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Summary of the previous lecture

A Minimization problem: Let A ∈ Rn×n be symmetric and positive

definite. Instead of solving the original equation Ax = y directly, we

consider minimizing the functional

φ(x) = (x∗−x)TA(x∗−x) = eTAe = (y−Ax)TA−1(y−Ax) = rTA−1r,

where x∗ = A−1y is the actual solution, and e and r are called the error

and the residual corresponding to the approximate solution x. The

unique minimizer of this functional is the solution of the original

problem, i.e., x∗.
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A sequence of minimizers: Given an initial guess x0 and a set of

non-zero search directions {sj}kj=0 ⊂ Rn, we define the approximate

solution xj+1, j = 1, . . . , k, recursively as the minimizer of the

functional φ on the line

Sj = {x ∈ R
n | x = xj + αsj , α ∈ R}.

This can be done through the iteration

xj+1 = xj + αjsj , with αj =
sTj rj

sTj Asj
, j = 0, . . . , k,

where rj = y −Axj is the residual corresponding to xj .
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A-conjugate search directions: The non-zero vectors {sj}kj=0 are

called A-conjugate if

〈si, sj〉A = sTi Asj = 0 for i &= j.

If the search directions are chosen this cleverly, the iterate xk+1 is the

minimizer of φ over the whole hyperplane

Sk = {x ∈ R
n | x = x0 + Skh, h ∈ R

k+1},

i.e., over all vectors of the form x = x0 +
∑k

j=0 hjsj , where h0, . . . , hk

are real numbers. This minimizer can be given explicitly as

xk+1 = x0 + Skh∗, h∗ = (ST
k ASk)

−1ST
k r0,

where Sk = [s0, . . . , sk] ∈ Rn×(k+1). In particular, xn is the global

minimizer, i.e., xn = x∗.
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Conjugate gradient method

To sum up, we have arrived at the following algorithm

Choose x0.

Set k = 0, r0 = y −Ax0, s0 = r0;

Repeat until the chosen stopping rule is satisfied:

αk = (sTk rk)/(s
T
kAsk);

xk+1 = xk + αksk;

rk+1 = rk − αkAsk; % Note: rk+1 = y −Axk − αkAsk
βk = −(sTkArk+1)/(sTkAsk);

sk+1 = rk+1 + βksk;

k ← k + 1;

end
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However, the algorithm is usually presented in a slightly different form.

Assuming that the iteration has not yet converged at the iterate xk, we

deduce the following formulae:

Since rk ⊥ sk−1,

sTk rk = (rk + βk−1sk−1)
Trk = ‖rk‖2,

resulting in

αk =
‖rk‖2

sTkAsk
.

In particular, since rk+1 ⊥ span{s0, . . . , sk} = Kk+1 * rk, this means

that

‖rk+1‖2 = rTk+1(rk − αkAsk) = − ‖rk‖
2

sTkAsk
rTk+1Ask = βk‖rk‖2.
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Solving for βk and plugging the obtained formulae for αk and βk into

the preliminary conjugate gradient algorithm leads to the standard form

of the method:

Choose x0.

Set k = 0, r0 = y −Ax0, s0 = r0;

Repeat until the chosen stopping rule is satisfied:

αk = ‖rk‖2/(sTkAsk);
xk+1 = xk + αksk;

rk+1 = rk − αkAsk;

βk = ‖rk+1‖2/‖rk‖2;
sk+1 = rk+1 + βksk;

k ← k + 1;

end

NB: There is an error in the update formula for xk+1 in the textbook.
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Conjugate gradient method for inverse problems

According to the above construction, if you apply the conjugate gradient

method to the equation

Ax = y,

where A ∈ Rn×n is symmetric and positive definite, you obtain the exact

solution — up to rounding errors — in at most n iteration steps, i.e.,

xn = x∗ = A−1y. However, such extensive iterating is not usually

necessary: The algorithm typically converges satisfactorily much quicker;

see, e.g., 2. exercise of the 3. session, where a (pessimistic) convergence

rate is provided.

