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Example: Random variables waiting for the train

Assume that every day, except on Sundays, a train for your destination

leaves every S minutes from the station. On Sundays, the interval

between trains is 2S minutes. You arrive at the station with no

information about the timetable of the trains (or of the day!!). What is

your expected waiting time?

Define a random variable, T = waiting time, whose distribution on

working days is

T ∼ π(t |working day) = 1

S
χS(t), χS(t) =







1, 0 ≤ t < S,

0, otherwise.

On Sundays, the distribution of T is

T ∼ π(t | Sunday) = 1

2S
χ2S(t).
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On a working day, the expected waiting time is

E{T |working day} =

∫

tπ(t |working day)dt = 1

S

∫ S

0
tdt =

S

2
.

On Sundays, the expected waiting time is two times as long.

If you have no idea which day of the week it is, you can give equal

probability to each day. Thus,

π(working day) =
6

7
, π(Sunday) =

1

7
.

To get the expected waiting time regardless of the day of the week,

marginalize over the days of the week:

E{T} = E{T |working day}π(working day) + E{T | Sunday}π(Sunday)

=
3S

7
+

S

7
=

4S

7
.
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Example: Poisson distribution

A weak light source emits photons that are counted with a CCD

(Charged Coupled Device). The counting process N(t),

N(t) = number of particles observed in [0, t] ∈ N

is an integer-valued random variable.

Under some assumptions, it can be shown that N is a Poisson process:

P{N(t) = n} =
(λt)n

n!
e−λt, λ > 0.

We now fix t = T = the recording time, define a random variable

N = N(T ), and let θ = λT . We write

N ∼ Poisson(θ).
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We want to calculate the expectation and variance of this Poisson

random variable. Since the discrete probability density is

π(n) = P{N = n} =
θn

n!
e−θ, θ > 0,

and our random variable takes on discrete values, in the definition of the

expectation we have an infinite sum instead of an integral (a countable

number of probability masses), that is
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E{N} =
∞
∑

n=0

nπ(n) = e−θ
∞
∑

n=0

n
θn

n!

= e−θ
∞
∑

n=1

θn

(n− 1)!
= e−θ

∞
∑

n=0

θn+1

n!

= θe−θ
∞
∑

n=0

θn

n!
︸ ︷︷ ︸

eθ

= θ.
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We calculate the variance of a Poisson random variable in a similar way,

writing first

var(N) = E{(N − θ)2} = E{N2}− 2θE{N}
︸ ︷︷ ︸

=θ

+θ2

= E{N2}− θ2

=
∞
∑

n=0

n2π(n)− θ2.

Substituting the expression of π(n), we thus get
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var(N) = e−θ
∞
∑

n=0

n2 θ
n

n!
− θ2 = e−θ

∞
∑

n=1

n
θn

(n− 1)!
− θ2

= e−θ
∞
∑

n=0

(n+ 1)
θn+1

n!
− θ2

= θe−θ
∞
∑

n=0

n
θn

n!
+ θe−θ

∞
∑

n=0

θn

n!
− θ2

= θe−θ
(

(θ + 1)eθ
)

− θ2

= θ,

that is, the mean and the variance coincide.
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Normal distributions

A random variable X ∈ R is normally distributed, or Gaussian, i.e.,

X ∼ N (x0,σ
2),

if

P{X ≤ t} =
1√
2πσ2

∫ t

−∞
exp

(

− 1

2σ2
(x− x0)

2

)

dx.

For X ∼ N (x0,σ2), it holds that

E{X} = x0, var(X) = σ2.

As a generalization, X ∈ Rn is Gaussian if its probability density is

π(x) =

(
1

(2π)n det(Γ)

)1/2

exp

(

−1

2
(x− x0)

TΓ−1(x− x0)

)

,

where x0 ∈ Rn, and Γ ∈ Rn×n is symmetric and positive definite.
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Gaussian random variables are widely used in statistics. They appear

naturally when macroscopic measurements are averages of individual

microscopic random effects.

Examples: pressure and temperature.

The Central Limit Theorem sheds light on this:

Central Limit Theorem: Assume that real valued random variables

X1, X2, . . . are independent and identically distributed, each with

expectation µ and variance σ2. Then the distribution of

Zn =
1

σ
√
n
(X1 +X2 + . . .+Xn − nµ)

converges to the distribution of a standard normal random variable

lim
n→∞

P{Zn ≤ x} =
1√
2π

∫ x

−∞
e−t2/2dt.
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Another interpretation of the Central Limit Theorem: If

Yn =
1

n

n
∑

j=1

Xj ,

then for large n a good approximation for the probability distribution of

Y is

Y ∼ N
(

µ,
σ2

n

)

.
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Example: Poisson distribution (revisited)

One implication of the Central Limit Theorem is that the Poisson

distribution can be approximated with a Gaussian distribution if the

expectation θ is large.

