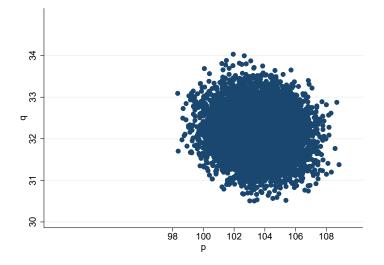
- We collect data from the market.
- We observe pairs (P_i, Q_i) , i = market.
- Let's think how such pairs are determined, using a simple monopoly model.
- Let's allow a monopolist to choose prices instead in the same market.

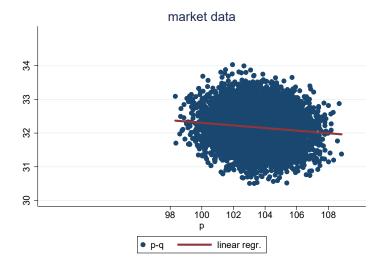


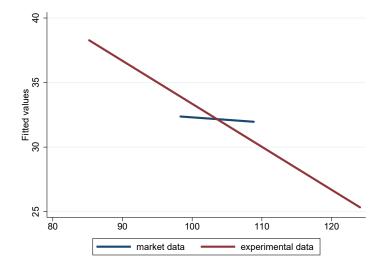












Regression using market data

. regr q p

Source	SS	df	MS Number of o			= =	10,000
Model Residual	33.3509286 2468.76463	1 9,998	33.350928 .24692584	6 Prob 8 R-sq	F(1, 9998) Prob > F R-squared Adj R-squared Root MSE		135.06 0.0000 0.0133 0.0132
Total	2502.11556	9,999	.25023657				.49692
q	Coef.	Std. Err.	t	P> t	[95% C	Conf.	Interval]
p _cons	0386712 36.17252	.0033275 .3444748	-11.62 105.01	0.000 0.000	04519 35.497		0321487 36.84776

Parameter comparison for demand and inverse demand functions

- . scalar alpha_ols = -_b[_cons] / _b[p]
- . scalar beta_ols = -1 / _b[p]
- . scalar a_ols = _b[_cons]
- . scalar b_ols = -_b[p]

```
. scalar list a exp b exp a_ols b_ols
    a_exp = 66.653405
    b_exp = .33299579
    a_ols = 36.172515
    b_ols = .03867121
. scalar list alpha_exp beta_exp alpha_ols beta_ols
    alpha_exp = 200.16291
    beta_exp = 3.003041
    alpha_ols = 935.38611
    beta_ols = 25.859029
```

Challenge with market data

- Price quantity pairs are a leading example of simultaneous causality.
- This generalizes to more complicated markets with:
 - differentiated goods
 - 2 multiproduct firms
 - endogenous entry and exit
 - 4 dynamic considerations (e.g. collusion, durable goods, ...)
 - 6 advertising
 - 6 ...

Challenge with market data

- Need to address simultaneous causality.
- ullet ightarrow need to understand and exploit determinants of price and quantity.
- How did the experiment solve the problem?
- By having the researcher shift (=change) prices instead of the firm.

Linear monopoly

Demand function

$$Q_i = a - bP_i + \epsilon_i$$

- *a* = average intercept.
- b = slope.
- ϵ_i = market specific deviation from the average intercept.
- NOTE: We assume the firm observes **all** these parameters.
- Question: What if the firm did not observe our "unobservable", i.e., ϵ_i ?

• Inverse demand function

$$P_i = \frac{a}{b} - \frac{1}{b}Q_i + \frac{1}{b}\epsilon_i = \alpha + \beta Q_i + \tilde{\epsilon}_i$$

How to get the supply function?

- Inverse demand function.
- Need to specify costs of production: constant marginal cost

 $c_i = c_0 + c_1 z_i + \eta_i$

• Note: Here one should have an understanding of the production technology.

$$c_i = c_0 + c_1 z_i + \eta_i$$

- c_0 = average of marginal cost when $z_i = 0$.
- z_i = a component of marginal cost that varies across markets (cost of raw materials / unit of output, cost of labor / unit of output, ..)
- η_i = "shock" to average marginal cost / deviation from the avg. This is observed by the firm but not by the econometrician.
- If the firm did not observe η_i, how could it take it into account in its decision?

