
ELEC-C8201 Control and Automation

Lecture 4: Block diagram algebra, PID controller, 
Routh-Hurwitz stability test



Block Diagram conversions: Signals

 In block diagrams, a single signal can be 
exported to more than one block (signal 
branching).
 A block diagram is an information chart and it 

can branch information, but it does not 
reduce that information.  Each branch has 
the same information.

 The different signals can be combined using 
a summation block.  The combination can 
be either an addition or subtraction of 
individual signals
 Signs on the summation block indicate the 

signs of the individual signals in the total.
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Passing a signal through a block

 As stated in previous lectures, in Laplace domain the output signal is 
obtained by multiplying the input signal with a transfer function

 This basic formula can be used to derive a transformation from the serial 
association of the equation blocks.  Introduce the auxiliary variable e (s), 
which is subsequently eliminated


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Passing a signal through a block

 The derivation for parallel blocks:
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Passing a signal through a block

 Loop relation (feedback) to the conversion formula is calculated as:
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Thus, the overall transfer function is the  tf
of the forward path divided by the term (1 + 
open loop transfer function)  This will be 
essential in future.  



Block Diagram conversions: basic relations

 Basic block diagram relations:

 Series 

 Parallel

 Feedback loop
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Example: Moving a rocket in space 

 A rocket with a mass of M = 10 which is assumed to be 
constant is controlled by force F (t), which can be positive 
or negative.  The objective is to make the location of the 
rocket Z (s) (1-D distance) change from the starting point 
(initial position) to the end point (final position).

 The position of the rocket is measured by the measuring 
devices with a certain amount of inertia but no bias. The 
transfer function of the measurement system is



 The measured location of the rocket Zmit (s) is compared 
to the desired location Zref (s) (i.e. reference value).  The 
deviation between the desired position and the measured 
location is called an E (t) and the regulator determines the 
appropriate steering value for each situation.
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Example: Moving a rocket in space 

 The controller has two parallel functions, the first of which follows the magnitude 
of the deviation (the difference) and multiplies it by a constant of 30 and the other 
with the slope of deviation (i.e. the differential derivative) and multiplies it by 31.  
Total control, i.e. the force required (u(t) = F(t)) is calculated as the sum of these 
two control forces.

 Suppose that the actuator is ideal (that is, the regulator directly generates the 
required power without inertia) so that it’s inertia doesn’t need to be taken into 
account. 

 It is assumed that no damping forces are affected by the grain configuration (the 
force balance is limited to the inertia and thrust of the F(t))

 Develop a detailed block diagram for the system and analyse the operation of 
both the individual blocks and the total system by means of responses.
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Example: Moving a rocket in space 

 Output of rocket is a distance  y(t) = z(t)

 Input to rocket is power  u(t) = F(t)

 The output of the measuring device is the measured distance  ymit(t) 
= zmit(t)

 The input to the measuring device is the actual distance  y(t) = z(t)

 The input to the controller is e(t)

 The output of the controller is the power  u(t) = F(t)

 Generating rocket dynamic model:

 The various functions of the controller are


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Example: Moving a rocket in space 

 The process (rocket) is a dual integrator with easy-to-calculate responses 
directly from the Laplace table.

 Position measurement device measures the distance correctly, but with a 
little lag
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Example: Moving a rocket in space 

 In the differential controller, the controller reacts to the difference in the 
inputs

 The next part of the proportional controller reacts to the current input
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Example: Moving a rocket in space 

 Now forming the entire system block diagram

 Using block chart conversions from the most innermost structure
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Example: Moving a rocket in space 

 This concludes the entire system transfer function


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Example: Moving a rocket in space 

 It is now possible to calculate the system response to the step of the set 
value, i.e. the reference to the expected position (from the moment 0 
onwards, to have the position of the rocket in the desired end state).

 The system works with the desire to stabilize an unstable rocket.  The 
expression of the response approaches unity as the time approaches 
infinity, i.e. the desired value of distance and the actual distance 
approaching each other as time grows.
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Example: Moving a rocket in space 

 Simulating a rocket control system



 The steering has an infinite impulse 
response and the step response is 
overshooting
 The guidance proposed by the Controller cannot be 

effectively implemented and, as the distance of the rocket 
approaches the desired value, it will pass and overshoot 
(the measurement is slow).



Example: Moving a rocket in space 

 The rocket control can also be developed with 
a more realistic and more effective 
management strategy
 Suppose control is limited between maximum 

and minimum values: u(t)  [-40,40].

 If you want to move the rocket to the desired 
distance in minimum time, then the solution to 
the optimization problem is to get the so called 
"Bang-bang" adjustment: that is, maximum 
acceleration and maximum braking 

 The optimum adjustment is outside the topic 
of this course.

Control input u

Position reference, yref

Real position, y



Example: Moving a rocket in space 

 If you do not need to reach your destination 
as quickly as possible, you can optimize 
fuel consumption, for example (use of 
steering)
 Suppose the long-term use of the steering is 

costly-the most economical is the fast 0.05 
time unit with maximum speed.

