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Summary of the previous lecture

The truncated SVD solution: For N > k£ < rank(A), there exist
unique xy € Hy such that

Az, = Py and xr L Ker(A).

where Py : Hy — span{uy,...,u} is an orthogonal projection. This

solution can be given as

"1
Z)\_ yaun
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SVD notations for matrices : For a matrix A € R™*"™ the SVD is

usually written as

A =UAVT,

where A € R™*"™ has the (non-negative!) singular values on its
diagonal, and the columns of V € R™*™ and U € R™*™ are composed

of the (extended!) orthonormal basis {v;}7_; and {u;}7", respectively.

The truncated SVD solution for 1 < k£ < p :=rank(A) is given by
L — VA,JLUTy

where A € R™*"™ has the elements 1/\1,...,1/Xg,0,...,0 on its
diagonal. The matrix AT = VA;;UT is called the Moore—Penrose
pseudoinverse of A.
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Morozov discrepancy principle

(Let us return to the case where H; and Hs are general separable real
Hilbert spaces, and A : H; — H, is a compact linear operator.)

To make the truncated SVD a more useful tool, one should come up
with some rule for choosing the spectral cut-off index k& > 1 appearing in
the truncated SVD problem

Ax = Py and x 1 Ker(A).

Unfortunately, it is difficult (if not impossible) to invent a reliable
general scheme of doing this.

However, there exists a widely used rule of thumb called the Morozov
discrepancy principle.
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Assume that the measurement y € Hs is a noisy version of some
underlying ‘exact’ data vector yg € Hy. Furthermore, suppose that we
have some estimate on the discrepancy between y and g, i.e.,

ly — vol| = €>0.
For example, it may be known that
Yy = Yo +n,

where the vector n € Hs is a realization of some random variable with
known probability distribution. Knowledge about the statistics of n
could be due to, e.g., calibrations of the measurement device.
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The idea of the Morozov discrepancy principle is to choose the smallest
k > 1 such that the residual satisfies

ly — Azi]| < e.

Intuitively this means that we cannot expect the approximate solution to
yield a smaller residual than the measurement error — otherwise we
would be fitting the solution to noise.

Does such k exist?

Yes, it does if e > |Py — y

, as explained below.
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If rank(A) = oo, it follows from Ran(A) = Ran(P) L Ran(l — P) that

lAz, —yl* = [(Az — Py) + (Py —y)|*
= || Az — Py|® + [|(P — Dyl
= ) [y u)?+ (P =Dyl
n=k-+1

— HPy—yH2 as k — 00,

which is the best one can do since inf,cranca) |12 — ¥l = [Py — || by
virtue of the projection theorem. (However, there is no guarantee that
| k|| would not explode as k — o00.)

On the other hand, if p = rank(A) < oo,

Az, —y|| = ||1Poy —yll = [Py —yll-

(Usually, one should not choose this large spectral cut-off in practice.)
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2.3 Tikhonov regularization
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Motivation of Tikhonov regularization

As pointed out on the previous slide, the norm of the residual
[Az =y

is minimized by the sequence of truncated SVD solutions {z} as k
tends to rank(A). Unfortunately, when inverse/ill-posed problems are
considered, we typically also have

k]| — oo as k — rank(A).

(If rank(A) = oo, this can be understood literally; if rank(A) = p < oo,
this should be understood in the sense that the z,, is usually rubbish —
especially, if the measurement y is noisy.)

As a consequence, it seems well-motivated to try minimizing the residual
and the norm of the solution simultaneously.
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Tikhonov regularized solution

A Tikhonov regularized solution x5 € H7 is a minimizer of the Tikhonov
functional

Fs(z) = || Az —y|* + d||z]]*,

where 0 > 0 is called the regularization parameter.

Theorem. A Tikhonov regularized solution exists, is unique, and is given
by

p
rs = (ATA+ 0T AYy = )

)\.
. 5 <y7 uj>vj7
j=1

2
A7+

where p = rank(A) < oo.
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Proof: Let us prove this claim only in the case that H; = R™ and
H; = R™; the general result follows from the same ideas, but requires

some more sophisticated functional analysis.

To begin with, note that
v (ATA+ 0Dz = [|Az|]® +dllz]* > dllz[* >0

if © £ 0. In particular, AY A + 51 € R™*" is injective, which means that
it is invertible due to the fundamental theorem of linear algebra.

Hence,
Ts 1= (ATA + 5])_1ATy c Hy

is well-defined.
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Let {)\;}/_; be the positive singular values of A, and {v;};_, and

{uj}§:1 the corresponding sets of singular vectors that span Ker(A4)+

and Ran(A), respectively.