The monopolist's problem:

$$max_{P_i}\pi_i = (P_i - c_i) \times Q_i$$

Equilibrium price:

$$P_i = \frac{a}{2b} + \frac{1}{2}c_i + \frac{1}{2b}\epsilon_i$$
$$= \frac{a}{2b} + \frac{1}{2}(c_0 + c_1z_i + \eta_i) + \frac{1}{2b}\epsilon_i$$

Equilibrium quantity

$$Q_i = rac{a}{2} - rac{b}{2}(c_0 + c_1 z_i + \eta_i) + rac{1}{2}\epsilon_i$$

Equilibrium price and equilibrium quantity are functions of:

(fixed) demand parameters *a* and *b*

- (fixed) demand parameters *a* and *b*
- 2 (fixed) supply side parameters c_0 and c_1

- (fixed) demand parameters *a* and *b*
- 2 (fixed) supply side parameters c_0 and c_1
- 3 variable cost determinant *z_i*

- (fixed) demand parameters *a* and *b*
- 2 (fixed) supply side parameters c_0 and c_1
- 3 variable cost determinant z_i
- 4 cost shock η_i

- (fixed) demand parameters a and b
- 2 (fixed) supply side parameters c_0 and c_1
- 3 variable cost determinant z_i
- 4 cost shock η_i
- **5** demand shock ϵ_i

Market data challenge

- Both eq. price and eq. quantity are functions of:
- **1** demand shock ϵ_i
- **2** supply (cost) shock η_i
 - \rightarrow simultaneous causality.

 \rightarrow price is an endogenous variable (ϵ_i is the "omitted" variable that affects both price and quantity).

- We want to learn the demand curve.
- Could we mimic the experimental approach with market data?
- Needed: Something that shifts firm's (supply) decision at "random".
- Random = without being affected by demand shock ϵ_i .

- Imagine the firm still sets the price,
- But we choose (=randomize) $z_i = z_i^{exp}$.

• Recall that
$$c_i = c_0 + c_1 z_i^{exp} + \eta_i$$
.

 \rightarrow we "shift" firm's marginal cost.

• Now the firm sets each time the price

$$P_i = \frac{a}{2b} + \frac{1}{2}(c_0 + c_1 z_i^{exp} + \eta_i) + \frac{1}{2b}\epsilon_i$$

 \rightarrow equivalent to running an experiment.

• Change in price due to (known) change in z_i^{exp} .

- Imagine we raise z_i^{exp} by 1 unit.
- By how much does
 - **1** marginal cost $c_i = c_0 + c_1 z_i + \eta_i$ change? Answer: c_1 .
 - **2** price change? Answer: $\frac{1}{2}c_1$ (by the equilibrium price equation).
 - **3** demand change? Answer: $-b\frac{1}{2}c_1$ (by the equilibrium quantity equation).

- How could we get the slope of the demand function from these changes?
- Yes, by dividing the change in quantity by the change in demand:

$$-\frac{b\frac{1}{2}c_{1}}{\frac{1}{2}c_{1}}=-b$$

- How could we get those numbers?
- 1. Regress P_i on z_i^{exp} to get $\frac{1}{2}c_1$.

$$P_i = \gamma_0 + \gamma_1 z_i + e_i$$

 $\gamma_1 = \frac{1}{2}c_i$

2. Regress Q_i on z_i^{exp} to get $-b\frac{1}{2}c_1$.

$$Q_i = \mu_0 + \mu_1 z_i + w_i$$

$$\mu_1 = -b\frac{1}{2}c_i$$

• The are called reduced form equations.

• The regression equations we estimated, i.e.,

$$P_i = \gamma_0 + \gamma_1 z_i + e_i$$

$$Q_i = \mu_0 + \mu_1 z_i + w_i$$

• are called reduced form equations.

What are reduced form equations?

- Proper definition: A **reduced form equation** is an equation whose parameters are functions of the **structural** parameters.
- In our model, structural parameters are a, b, c_0 and c_1 .
 - 1 They are building blocks of the theory model
 - 2 They are determined outside our model
 - 3 They are not functions of any other parameters (or variables) of the model
- The parameters $(\gamma_0, \gamma_1, \mu_0, \mu_1)$ of the two regressions $(P_i \text{ on } z_i \text{ and } Q_i \text{ on } z_i)$ we ran are functions of the structural parameters.

What are reduced form equations?

- Commonly used meaning: A **reduced form equation** is an equation that is not derived from a theoretical model.
- Examples: The regressions in the papers we have studied, i.e.,
 - Bronnenberg et al., 2015.
 - Kleven et al., 2011.