Intuitive reasoning based on the CCD camera: Assume for simplicity

that the expectation θ is a positive integer. The total photon count can

then be viewed as a sum of sub-counts on θ ∈ N smaller counter units of

equal size. These sub-counts can in turn be viewed as mutually

independent Poisson distributed random variables with expectation (and

variance) 1. Now, it follows from the Central Limit Theorem that as θ

increases, the sum of the sub-counts approaches a normally distributed

variable with mean and variance θ.
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Let us test this hypothesis numerically. We plot the Poisson probability

distribution

πPoisson(n | θ) = θn

n!
e−θ

as a function of n ∈ N, and compare it to the Gaussian approximation

πGaussian(x | θ, θ) =
1√
2πθ

exp

(

− 1

2θ
(x− θ)2

)

as a function of x ∈ R+, for increasing values of θ > 0.
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Inverse problems and Bayes’ formula
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Classical setup for inverse problems:

y = f(x, e),

where

• y ∈ Rm is the measured quantity,

• x ∈ Rn is the quantity we seek to get information about,

• e ∈ Rk contains the poorly known parameters and noise, and

• f : Rn × Rk → Rm is the model.
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In the statistical setup, all parameters are viewed as random variables,

and the classical model is replaced by

Y = f(X,E).

Notice that the probability distributions of the three random variables

X, Y and E depend on each other.

Nomenclature:

Y is called the measurement, and its realization yobs the data.

X is the unobservable variable of primary interest and called the

unknown.

The other variables E that are neither observable nor of primary interest

are called parameters or noise.
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Prior density

Even before performing the measurement, we typically have some

knowledge about the variable X . This information is coded in a

probability density x (→ πpr(x) called the prior density.

Likelihood function

The conditional probability density of Y in case we know the value of

the unknown, i.e., X = x, is called the likelihood function:

π(y |x) = π(x, y)

πpr(x)
, if πpr(x) )= 0.
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Posterior density

Given the measurement data Y = yobs, the conditional probability

density

π(x | yobs) =
π(x, yobs)

π(yobs)
, if π(yobs) =

∫

Rn

π(x, yobs)dx )= 0,

is called the posterior density of X .

The posterior density expresses what we know about X after realizing

the observation Y = yobs.
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Inverse problem in the Bayesian framework

Given the data Y = yobs, find the conditional probability density

π(x | yobs) of the variable X .
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Bayes theorem of inverse problems

Assume that the random variable X ∈ Rn has a known prior probability

density πpr(x) and the data consist of the observed value yobs of an

observable random variable Y ∈ Rm such that π(yobs) > 0. Then, the

posterior probability density of X , given the data yobs, is

πpost(x) = π(x | yobs) =
πpr(x)π(yobs |x)

π(yobs)
.

In practice, the marginal density π(yobs) plays a role of a norming

constant and is often not important.
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Solving an inverse problem in the Bayesian framework

1. Based on all available prior information on the unknown X , find a

prior probability density πpr that reflects this information as well as

possible.

2. Find the likelihood function π(y |x) that describes the interrelation

between the observation and the unknown.

3. Develop methods to explore the posterior probability density.
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Estimators
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Maximum a posteriori estimate (MAP)

xMAP = arg max
x∈R

n
π(x | y)

Existence or uniqueness is not guaranteed.

Finding the MAP estimate requires solution of an optimization problem,

using, e.g, iterative gradient-based methods.

Conditional mean (CM) estimate is defined as

xCM = E{x | y} =

∫

Rn

xπ(x | y)dx

provided that the integral converges.

Requires solving an integration problem. In high-dimensional spaces, this

may require special techniques (sampling).
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Maximum likelihood (ML) estimate

xML = arg max
x∈R

n
π(y |x)

Answers the question: Which value of the unknown is most likely to

produce the measured data?

The ML estimate is a non-Bayesian estimate, and in the case of ill-posed

inverse problems, often not useful. Loosely speaking, it corresponds to

solving a classical inverse problem without regularization.
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Conditional covariance is a ‘spread estimator’:

cov(x | y) =
∫

Rn

(x− xCM)(x− xCM)Tπ(x | y)dx ∈ R
n×n

Requires solving an integration problem.

Bayesian credibility set

Given p, 0 < p < 100, the credibility set Dp of p% is defined through

the conditions
∫

Dp

π(x | y)dx =
p

100
, π(x | y)

∣
∣
x∈∂Dp

= constant,

and π(x | y) ≥ π(z | y) for all x ∈ Dp and z /∈ Dp. The boundary of Dp

is an equiprobability hypersurface enclosing p% of the mass of the

posterior distribution. (Notice that Dp is not necessarily well defined.)
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For a single component, one can look at the symmetric interval of a

given credibility: The conditional marginal density of the kth component

Xk of X is obtained as

π(xk | y) =
∫

Rn−1

π(x1, . . . , xn | y)dx1 · · · dxk−1dxk+1 · · · dxn.