When dealing with ill-posed problems, one should be even more careful

and terminate the iterations well before convergence, in order to avoid

fitting the solution to noise. One should, actually, be extremely cautious

because the conjugate gradient method often converges very fast.
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Let us be a bit more precise and consider a general ill-posed matrix

equation

Ax = y,

where A ∈ Rm×n and y ∈ Rm are given.

In some cases, one may have m = n and, in addition, some prior

information stating that A is — at least in theory — positive

(semi-)definite. In such situation, one can apply the conjugate gradient

algorithm directly on this original equation.

In the general case, one may still consider the normal equation

ATAx = ATy,

which corresponds, in essence, to solving the original equation in the

least squares sense.
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Now, the system matrix ATA = (ATA)T ∈ Rn×n is symmetric and

positive semi-definite:

uTATAu = ‖Au‖2 > 0 for all u ∈ (Rn \Ker(A)).

Hence, the conditions of the conjugate gradient algorithm are almost

satisfied, and one may look for the solution of the inverse problem by

using the conjugate gradient algorithm with A replaced by ATA and y

by ATy. (When implementing the algorithm in Matlab, bear in mind

that matrix-matrix products are typically far more expensive than

matrix-vector products.)

As a stopping condition, one may try, e.g., the Morozov principle for the

original equation: Terminate the iteration when

‖y −Axk‖ ≤ ε

for some ε > 0, which measures the amount of noise in y in some sense.
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An example: Heat distribution in a rod (revisited)

Let us once again consider the discretized inverse heat conduction

problem in an insulated rod. We simulate the data in the exactly same

way as above and add the same amount of noise.

The system matrix A = eTB , T = 0.1, is symmetric since B is

symmetric. Moreover, the infinite-dimensional version of A, i.e., ET , is

positive definite, and thus it is not far-fetched to assume that A is, at

least, close to being positive semi-definite. (A symmetric matrix is

positive definite if and only if all of its eigenvalues are positive; according

to Matlab the eigenvalues of A are either positive or extremely close to

zero.) Hence, it seems reasonable to try applying the conjugate gradient

method directly to the original equation.
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If we use the same value ε =
√
99 · 0.0012 = 9.95 · 10−3 for the Morozov

discrepancy principle as in the previous examples, the conjugate gradient

method becomes unstable before the stopping rule is satisfied. However,

for the value 1.2 ·
√
99 · 0.0012 the stopping rule is satisfied after seven

iterations.

In the following, we visualize the evolution of the conjugate gradient

iteration, show the norm of the residual ‖y −Axk‖ as a function of k,

and plot the solution corresponding to the (fine-tuned) discrepancy

principle.
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Next, we consider the exactly same problem, but this time apply the

conjugate gradient method to the normal equation. As a stopping rule

we use the Morozov discrepancy principle for the original equation, i.e.,

we stop the iteration when

‖y −Axk‖ ≤ ε,

where we use the ‘standard’ ε =
√
99 · 0.0012 = 9.95 · 10−3.

For some reason, the use of the normal equation makes the algorithm

more stable: the discrepancy principle for this ‘original’ ε is satisfied after

seven iterations and the solution looks nicer than when applying the

algorithm directly to the original equation. (Bear in mind, however, that

considering the normal equation makes the algorithm slower since more

matrix-matrix or matrix-vector products need to be computed.)

150



0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

151



0 1 2 3 4 5 6 7

10
−2

10
−1

10
0

10
1

152



0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

153



3. Statistical inversion

154



Computational inverse problems, part II

The second part of the course concentrates on the Bayesian approach to

inverse problems.

The lectures are still mainly based on the books:

• “J. Kaipio and E. Somersalo, Statistical and Computational Inverse

Problems, Springer, 2005” (parts of Chapter 3),

• ”D. Calvetti and E. Somersalo, Introduction to Bayesian Scientific

Computing. Ten Lectures on Subjective Computing, Springer, 2007”.
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Statistical inversion

In the statistical approach to inverse problems, the leading idea is to

recast the inverse problem in the form of statistical quest for information.