- When would this work?
 - **1** z_i^{exp} has to have an impact on the decision of the firm, i.e., have an effect on c_i .
 - \rightarrow c₁ cannot be (insignificantly different from) zero.
 - 2 z_i^{exp} may not have an effect on Q_i directly, but only via c_i .

Let's regress P on z.

. regr p z

Source	SS	df	MS	Number F(1, 99		=	10,000 7814.03
Model Residual	9783.4964 12517.9151	1 9,998	9783.4964 1.25204192	Prob >	F	=	0.0000 0.4387 0.4386
Total	22301.4115	9,999	2.23036418		-	=	1.1189
p	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
z _cons	.4986242 101.0138	.0056407 .0304066		0.000 0.000	.487567 100.954		.5096812 101.0734

. scalar red_1 = b[z]

Let's regress Q on z.

. regr q z

Source	SS	df	MS		er of obs	s = =	10,000 8117.89
Model Residual	1121.21997 1380.89558	1 9,998	1121.2199 .13811718	7 Prob 2 R-sq	9998) > F uared R-squared	=	0.0000 0.4481 0.4481
Total	2502.11556	9,999	.25023657		MSE MSE	=	.37164
q	Coef.	Std. Err.	t	P> t	[95% C	Conf.	Interval]
z _cons	1687997 33.01561	.0018735 .0100991	-90.10 3269.17	0.000 0.000	17247 32.995		1651273 33.0354

. scalar red_2 = b[z]

Let's calculate b.

. scalar b_red = red_2 / red_1

```
. scalar list b_red
b_red = -.33853094
```

Instrumental variable

- Instrumental variable = a variable that causes variation in price (explanatory variable X) but does not affect demand (dependent variable Y) directly.
- If the variable cost component *z_i* varies "at random", i.e., without affecting demand directly,

 \rightarrow market data allows us to use the "experimental approach" indirectly.

Approach #2

- Could we proceed differently?
 - **1** Regress P_i on z_i . Calculate predicted price $\hat{P}_i = \hat{\gamma}_0 + \hat{\gamma}_1 z_i$.
 - **2** Regress Q_i on \hat{P}_i to get b (and a).
- Equation $Q_i = a bP_i + \epsilon_i$ is a **structural** equation. Why?

Approach #2

- Could we proceed differently?
 - **1** Regress P_i on z_i . Calculate predicted price $\hat{P}_i = \hat{\gamma}_0 + \hat{\gamma}_1 z_i$.
 - **2** Regress Q_i on \hat{P}_i to get b (and a).
- Equation $Q_i = a bP_i + \epsilon_i$ is a **structural** equation. Why?
- Because it is a function of structural parameters only (+ *P_i* which is determined within the model).

Approach #2

- The parameters of a structural equation are part of the **model primitives**, i.e.,
 - they are not determined within the model
 - they are not functions of other parameters of the model
- Reduced form parameters are functions of structural parameters.

Regress P on z, create predicted values

. regr p z

Source	SS	df	MS	Number of (F(1, 9998)	obs =	10,000 7814.03
Model Residual	9783.4964 12517.9151	1 9,998	9783.4964 1.25204192	Prob > F	=	0.0000 0.4387 0.4386
Total	22301.4115	9,999	2.23036418		=	1.1189
p	Coef.	Std. Err.	t	P> t [95	Conf.	Interval]
z _cons	.4986242 101.0138	.0056407 .0304066			75673 .9542	.5096812 101.0734

. predict p hat

(option xb assumed; fitted values)

Regress Q on \hat{P}

. regr q p_hat

Source	SS	df	MS		er of obs 9998)	=	10,000 8117.89
Model Residual	1121.21997 1380.89558	1 9,998	1121.2199 ⁷ .138117182	7 Prob 2 R-squ	> F	=	0.0000
Total	2502.11556	9,999	.250236579		-	=	
ď	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
p_hat _cons	3385309 67.21192	.0037573 .3889483	-90.10 172.80	0.000 0.000	34589 66.449		3311659 67.97433

Why / how do these approaches work?

