
Computational inverse problems

Nuutti Hyvönen and Juha-Pekka Puska

nuutti.hyvonen@aalto.fi, juha-pekka.puska@aalto.fi

Second lecture

29

2.2 Truncated singular value decomposition
(cont.)

30

Summary of the previous lecture

The problem: Find x ∈ H1 that satisfies the equation

Ax = y,

where y ∈ H2 is given and A : H1 → H2 is a compact linear operator.

Singular value decomposition (SVD):

Ax =
∑

n

λn〈x, vn〉un for all x ∈ H1.

The solutions: If solutions exist, they are of the form

x = x0 +
∑

n

1

λn
〈y, un〉vn,

where x0 ∈ Ker(A).

31

Solvability conditions: There exists a solution if and only if

y = Py and
∑

n

1

λ2
n

|〈y, un〉|2 < ∞,

where P is an orthogonal projection onto Ran(A) = span{un}.

The natural way to circumvent problems with the first solvability

condition is to consider the projected equation

Ax = PAx = Py

instead of Ax = y. However, this does not help with the second

condition since there is no guarantee that
∑

n

1

λ2
n
|〈Py, un〉|2 < ∞

for a general y ∈ H2, if rank(A) =∞, i.e., if Ran(A) is infinite-

dimensional.

32

Truncated singular value decomposition (TSVD)

Let us define a family of finite-dimensional orthogonal projections by

Pk : H2 → span{u1, . . . , uk}, y &→
k
∑

n=1

〈y, un〉un.

Due to the orthogonality of {un},

P (Pky) =
∑

n

〈Pky, un〉un =
k
∑

n=1

〈y, un〉un = Pky,

and, moreover,

∑

n

1

λ2
n

|〈Pky, un〉|2 =
k
∑

n=1

1

λ2
n

|〈y, un〉|2 <∞.

(Note that one must choose k ≤ rank(A) if the latter is finite.)

33

In consequence, the problem

Ax = Pky. (4)

satisfies the solvability conditions (3). The corresponding solutions are

given by

x = x0 +
∑

n

1

λn
〈Pky, un〉vn = x0 +

k
∑

n=1

1

λn
〈y, un〉vn ∈ H1.

By the truncated SVD solution of Ax = y for a given k ≥ 1, we mean

the xk ∈ H1 that satisfies (4) and is orthogonal to the subspace Ker(A).

Since {vn} span (Ker(A))⊥, it easily follows that such xk is unique, has

the smallest norm of the solutions to (4), and is given by

xk =
k
∑

n=1

1

λn
〈y, un〉vn.

34

The special case: H1 = Rn and H2 = Rm

Let H1 = Rn and H2 = Rm, which means that

Ax = y

is a matrix equation or, in other words, a system of linear equations. In

particular, A ∈ Rm×n.

Since all operators of finite rank, i.e., with finite-dimensional range, are

compact, we have the representation

Ax =
p
∑

j=1

λj(x
Tvj)uj =

p
∑

j=1

λj(ujv
T
j)x, p ≤ min{n,m},

where {vj}pj=1 ⊂ Rn and {uj}pj=1 ⊂ Rm are sets of orthonormal vectors

and {λj}pj=1 are positive numbers such that λj ≥ λj+1. (Note that

p = rank(A).)

How can one write this decomposition in a neat matrix form?

35

Let us introduce, e.g., by Gram–Schmidt process, complementary sets of

orthonormal vectors {vj}nj=p+1 and {uj}mj=p+1, such that the completed

systems {vj}nj=1 and {uj}mj=1 are orthonormal basis for Rn and Rm.

Moreover, we set λj = 0 for j = p+ 1, . . . ,min{n,m}.

Next, we define three auxiliary matrices:

V = [v1, . . . , vn] ∈ R
n×n,

U = [u1, . . . , um] ∈ R
m×m,

Λ = diag(λ1, . . . ,λmin{n,m}) ∈ R
m×n.

