Linear regression (review)

Demand/supply, Y, for a service is dependent on:

 $Y = \beta_0 + \beta_1 \text{ (Price)} + \beta_2 X_2 + \beta_3 X_3 + \dots + \varepsilon$

- Explanatory variables: Price, X₂, X₃, ...
 - That we observe
- Coefficients: β_0 , β_1 , β_2 , ...
 - Unknown parameters of interest
- Random error term ϵ
 - that are unobservable/"unpredictable" to us
- If we have data on the dependent and explanatory variables, we can "estimate" the coefficients that would best "fit" the data
 - i.e., choose coefficients to minimize distance between actual data points and prediction

Hanna, Kreindler, and Olkein (2017)

Is an "event study"

$$delay_{idh} = \alpha + \beta \cdot post_d + \gamma \cdot north_i + \varepsilon_{idh}$$

- Dependent/outcome variable: travel delay on segment *i*, on date *d* and departure hour *h*
- Independent/explanatory variable of interest: $\alpha+\beta+\gamma$ indicator for whether date *d* is after the policy lifting
 - post_d = 0 before policy lifting ("control" group)
 - post_d = 1 after policy lifting ("treatment" group)
- 'Conditional' on direction "fixed effect"
 - north or not
 - north_i = 1 if heading north, and =0 otherwise

'Identification' of causal effect in event studies

- What if the timing of event is intended to coincide with the changes in outcomes?
 - As opposed to the changes being caused by the event?
 - Assumption: Event is uncorrelated with trends in outcomes
- What would outcomes have looked like in the absence of the policy?
 - Would the average delay have stayed at $\alpha ?$
 - Assumption: 'Treated' observations would resemble 'control' observations in the absence of the event

Linear regression (review)

- Most of the time, we only observe equilibrium prices and quantities.
 - But many things may have changed between two equilibria
- To estimate the supply curve, we need a shift in demand only.
 - So we observe points along the supply curve
- To estimate the demand curve, we need a shift in supply **only**.
 - So we observe points along the demand curve
- Or we need to "condition on" one of the shifts

Omitted Variable Bias

e.g., if supply shift is caused by X_2 : conditional on the effect of X_2 on quantity, the relationship between price and quantity lets us estimate the slope of the supply curve:

Ln(Quantity) = $\beta_0 + \beta_1$ Ln(Price) + $\beta_2 X_2 + \varepsilon$

Not including the variable X_2 in the regression can bias our estimate of β_1 .

But we don't want to overfit the data

- We could try to fit more complicated models to the data
 - The world is usually more complicated than a single linear shift
- But our model and estimates won't be very generalizable
- Linear regressions are the most popular estimation techniques.

Linear regression estimation on Stata

Using data on individual automobiles, we want to fit the model:

$$\mathtt{mpg} = eta_0 + eta_1 \mathtt{weight} + eta_2 \mathtt{foreign} + \epsilon$$

Discrete Choices

- Outcome/dependent variables need not be continuous
 - (e.g., mpg or travel time delay)
- ...could represent discrete choices
 - e.g., choice of travel mode (bus vs car vs rail vs ...) from surveys of individuals
- ...could be bounded
 - e.g., modal / market shares, average age, ... from aggregate data

that maximizes their utility U: $U_{ii} = V_{ii} + \varepsilon_{ii}$ 0.5 where V_{ij} is a function of observable characteristics of the decision maker i and the alternative j • ε is randomly distributed with an 'extreme value distribution': the probability of choosing alternative Q is

$$Pr(Q) = Pr(U_{iQ} \ge U_{ij} \text{ for all } j) = \frac{e^{V_{iQ}}}{\sum_{j} e^{V_{ij}}}$$

Discrete Choice Models

• Faced with J different alternatives (e.g., bus, car, etc.), a decision maker i chooses the one that maximizes their utility U:

Logit regression estimation on Stata

Using data on individual automobiles,

The model that we wish to fit is

$$\Pr(\texttt{foreign} = 1) = F(\beta_0 + \beta_1 \texttt{weight} + \beta_2 \texttt{mpg})$$

where $F(z) = e^{z}/(1 + e^{z})$ is the cumulative logistic distribution.