• Quantities are either directly observable or unobservable.

• Some of the unobservable quantities are of primary interest, others

may be considered to be of secondary interest.

• Quantities depend on each other through models.

• The objective of statistical inversion is to extract information on the

unknown quantities of interest based on all available knowledge

about the measurements, models coupling the parameters, and

information that is available prior to the measurement.
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The statistical approach is based on the following principles:

1. All variables are modelled as random variables.

2. The randomness describes our degree of (or lack of) information on

their realizations.

3. The information concerning the values of the random variables is

coded in probability distributions.

4. The solution of the inverse problem is the posterior probability

distribution of the quantities of interest (given the measurement).
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A classical regularization method typically produces a single estimate,

using often a more or less ad hoc removal of the ill-posedness of the

problem.

In the statistical framework, the solution is a probability distribution that

contains all information on the possible values of the variable of interest.

This distribution can be used to obtain different estimates and to

evaluate their reliability, e.g., single estimates and credibility intervals.

The statistical approach removes the ill-posedness by considering a

well-posed extension of the inverse problem in the space of probability

densities. When constructing the well-posed extension, the prior beliefs

are more explicitly stated than in traditional regularization.
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Subjective probability

Example: Tossing a coin.

Assume that the odds of getting heads or tails are equal, i.e.,

P (heads) = P (tails) =
1

2
.

Such an assumption is generally accepted and can be verified empirically

(empirical probability). This example reflects the frequentist view, where

probability can be seen as the relative frequency of occurrence in a set of

repeated experiments.
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In connection to Bayesian approach, one sometimes talks about

subjective probabilities. The inference process commonly incorporates

subjective components that reflect the beliefs of, e.g., the person doing

the inference (e.g., in the form of prior beliefs about the behaviour of the

unknown).

Examples:

What is the probability of rain tomorrow?

What is the probability that Finland will win a gold medal in the next

Olympic games?
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On random variables and probability
densities
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Probabilities and events (very informal)

Let Ω contain all possible outcomes, and consider a subset E ⊂ Ω. For

the probability P (E) of an event E, we require

0 ≤ P (E) ≤ 1.

Furthermore, it is assumed that

P (Ω) = 1 and P (∅) = 0.

Additivity: If A ∩B = ∅ for A,B ⊂ Ω, then

P (A ∪B) = P (A) + P (B).

Two events A and B are called independent, if

P (A ∩B) = P (A)P (B).
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The conditional probability of A given B is the probability that A

happens provided that B happens,

P (A |B) =
P (A ∩ B)

P (B)
.

If A and B are mutually independent,

P (A |B) = P (A), P (B |A) = P (B).

163



Real valued random variables (still informal)

We denote random variables by capital letters and their realizations with

lower case letters. Let X : Ω→ R be a real valued random variable and

denote its probability density by π(x) = πX(x) ≥ 0.

The probability of the event x ∈ B, B ⊂ R is obtained through

integration

P{X(ω) ∈ B} = P (X−1(B)) =

∫

B
π(x)dx.

In particular,

P{X(ω) ∈ R} = P (Ω) =

∫ ∞

−∞
π(x)dx = 1.
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The expectation is the center of mass of the probability density

E(X) =

∫

R

xπ(x)dx =: x̄.

The variance is the expectation of the squared deviation from the

expectation

var(X) = σ2
X = E{(X − x̄)2} =

∫

R

(x− x̄)2π(x)dx.

The joint probability density π(x, y) = πX,Y (x, y) of two random

variables X and Y is defined via

P{X ∈ A, Y ∈ B} =

∫∫

A×B
π(x, y)dxdy.

The random variables X and Y are independent if

π(x, y) = π(x)π(y).
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The covariance of X and Y is

cov(X, Y ) = E{(X − x̄)(Y − ȳ)}.

