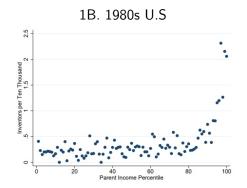
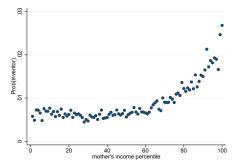

ECON-C4100 - Capstone: Econometrics I Lecture 11B: Aghion, Akcigit, Hyytinen & Toivanen: Parental education and invention


Otto Toivanen

#### Parental education and invention



Note: Akcigit, U., Grigsby, J. & Nicholas, T. (2017). The rise of american ingenuity: Innovation and inventors of the golden age [National Bureau of Economic Research WP 23047].


#### Parental income and invention



Note: Bell, A., Chetty, R., Jaravel, X., Petkova, N. & Van Reenen, J. (2019). Who becomes an inventor in america? the importance of exposure to innovation. *Quarterly Journal of Economics*, 134(2), 647–713

#### Parental income and invention

1C. Finland 1953-1981, maternal income



#### Parental income and invention



## Finnish enigma

 How come in Finland the relationship between parental income and probability of offspring becoming an inventor is so similar to the US?

Figure: Parental income and parental education

2A. Finland 1953-1981, maternal income & education

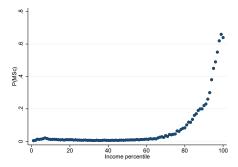
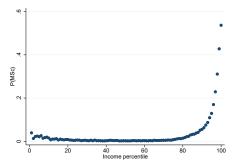
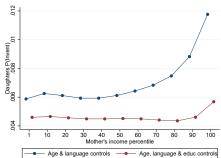




Figure: Parental income and parental education

2B. Finland 1953-1981, paternal income & education




## What do AAHT do?

- How does the relationship between parental income and probability of becoming inventor change when parental education is controlled for?
- IV regression of probability of becoming inventor on parental education.

# **OLS** regression

$$y_i = \mathbf{X}'_i \beta + f(income_{p,i}, \theta) + g(Educ_{p,i}, \gamma) + \epsilon_i$$
(1)

- y<sub>i</sub> is a dummy for being an inventor
- $X'_i\beta$  are control variables and the associated vector of parameters to be estimated
- f(income<sub>p,i</sub>, θ) is a fifth order polynomial of income of the parent of type p (p = mother, father), with θ being the associated vector of parameters to be estimated
- g(Educ<sub>p,i</sub>, γ) includes a vector of field (STEM, non-STEM) and level (secondary, college, masters, PhD level, with base-level being omitted) of education dummies Educ<sub>p,i</sub> of parent of type p, with γ being the associated vector of parameters to be estimated
- *e<sub>i</sub>* is the error term

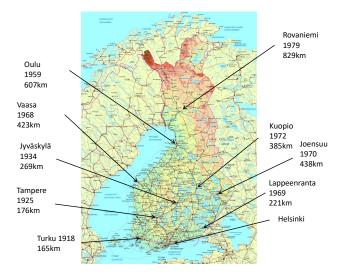


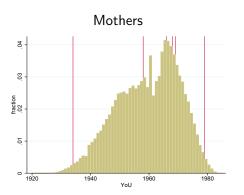
#### 3A. Daughters and maternal income

- Instrument: Parental distance to nearest university from birth-municipality, measured in the year when the parent in question turns 19
- Exclusion restriction: parental distance to university uncorrelated with unobservables affecting probability of offspring becoming an inventor.

# IV

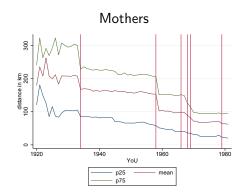
Our main estimation equation is of the form


$$y_i = \mathbf{X}'_i \boldsymbol{\beta} + \delta D_i + \epsilon_i \tag{2}$$


- *y<sub>i</sub>* is the outcome dummy variable taking value 1 if individual *i* is an inventor of a patent, and 0 otherwise
- X<sub>i</sub> is a vector of controls (maternal and paternal year of birth dummies, a dummy for mother tongue not being Finnish, and the controls for the birth municipalities of both parents discussed above);
   β is the associated coefficient vector
- *D<sub>i</sub>* is the parental education dummy taking value 1 if individual *i* has at least one parent with at least an MSc and 0 otherwise
- $\delta$  is the causal parameter of interest and
- *ϵ<sub>i</sub>* is an error term capturing all those determinants of an individual becoming an inventor that are unobservable to us

# Challenge with IV

- Parents growing up near a university are different from those growing up further away.
- Solution #1: utilize data around the establishment of new universities
- Solution #2: bring in control variables that reduce/remove the potential problem.