Here, Λ ∈ Rm×n is a diagonal matrix with the elements

λ1, . . . ,λmin{n,m} on its diagonal; if m > n (resp. n > m), there are

m− n empty rows (resp. n−m empty columns) at the bottom of Λ

(resp. at the right end of Λ). Note that due to the orthonormality of

{vj} and {uj}, the matrices V and U are orthogonal:

V TV = V V T = I and UTU = UUT = I.

36

A simple computation shows that

UΛV Tx =
p
∑

j=1

λjuj(v
T
j x) = Ax

for all x ∈ Rn. Hence, we have the decomposition

A = UΛV T.

This is what we call the SVD in the case of matrices in Rm×n.

In particular, this is how Matlab understands the SVD.

37

Note, in particular, that the singular values {λj}min{n,m}
j=1 are just

non-negative — earlier they were assumed to be positive —, and

Ran(A) = span{uj | 1 ≤ j ≤ p},
Ker(A) = span{vj | p+ 1 ≤ j ≤ n},

(Ran(A))⊥ = span{uj | p+ 1 ≤ j ≤ m},
(Ker(A))⊥ = span{vj | 1 ≤ j ≤ p}.

38

Truncated SVD for a matrix A ∈ Rm×n

The truncated SVD solution, i.e., the solution of

Ax = Pky and x ⊥ Ker(A), 1 ≤ k ≤ p,

where Pk → span{u1, . . . , uk} is an orthogonal projection, is given in

the matrix framework by

xk =
k
∑

j=1

1

λj
〈y, uj〉vj =

k
∑

j=1

1

λj
vj(u

T
j y) = V Λ†

kU
Ty.

Here, Λ†
k ∈ Rn×m is a diagonal matrix, with min{m,n} number of

non-negative elements 1/λ1, . . . , 1/λk, 0, . . . , 0 on its diagonal.

39

For the largest possible cut-off k = p, the matrix

A† := A†
p = V Λ†

pU
T =: V Λ†UT

is called the Moore–Penrose pseudoinverse. It follows from the above

material that x† = A†y is the solution of the projected equation

Ax = Ppy = Py,

where P : Rm → Rm is, once again, the orthogonal projection onto

Ran(A). However, since the smallest non-zero singular value λp is

typically extremely small in inverse problems, the use of pseudoinverse is

often very sensitive to inaccuracies in the data y.

40

An example: Heat distribution in a rod (revisited)

Recall once again the heat equation

ut = uxx in (0,π)× R+,

ux(0, ·) = ux(π, ·) = 0 on R+,

u(·, 0) = f on (0,π).

Our plan is to discretize the dependence on the spatial variable x, and

then investigate the properties of the corresponding inverse problem

numerically.

To begin with, we introduce the step size h = π/100 and the grid points

xj = jh, j = 0, . . . , 100. Furthermore, we denote Uj(t) = u(xj , t).

41

We approximate the second derivative of u with respect to x at the

point (xj , t) by the difference rule:

uxx(xj , t) ≈
1

h2
(Uj−1(t)− 2Uj(t) + Uj+1(t)) , 1 ≤ j ≤ 99.

Furthermore, we discretize the boundary conditions by requiring that

ux(0, t) ≈
1

h
(U1(t)− U0(t)) = 0 =

1

h
(U100(t)− U99(t)) ≈ ux(π, t).

By solving this for U0(t) and U100(t) and substituting into the preceding

difference rule, we obtain altogether that

uxx(x1, t) ≈ 1

h2
(−U1(t) + U2(t)) ,

uxx(xj , t) ≈ 1

h2
(Uj−1(t)− 2Uj(t) + Uj+1(t)) , 2 ≤ j ≤ 98,

uxx(x99, t) ≈ 1

h2
(U98(t)− U99(t)) .

42

Denoting U(t) = (U1(t), . . . , U99(t))T and F = (f(x1), . . . , f(x99))T

and plugging the above approximations into the heat equation, we end

up with a set of ordinary differential equations:

U ′(t) = B U(t), t ∈ R+,

U(0) = F,

where B ∈ R99×99 is a certain tridiagonal matrix (see next slide).