1 Regress
$$P_i$$
 on z_i to get $\frac{1}{2}c_1 = \frac{cov(P_i, z_i)}{var(z_i)}$.
2 Regress Q_i on z_i to get $-b\frac{1}{2}c_1 = \frac{cov(Q_i, z_i)}{var(z_i)}$.

$$ightarrow -b = rac{cov(Q_i, z_i)}{cov(P_i, z_i)}$$

Regress Q on \hat{P}

$$b = \frac{cov(Q_i, \hat{P}_i)}{var(\hat{P}_i)} = \frac{cov(Q_i, \hat{\gamma}_0 + \hat{\gamma}_1 z_i)}{var(\hat{\gamma}_0 + \hat{\gamma}_1 z_i)}$$

$$\rightarrow b = \frac{\hat{\gamma}_1 cov(Q_i, z_i)}{\hat{\gamma}_1^2 var(z_i)} = \frac{1}{\hat{\gamma}_1} \frac{cov(Q_i, z_i)}{var(z_i)}$$
because $\hat{\gamma}_1 = \frac{cov(P_i, z_i)}{var(z_i)} \rightarrow$

$$b = \frac{var(z_i)}{cov(P_i, z_i)} \frac{cov(Q_i, z_i)}{var(z_i)} = \frac{cov(Q_i, z_i)}{cov(P_i, z_i)}$$

 $(\hat{\rho} \hat{\rho})$

2SLS / instrumental variables regression

- In practice, want to use the so called Two Stage Least Squares (2SLS) or instrumental variables regression command. In Stata, ivregress or from SSC ivreg2.
- Manual and ivregress command(s) produce same point estimates, but the latter corrects the standard errors.
- This is important, as the manual approach yields too small standard errors: It ignores the uncertainty in the parameters $\hat{\gamma}_0$ and $\hat{\gamma}_1$ used to calculate \hat{P}_i .

2SLS estimation of demand

. ivregress 2sls q (p = z)

Instrumental v	variables (28	LS) regressi	on	Wald		= = =	10,000 2506.07 0.0000
đ	Coef.	Std. Err.	z	₽> z	[95% C	Conf.	Interval]
p _cons	3385309 67.21192	.0067624 .7000301	-50.06 96.01	0.000	3517 65.839		3252769 68.58395

Instrumented: p

Instruments: z

Requirements for an instrument

- Think of our normal regression $Y = \beta_0 + \beta_1 X + u$.
 - **1** Instrument relevance: The instrument *Z* has to affect the (endogenous) explanatory variable X of the equation of interest ("2nd stage equation") in the equation

 $X = \alpha_0 + \alpha_1 Z + v.$

Instrument exogeneity: The instrument Z may not be correlated with the error term of the equation of interest, i.e.,

cov(Z, u) = 0.

Instrument relevance / Weak instrument

- Relevance = instrument Z needs to be "correlated enough" with the endogenous explanatory variable X.
- What happens when $cov(Z, X) \rightarrow 0$?
- β_1 becomes undefined!

Instrument relevance / Weak instrument

 \rightarrow you want to check that your instrument is relevant.

= you don't have a **weak instrument**.

- Rule of thumb: F-statistic of Z when you regress X on Z (and possible further controls) > 10.
- Note: with 1 instrument, F-test is the square of the t-test.
- Notice that the test for weak instruments is stricter than our usual 5% confidence level (t-stat 2).

2SLS estimation

. estat firststage

First-stage regression summary statistics

Variable	R-sq.	Adjusted R-sq.	Partial R-sq.	F(1,9998)	Prob > F
р	0.4387	0.4386	0.4387	7814.03	0.0000

Minimum eigenvalue statistic = 7814.03

Critical Values Ho: Instruments are weak	<pre># of endogenous regressors: # of excluded instruments:</pre>			
2SLS relative bias	5% 10% 20% 30% (not available)			
2SLS Size of nominal 5% Wald test LIML Size of nominal 5% Wald test	10% 15% 20% 25% 16.38 8.96 6.66 5.53 16.38 8.96 6.66 5.53			

Instrument relevance / Weak instrument

- There are more sophisticated tests.
- There are ways of allowing for weak instruments.
- We leave all that for later courses.
- Good instruments are hard to find...

Instrument correlated with error

= "exogeneity" assumption or exclusion restriction:

 $\mathbb{E}[u|\boldsymbol{X}]=0$

If this condition does not hold \rightarrow biased estimate of β_1 .

• Similar to omitted variable bias.

Instrument correlated with error

- What can be done?
 - 1 Strong story for why no correlation between instrument and error.
 - 2 With multiple instruments, may do tests.
 - **3** There are ways of allowing for (some) correlation to check robustness of your results (for later).