The end points a and b, a < b, of the credibility interval Ik(p) ⊂ R with

a given p, 0 < p < 100, are determined from the conditions
∫ a

−∞
π(xk | y)dxk =

∫ ∞

b
π(xk | y)dxk =

1

2
− p

200
.

(Unfortunately, these conditions do not always define Ik(p) uniquely.)
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An Example: xMAP and xCM estimates

In this example, we compare the xMAP and xCM estimates in a simple

one-dimensional case. Let X ∈ R and assume that the posterior density

πpost(x) of X is given by

πpost(x) =
α

σ0
φ

(
x

σ0

)

+
1− α

σ1
φ

(
x− 1

σ1

)

,

where 0 < α < 1, σ0,σ1 > 0, and φ is the standard Gaussian density,

φ(x) =
1√
2π

e−x2/2.
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In this case, we have

xCM = 1− α,

and for small σ0 and σ1 it is a good estimate that

xMAP ≈







0 if α/σ0 ! (1− α)/σ1,

1 if α/σ0 " (1− α)/σ1.

We investigate two different choices of the parameters α, σ0, σ1, namely

a) α = 0.5, σ0 = 0.08 and σ1 = 0.04,

b) α = 0.01, σ0 = 0.001 and σ1 = 0.1.

Note that in case b), α = σ0/σ1, which means that α/σ0 > (1− α)/σ1,

and thus xMAP ≈ 0 should be the valid case. (You can easily verify this

fact numerically.)
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Let us also consider the posterior variance

σ2 =

∫ ∞

−∞
(x− xCM)2πpost(x)dx =

∫ ∞

−∞
x2πpost(x)dx− x2

CM,

which can be calculated analytically in our simple setting:

σ2 = ασ2
0 + (1− α)(σ2

1 + 1)− (1− α)2.

In the following images, we have visualized the intervals of length 2σ,

i.e., of length two times the standard deviation, centered at xCM for

both sets of parameters.

Notice that when the conditional mean gives a poor estimate, this is

reflected as a larger variance.
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Construction of the likelihood function
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The likelihood function answers the question: If we knew the

unknown x, how would the measurements be distributed?

What makes the data deviate from the predicted value given by our

observation model?

Some common sources:

1. measurement noise in the data,

2. incompleteness of the observation model (e.g., discretization errors,

the reduced nature of the model as compared to the "reality").

Commonly used techniques in construction of the likelihood function

(and priors) include conditioning (inspect one variable at the time) and

marginalization (eliminate variables of secondary interest).
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Additive noise

Very often, the noise is modelled as additive and independent of X . This

means that the stochastic model is

Y = f(X) + E.

Let us assume that the probability distribution of the noise is known:

P{E ∈ B} =

∫

B
πnoise(e)de, B ⊂ R

m.

Because X and E are mutually independent, fixing X = x does not alter

the probability distribution of E. Hence, Y conditioned on X = x is

distributed as E shifted by the constant f(x):

π(y |x) = πnoise(y − f(x)).
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If the prior probability density of X is πpr, we thus obtain from the

Bayes formula that

π(x | y) ∝ πpr(x)πnoise(y − f(x)).

If the unknown X and the noise E are not mutually independent, we

need to know the conditional density of the noise

P{E ∈ B |X = x} =

∫

B
πnoise(e |x)de.

Then, we may write

π(y |x) =
∫

Rm

π(y, e |x)de =
∫

Rm

π(y |x, e)πnoise(e |x)de.
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If both X = x and E = e are fixed, Y = f(x) + e, and hence

π(y |x, e) = δ(y − f(x)− e).

Substituting π(y |x, e) into the last formula of the preceding slide thus

yields

π(y |x) = πnoise(y − f(x) |x),

and once again from the Bayes formula we get that

π(x | y) ∝ πpr(x)πnoise(y − f(x) |x).
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Example: Additive independent noise

A simple low-dimensional example: a linear model

Y = AX + E,

where X ∈ R2 and Y,E ∈ R3 are random variables, and

A =







1 −1
1 −2
2 1







is deterministic. Assume that E has mutually independent normally

distributed components with zero mean and variance σ2 = 0.09, i.e.,

πnoise(e) ∝ exp

(

− 1

2σ2
‖e‖2

)

.
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Our only prior information is that

P{|Xj| > 2} = 0, j = 1, 2,

which we write in the form of a prior density via

πpr(x) =
χQ(x)

16
,

where χQ is the characteristic function of the square [−2, 2]× [−2, 2].
The posterior density is then

π(x | y) ∝ χQ(x) exp

(

− 1

2σ2
‖y −Ax‖2

)

.

Suppose that the true value of X is x0 = [1, 1]T. We simulate the data

through y = Ax0 + e, where e is drawn from πnoise.

The following figure illustrates the posterior density with six different

realizations of E. Note that in this case the prior hardly plays any role.
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