 The rocket must arrive only after five time
units.

 In this case, the optimization problem can be 
obtained: fast acceleration-smooth driving-
rapid braking.



MATLAB: Block chart conversions 

 Block diagram for conversions in the Control System Toolbox commands 
parallel (i.e. +/-), series (i.e. *) and feedback

 Build the example of the rocket control system with a total block diagram 
in Matlab

 Gc1=tf([31 0],[1]) =>Transfer function:31 s

 Gc2=tf([30],[1]) =>Transfer function:30

 G=tf([1],[10 0 0]) =>Transfer function:1/ (10 s^2)

 Gm=tf([1],[0.1 1]) =>Transfer function:1/(0.1 s + 1)

G(s)

Prosessi

Y(s)U(s)

Mittaus

Gm1(s)
Ymit (s)

+

_

Yref(s) E(s)
Gc2(s)

Säädin

+

+Uc2(s)

Uc1(s)Gc1(s)G s
s

G s
s

G s s

G s

m

c

c

( )
.

( )

( )

( )









RST

1

01 1
1

10
31

30

2

1

2

processcontrol

measurement



MATLAB: Block chart conversions 

 Gc=parallel(Gc1,Gc2) =>Transfer function:(31 s + 30) 

 Gff=series(Gc,G) =>Transfer function:

 (31 s + 30)/(10 s^2)

 Gtot=feedback(Gff,Gm) =>Transfer function:

 Commands parallel and series can be replaced with + and * (parallel 
blocks are summed together and sequentially multiplied)
 Gc=Gc1+Gc2

 Gff=Gc*G

 Gtot=feedback(Gff,Gm)

 The entire block chart conversion can also be done in one line:
 Gtot=feedback(G*(Gc1+Gc2),Gm)

3.1 s^2 + 34 s + 30
------------------------
s^3 + 10 s^2 + 31 s + 30



MATLAB: Block chart conversions 

 The total block diagram can also be calculated symbolically using the 
symbolic function in Matlab

 First we define s = tf(‘s’)

And then
 Gc1=31*s

 Gc2=30

 G=1/(10*s^2)

 Gm=1/(0.1*s+1)

 Gtot=(Gc1+Gc2)*G/(1+(Gc1+Gc2)*G*Gm)

 Gtot=minreal(Gtot)     % Minreal reduces common terms

(31 s + 30) (s + 10)
1/10 -----------------------

(s + 5) (s + 3) (s + 2)

3.1 s^2 + 34 s + 30
------------------------
s^3 + 10 s^2 + 31 s + 30



PID Controller

 The PID control is the most common regulator in the industry
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PID Controller

 The PID controller input is e(t) (deviation between desired and measured 
value yref(t) - ymit(t) ) and the output is the control signal u(t).

 The control provided by the Controller is the sum of three different 
functions, which are influenced by tuning parameters KP, KI and KD

 The proportional term (P - proportional) is the static measure of the difference 
between desired and current value. Whenever you change the difference, the 
term  uP also changes in poroportion.

 The integral term integrates the error. The uI is in constant state of flux until 
error has disappeared.  The integral term eliminates persistent deviation, but
may increase system vibrations.

 The derivative term follows the rate of change of the differential.  Whenever 
the difference is changing, then uD responds to resist the change.  A 
derivative term stabilizes the system but is sensitive to delays and unwanted 
noise.
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PID Controller-Integral term

 The ability of the integral term to eliminate the permanent error can be 
illustrated by presenting it in a derivative form.

 Notice that the control u(s) continues to change until the error e(t) goes to 
zero.
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Transfer function for PID controller

 The PID control provides all basic modifications by multiplying non-preferred 
terms by zero.  In the example of a Rocket control, the controller had a PD 
control.  The same principle can also be used to form PI2D control.

 P-control, KP is to confirm the controller

 PI-control, KP gives control proportional to error, KI is the integral contstant 
and TI is the integration time constant.

 The PD control, KP gives control proportional to error, KD is the derivative gain 
and TD is the derivation time constant.
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Example: Mechanical system

 Simulating the position of the mechanical system 
mass when controlled with various modifications 
of the PID controller.  Assume the measurement 
and actuator to be ideal. m
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Example 2: Mechanical system

 The figures below show the step control results for P, PI, PD and PID
 The Simulations 

used proportional  
control’s constant of 
the values 1, 2, 5, 
10, and 50.  The 
Integration and the 
derivatives times 
were simulated as 1.

 The P and PD 
controls leave a 
permanent 
deviation, the I-term 
eliminates the 
permanent deviation

 I-The term increases 
vibrations while the 
D-term stabilizes 
and eliminates 
vibrations



Stability tests (Routh-Hurwitz)

 If the roots of the system are known (the denominator 
polynomial zero points), then stability is easy to observe.
 Roots can be determined from numerical polynomial by iterative calculation 

routines (by Matlab commands such as eig, roots and pole).

 E.g. Polynomial

 If one of the polynomial coefficients is zero or negative, then the polynomial 
has at least one root on the imaginary axis or the right half plane.