Figure: Map of Finnish university establishments 1918 - 1979





#### Figure: Distribution of parents by year at age 19

Note: YoU = year of university (age 19)



#### Figure: Distribution of parents by year at age 19

Note: YoU = year of university (age 19)

#### Table: Distance correlations

| Parent   | P(inventor) | D(MSc parents) | MSc <sub>p</sub> | Count    | MSc <sub>cohor</sub> |
|----------|-------------|----------------|------------------|----------|----------------------|
| Maternal | -0.0110     | -0.0360        | 0.0179           | 0.1088   | -0.1958              |
|          | (0.1679)    | (0.0000)       | (0.0251)         | (0.0000) | (0.0000              |
| Paternal | -0.0221     | -0.0135        | -0.0117          | 0.0766   | -0.1548              |
|          | (0.0078)    | (0.1039)       | (0.1590)         | (0.0000) | (0.0000              |
| Parent   | p50         | p90            | IQ               |          |                      |
| Maternal | -0.2042     | -0.1395        | -0.0452          |          |                      |
|          | (0.0000)    | (0.0000)       | (0.0028)         |          |                      |
| Paternal | -0.2336     | -0.1227        | -0.0536          |          |                      |
|          | (0.0000)    | (0.0000)       | (0.0007)         |          |                      |

Note: reported numbers correlation coefficient and p-value. All other variables pertain to parent, or parental muni-year cohort,

but IQ is the son's IQ

| Table: | Estimation | results |
|--------|------------|---------|
|--------|------------|---------|

|                | Panel A. All Children |           |           |           |  |  |
|----------------|-----------------------|-----------|-----------|-----------|--|--|
|                | (1)                   | (2)       | (3)       | (4)       |  |  |
|                | OLS                   | IV        | IV        | IV        |  |  |
| D(MSc parents) | 0.0159***             | 0.0506*** | 0.0328*** | 0.0327*** |  |  |
|                | (0.00132)             | (0.0110)  | (0.009)   | (0.0049)  |  |  |
| F              | -                     | 251.04    | 497.453   | 108.49    |  |  |
| Nobs           | 1 450 789             |           |           |           |  |  |
|                | Panel B. Daughters    |           |           |           |  |  |
| D(MSc parents) | 0.0049***             | 0.0100    | 0.0203**  | 0.0160*** |  |  |
|                | (0.0005)              | (0.0085)  | (0.0086)  | (0.0034)  |  |  |
| F              | -                     | 251.04    | 497.453   | 108.49    |  |  |
| Nobs           | 709 117               |           |           |           |  |  |
|                | Panel C. Sons         |           |           |           |  |  |
| D(MSc parents) | 0.0261***             | 0.0866*** | 0.0430**  | 0.0487*** |  |  |
| ,              | (0.0023)              | (0.0193)  | (0.0205)  | (0.0092)  |  |  |
| F              | -                     | 251.04    | 497.453   | 108.49    |  |  |
| Nobs           | 741 671               |           |           |           |  |  |
|                | Instruments           |           |           |           |  |  |
| Maternal dist. | NO                    | YES       | NO        | YES       |  |  |
| Paternal dist  | NO                    | NO        | YES       | YES       |  |  |

## Conclusions

- Parental education has a positive causal impact on probability of offspring becoming inventors
- Effect larger in absolute terms for sons, in relative terms for daughters
- Results survive when using IQ as additional control
- Effect larger for cohorts just before than for cohorts just after comprehensive school reform
- Results robust in a number of ways: different samples, different outcome variables, different measures of parental education, different functional forms...
- The fact that estimated coefficient varies as the instrument is changed suggests that we identify a **Local Average Treatment Effect**, or LATE