Note that

cov(X, Y ) = E{XY }− E{X}E{Y }.

The correlation coefficient of X and Y is

corr(X, Y ) =
cov(X, Y )

σXσY
, σX =

√

var(X), σY =
√

var(Y ),

or, equivalently, with the help of normalized random variables,

corr(X, Y ) = E{X̃Ỹ }, X̃ =
X − x̄

σX
, Ỹ =

Y − ȳ

σY
.

Random variables are uncorrelated if their covariance (or correlation

coefficient) vanishes,

cov(X, Y ) = 0.

166



If X and Y are independent, they are uncorrelated, since

E{(X − x̄)(Y − ȳ)} = E{X − x̄}E{Y − ȳ} = 0.

On the other hand, uncorrelated random variables are not necessarily

independent.

Given two random variables X and Y with joint probability density

π(x, y), the marginal density of X when Y may take any value, is

π(x) =

∫

R

π(x, y)dy.

Analogously, the marginal density of Y is

π(y) =

∫

R

π(x, y)dx.

167



The conditional probability density of X given Y is the probability

density of X assuming that Y = y:

π(x | y) = π(x, y)

π(y)
if π(y) &= 0.

Note that by the symmetry of the roles of X and Y , we have

π(x, y) = π(x | y)π(y) = π(y |x)π(x),

which leads to an important identity

π(x | y) = π(y |x)π(x)
π(y)

,

known as the Bayes formula.
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The conditional expectation or the conditional mean is the expectation

of X given that Y = y:

E{X | y} =

∫

R

xπ(x | y)dx.

The expectation of X can be computed also via its conditional

expectation:

E{X} =

∫

xπ(x)dx =

∫

x

(∫

π(x, y)dy

)

dx

=

∫

x

(∫

π(x | y)π(y)dy
)

dx

=

∫ (∫

xπ(x | y)dx
)

π(y)dy

=

∫

E{X | y}π(y)dy.
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Multivariate random variables

A multivariate random variable is a random variable

X =








X1

...

Xn







,

where each component Xi is a real scalar valued random variable.

The probability density of X is the joint probability density

πX(x) = π(x) = π(x1, . . . , xn) of its components.

The corresponding expectation is

x̄ =

∫

Rn

xπ(x)dx ∈ R
n,
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or, componentwise,

x̄i =

∫

Rn

xiπ(x)dx ∈ R, 1 ≤ i ≤ n.

The covariance matrix is defined as

cov(X) =

∫

Rn

(x− x̄)(x− x̄)Tπ(x)dx ∈ R
n×n,

or, componentwise,

cov(X)ij =

∫

Rn

(xi − x̄i)(xj − x̄j)
Tπ(x)dx ∈ R, 1 ≤ i, j ≤ n.

The covariance matrix is symmetric and positive semi-definite.
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The symmetry is implicit in the definition of the covariance matrix,

whereas the positive semi-definiteness follows by writing for v ∈ Rn that

vTcov(X)v =

∫

Rn

[vT(x− x̄)][(x− x̄)Tv]π(x)dx

=

∫

Rn

(vT(x− x̄))2π(x)dx ≥ 0.

Note that the above expression measures the variance of X in the

direction v.

The diagonal entries of the covariance matrix are the variances of the

individual components of X . Indeed, let us denote by x′
i ∈ Rn−1 the

vector x with the ith component deleted, i.e.,

x′
i = [x1, x2, . . . , xi−1, xi+1, . . . , xn]

T.
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Then, we have

cov(X)ii =

∫

Rn

(xi − x̄i)
2π(x)dx

=

∫

R

(xi − x̄i)
2

(∫

Rn−1

π(xi, x
′
i)dx

′
i

)

dxi

=

∫

R

(xi − x̄i)
2π(xi)dxi

= var(Xi).

The marginal and conditional probabilities for multivariate random

variables are defined by the same formulas as for the univariate random

variables.
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