 If the polynomial contains symbolic parameters and you want to determine at 
which parameter values the system is stable, then the root solution 
numerically will no longer be successful.  You can then use the Routh’s chart.

 The method is given in the following without proof (which would need a 
reasonable study of polynomial algebra). 

roots([1 2 4 10])
ans =       -2.2236          

0.1118 + 2.1177i
0.1118 - 2.1177i

s s s3 22 4 10  



Routh’s Chart 

 Consider polynomial                                                   to generate the Routh’s 
chart::
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Routh’s Chart 

 The number of sign changes in the first column of the Routh’s chart is also 
the number of roots at the right side of the complex plane.

 If the typical polynomial of the system is placed in the Routh diagram, the 
system is stable if there is no sign change in the first column.

 If there is a zero in the first column of the chart, it is replaced by the small 
positive number e  in the diagram and forming diagram is continued.  The 
final chart can be used to calculate the sign changes by examining the limits 
of the terms that depend on   e        0.

 If the chart consists of a whole row of zeros, then the original polynomial is 
divisible by another polynomial formed by the coefficients above the zero line. 



Examples: Routh’s chart 

 Polynomials:


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So two roots on the right 
half-plane (RHP).

No sign changes in first column
So no roots on the right 
half-plane



Examples: Routh’s chart 

 Polynomial: s s s3 2 2 2  
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A zero row is obtained, resulting in a higher line
polynomial            with which the original polynomial
is divisible.

Another way: Take the derivative of the auxiliary polynomial and
continue.

No character changes, so no roots on the right side of the plane



Examples: Routh’s chart 

 Polynomial: s s s s4 3 23 4 12 12   
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Examples: Routh’s chart 

 System with the transfer function 
is controlled with the P controller.

 For what values of KP is the 
system stable?  
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State space poles and zeros

 Earlier the conversion between transfer function and state 
space representation was derived.

 The inverse of the matrix is calculated by dividing the adjoint matrix with the 
determinant.
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Characteristic polynomial:

System poles equation

System zeros equation

• Note that the equations apply to multivariable (MIMO) systems as well.



Example 

 Determine system poles and zeros.

 The transfer function has two poles (-1 ja 3) and one Zero (-3)
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Example: Behavior of a given system 

 Examine the behavior of the prescribed system with the various 
tuning controls (P-control).

 The uncontrolled process is unstable
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Example: Behavior of the given system 

 Characteristic equation of the given system

 System poles (Quadratic equation solution):

 The system is not oscillating when the poles are



 The system is stable when the poles are on the left half plane
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Example: Behavior of the given system 

 Determine the poles and plot the pole zero maps of the given system 
with different KP values
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Example: Behavior of the given system 

 The corresponding step 
responses are:
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Example: Behavior of the given system 

 So, a controlled system can be

5 2 6, Vaste on värähtelemätön ja epästabiili

5 2 6 1, Vaste on amplitudiltaan kasvavaa, epästabillia värähtelyä

1, Vaste on harmonista värähtelyä

1 5 2 6, Vaste on vaimenevaa, stabiilia värähtelyä 
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Response is non-oscillatory and unstable

Response has oscillations with growing amplitude and unstable

Response has harmonic oscillations

Response has oscillations but is stable

Response is critically stable

Response has no oscillations and is stable



Common transfer function templates: 1st order system

 1. First order dynamics
 Differential equation and transfer function:

 K is the gain

  is the system time constant
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Common transfer function templates: 1st order system

 > 0   => 
Stabiili

 < 0   => 
Epästabiili

Stable 

Unstable 

Impulse response

Impulse response

Step response

Step response



Common transfer function templates: 2nd order system

 2nd order oscillation dynamics (complex poles)
 Differential equation and transfer function:

 K is the system gain

 wn is system natural angular frequency (wn > 0)

 z is the damping ratio of the system (-1 > z > 1)
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Common transfer function templates: 2nd order system
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Common transfer function templates: 2nd order system

0 > z > 1   => 
Stable

-1 > z > 0 => 
Unstable

Impulse response :

Impulse response :

Step response

Step response



Common transfer function templates: 2nd order system

 The oscillation dynamics of 2nd order system (real poles)
 Differential equation and transfer function:

 K is system control gain

  and are system time constants ( ≠  )
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Common transfer function templates: 2nd order system
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Common transfer function templates: 2nd order system

1, 2 > 0   
=> stable

1 < 0 or 2 < 0
=> unstable

Impulse response

Impulse response

Step response

Step response



Higher-order Models 

 Higher-order models can be formed from simple 1st and 2nd

order models

 It is known that the response is a weighted sum of all 
elements (poles and zeros near the vertical axis dominate 
the behavior of the system)
 Examining the oscillating system of the 3rd order:

 The behavior of this system is a weighted sum of second-order behavior and 
first-order behavior:
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Higher-order Models 

 Below are system pole zero patterns and step responses 
with certain parameter values
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Simple system responses 
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Simple system responses 
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Simple system responses 
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Simple system responses 
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