The forward solution corresponding to this space-discretized problem can

be given with the help of the matrix exponent function as

U(T) = AF,

where A = A(T) = eTB and T > 0.

43

In Matlab, the matrices B and A = eTB can be formed by the following

script, which also forms the SVD and plots the singular values for A:

T = 0.1; % say

N = 100;

h = pi/N;

B = diag(ones(N-2,1),-1) - 2*eye(N-1) + diag(ones(N-2,1),1);

B(1,1) = -1; % the left boundary condition

B(N-1,N-1) = -1; % the right boundary condition

B = B/h^2;

A = expm(T*B);

[U S V] = svd(A); % SVD

semilogy(diag(S), ’LineWidth’, 2);

44

0 10 20 30 40 50 60 70 80 90 100
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

45

Let us next form a ‘wedge function’, which serves as the initial heat

distribution, and compute the corresponding final distribution at

T = 0.1:

x = linspace(h,pi-h,N-1); % the grid points

a = 40/3/pi; b1 = -8/3; b2 = 20/3; % coefficients

f = [a*x(1:35) + b1, -a*x(36:end) + b2]’;

ind = f > 0;

f = f.*ind;

w = A*f; % final distribution

plot(x, f, ’k’, ’LineWidth’, 2);

hold on

plot(x, w, ’r’, ’LineWidth’, 2);

axis([0, pi, 0, 2.1])

hold off

46

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

47

Let us be a bit silly and try to recover the initial heat distribution by

inverting A:

f_stupid = A\w;

plot(x, f_stupid, ’LineWidth’, 2);

which results in a catastrophe as demonstrated on the next slide. This is

not surprising since writing

rank(A)

in Matlab, gives the value 18. In other words, from Matlab’s numerical

point of view, A has only 18 linearly independent columns — in

particular, A is not (numerically) invertible.

48

0 0.5 1 1.5 2 2.5 3

−100

−50

0

50

100

49

Let us be more clever and compute the truncated SVD solution for

k = 18:

k = 18; % the (numerical) rank of A

d = diag(S); % the singular values

idk = [1./d(1:k); zeros((N-1)-k,1)]; % invert only 18

iBk = V*diag(idk)*U’; % the corresponding ’inverse’

fk = iBk*w; % the ’solution’

plot(x, f, ’k’,’LineWidth’, 2); hold on

plot(x, fk, ’LineWidth’, 2); hold off

We have, actually, committed a severe inverse crime: If an inverse

problem is solved using the same discretization with which the data was

generated, the results are typically overly optimistic. This problem could

be circumvented, e.g., by interpolating onto a sparser grid before the

inversion. The ’inverse crime effect’ can also be reduced by the addition

of artificial noise.

50

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

51

In practice, the measurement is always inaccurate. Let us thus add just a

tiny bit of noise in the measurement — so tiny that one could barely

recognize it with naked eye. (In fact, this noise level corresponds

approximately to the discrepancy between data sets simulated with the

above introduced difference scheme and with an alternative method

based on FFT and the SVD of the original solution operator ET .)

wn = w + 0.001*randn(N-1,1); % noisy data

fkn_stupid = iBk*wn;

plot(x, fkn_stupid, ’LineWidth’, 2);

As demonstrated on the next slide, this approach does not work

anymore. The reason is the following: The inverse of the 18th singular

value is approximately 3.15 · 1012, which means that the (ever so tiny)

component of the noise vector in the direction v18 is heavily magnified.

52

0 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
8

53

By trial and error, we decide to take the largest k = 8 singular values

into account when computing the truncated SVD solution:

k = 8;

idk = [1./d(1:k); zeros((N-1)-k,1)];

iBk = V*diag(idk)*U’;

fkn = iBk*wn;

plot(x, f, ’k’,’LineWidth’, 2);

hold on

plot(x, fkn, ’LineWidth’, 2);

hold off

This is pretty much the best one can do without additional information

about the shape of the initial heat distribution. (For example, if we knew

beforehand that f is piecewise linear, such information could be

incorporated in the inversion algorithm, which would surely result in

better reconstructions.)

54

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

55