We expand x5 = > (v z5)v; + Qxs, where @ : R™ — Ker(A) is an
orthogonal projection. According to the first exercise of the first exercise

session,
p
(ATA+6D)xs = > (A +6)(v] z5)v; + 0 Qus.
j=1
Similarly,
p
Aty = Z)‘J (u;ry)’q7
j=1
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Equating these two expressions results in
_ )‘j (
A+

(v @) uly), 1<j<p,

and Qx5 = 0, which altogether means that

- >\J ¢ )\.7
:Z)\2+5 Z)\ 3y g W)
j=1

J=1
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Finally, consider x = x5 + z, where z € R" is arbitrary. We have
Fs(x) = |(Azs —y)+ Az||® + 6||zs + 2|°

= [|Azs — ylI* + 2 (A2) " (Azs — y) + [ Az|
+0 (|lws]|® + 22 as + [|12]]°)

= Fi(ws) + [|Az]* + 9]|z|I°
+227 (ATA+61) 25 — A'y)

—  Fs(xs) + || Az||® + 0||2]|* > Fs(xs),

where the equality holds if and only if z = 0. This shows that
rs = (AT A+ 6I)"tAly is the unique minimizer of the Tikhonov
functional.
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Properties of the Tikhonov regularized solution

The Tikhonov regularized solution has the following intuitive properties.
The proof of this theorem is omitted.

Theorem. Let P : H, — Ran(A) be an orthogonal projection. The
residual ||Axs — y|| is strictly increasing as a function of § and it satisfies

lim [Azs —yl| =[Py -yl and  lim [[Azs —y| =[]yl

Moreover, if Py € Ran(A), then x5 converges to the solution of the
problem

Ax = Py and r 1 Ker(A)

as 6 — 0. On the other hand, if Py ¢ Ran(A), then the norm ||xs]||
tends to infinity as § goes to zero.
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The Morozov principle for Tikhonov regularization

Assume once again that the measurement y € Hy is a noisy version of
some underlying ‘exact’ data vector yy € Hs, and that

ly —voll = e>0.

In the framework of the Tikhonov regularization, the Morozov
discrepancy principle advises to choose the regularization parameter
d > 0 so that the residual satisfies

ly — Axs[| = e
Such a regularization parameter exists if
ly = Pyl < e <yl

This follows from the above theorem because the residual ||y — Axs]| is
continuous with respect to J.
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Tikhonov regularized solution for matrices

Assume once again that H; = R"™ and Hy = R™. In this case, the
Tikhonov functional can be given as

- - - 912

A Y
VoI 0

Fs(x) : IeR"™™ 0eR"  (5)

It is interesting to notice that the normal equation corresponding to this
least squares problem is (see 3. problem of 1. exercise session)

A
VoI

T

VoI

A
VoI

T

or equivalently
(ATA+ 6Dz = Aly.
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Bear in mind that one does not, actually, need to form this normal
equation in Matlab when using Tikhonov regularization: After defining

A
K = e R(ntm)xn and z = Y c R"™

VoI 0

the command
xdelta = K\z

computes the Tikhonov regularized solution.

Explanation: For non-square matrices the mldivide command of
Matlab tries to solve the corresponding least squares problem. As unique
minimizer is known to exist, this corresponds to multiplying z from the
left by the Moore—Penrose pseudoinverse of K (see 3. exercise of 1.
session). As all n singular values of K are larger than /6 (see 1.
exercise of 2. session) this pseudoinverse is well-behaved.
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An example: Heat distribution in a rod (revisited)

Recall the discretized inverse heat conduction problem that was
discussed during the second and third lectures. Let w be the simulated
heat distribution at T=0.1 with the ‘wedge function’ as the initial data,
and A the corresponding propagation matrix A=expm(TB). We add the
same small amount of noise as previously and compute the Tikhonov

regularized solution:

wn = w + 0.001*randn(N-1,1);

zn = [wn; zeros(N-1,1)]; % augmented data vector

K = [A; sqrt(delta)*eye(N-1)]; % augmented system matrix
fdelta = K\zn; % Tikhonov regularized solution
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We do this for three different values of the regularization parameter

§ =1 (too large), § = 1073 (too small), and § = 5.95 - 107°, which
corresponds to the Morozov discrepancy principle: We assume here that
the discrepancy between the measured data and the underlying ‘exact’
data equals the square root of the expectation value of the squared norm
of the noise vector, i.e.,

e = 1v99.0.0012 ~ 9.95.10"3.

Note that the value of § given by the discrepancy principle depends on
the particular realization of the noise vector even though ¢ does not.

The expectation value of the norm of the noise vector would be as — if
not more — logical choice for ¢, but it is more difficult to write down
explicitly. (Luckily, these two choices do not differ that much in the
considered case: numerical tests suggest that the latter gives

€~ 9.92-1075.)
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Generalizations of Tikhonov regularization
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Tikhonov regularization for nonlinear problems

Let us briefly consider the nonlinear case, where A : H; — Hs is a
nonlinear operator and the examined equation is of the form

A(x) = .

A standard way of solving such a problem is via sequential linearizations,
which leads to solving a set of linear problems involving the derivative
operator of A.

As an example, in Newton's method one would first pick an initial guess
xro € Hy and then try to produce the (5 + 1)th iterate by solving the
linearized problem

A(xj) + A(xj)(xjp1 —x5) =y,  j=0,1,...,

recursively for ;1. (In the general setting A’ is the Fréchet derivative
of A, but for finite-dimensional operators it is just the Jacobian matrix.)
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Unfortunately, if large alterations of x produce only small changes in
A(x), i.e., if the original equation is ill-posed, there is no guarantee that
the corresponding linearized problems can be solved as such — not even
in the least squares sense. Hence, regularization is needed.

Unlike the truncated SVD method, Tikhonov regularization generalizes
easily to this nonlinear framework. Now, it amounts to searching for
xs € Hy that minimizes the functional

Fs(z) = [|A(z) —ylI* + 8]z,  o>0.

Since Fj is no longer quadratic in z, it is not clear that a unique
minimizer exists. Furthermore, even if a Tikhonov regularized solution

exists, it cannot usually be given by an explicit formula.
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Be that as it may, one can try to minimize Fj5(x) by using some
nonlinear optimization technique. One — but probably not the best —
way of doing this, is to pick an initial guess x50 € H; and then
recursively define the (j + 1)th iterate x5 ;41 € H; to be the unique
minimizer of the z; ;-dependent Tikhonov functional

~ 2
Fsi(x) = ||A(xs;) + A'(xs.5) (@ — x5,) — yl|* + 8[|z
= ||A (z5,)x — [y — A(zs;) + A (z55)x5,4]|)° + 8|22,

where the dependence of A on = has been linearized with z; ; as the
base point. Since this Tikhonov functional is of the ‘standard form’,
z5i+1 can be given explicitly with the help of A'(z5), A(xs5.5), ®s55. Y
and J. (In practice, evaluating A’(x5 ;) is often the most difficult part.)

Combining this with some reasonable stopping criterion does indeed give
reasonable solutions for many nonlinear inverse problems.
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More general penalty terms

A more general way of defining the Tikhonov functional is
F5(z) = ||Az — y||* + 6G(z),

where the penalty function GG : H; — R takes non-negative values. The
existence of a unique minimizer for this kind of functional depends on
the properties of (G, as does the workload needed for finding it.

One typical way of defining GG is
G(x) = ||L(z — x0)|%, (6)

where x¢ € Hy is a given reference vector and L is some linear operator.
The choice of xy and L reflects our prior knowledge about the ‘feasible’

solutions: Lx is some property that is known to be relatively close to the
reference value Lz for all reasonable solutions. (In standard case o = 0
and L = I, the solutions are ‘known’ to lie relatively close to the origin.)
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The numerical implementation of Tikhonov regularization with G of (6)
is approximately as easy as for the standard penalty term:

In the case that H; = R"” and Hy = R"™, the operator L is just some
matrix in R'*™ and the Tikhonov functional can be given as

Fs(z) = |[Kz — 2| (7)

where

A Y
K = and z =
VoL V8 Lxg

Assuming that the matrix L is chosen so cleverly that all n singular
values of K are (well) larger than zero, the Tikhonov regularized solution
can be computed in Matlab by applying the pseudoinverse of K on z by
the command

xdelta = K\z
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Explanation: As shown in 3. exercise of 1. session, all minimizers of (7)

satisfy the normal equation
K'Kr = K'z.

On the other hand, it was proved in 1. exercise of 1. session that the
symmetric matrix KT K € R™*"™ has n positive eigenvalues that are the
squares of the singular values of K. In particular, this means that K1 K
is invertible, and thus there is exactly one minimizer for (7). This is
given by KTz due to 3. exercise of 1. session.

(The fact that a symmetric matrix with nonzero eigenvalues is invertible
follows, e.g., from the eigenvalue decomposition.)
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