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General noise model

Assume that we have an observation model of the type Y = f(X,E),

where X ∈ Rn is the unknown, Y ∈ Rm is the measurement and

E ∈ Rk is the noise/parameter vector. Since fixing X and E determines

the value of Y , we may write

π(y |x, e) = δ(y − f(x, e)).

In consequence,

π(y |x) =
∫

Rk

π(y, e |x)de =
∫

Rk

δ(y − f(x, e))πnoise(e |x)de.
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Change of variables

Consider two random variables X ∈ Rn and Y ∈ Rn that are related via

the formula

Y = f(X),

where f is continuously differentiable and injective (these conditions can

be relaxed). Suppose we know the probability density of Y , namely πY .

Then, for a Borel set B ⊂ Rn, it holds that

P{X ∈ B} = P{Y ∈ f(B)} =

∫

f(B)
πY (y)dy

=

∫

B
πY (f(x))|detDf(x)|dx

where Df(x) ∈ Rn×n is the differential or the Jacobian matrix of f . As

a consequence,

πX(x) = πY (f(x))| detDf(x)|.
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Example: multiplicative noise

Consider an amplifier that takes in a signal f(t) > 0 and sends it out

multiplied by a constant factor α > 1. The ideal model for the output is

thus

g(t) = αf(t), 0 ≤ t ≤ T.

Suppose that the amplification factor is not a constant but fluctuates

slightly around a mean value α0 > 0 as a function of time. In order to

write a likelihood model for the output, we first discretize the signal:

xj = f(tj), yj = g(tj), 0 = t1 < t2 < · · · < tn = T.

Let the amplification at t = tj be aj , i.e.,

yj = ajxj , 1 ≤ j ≤ n,

and introduce the stochastic extension:

Yj = AjXj , 1 ≤ j ≤ n.
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In vector notation, this reads

Y = A.X,

with the dot denoting componentwise multiplication of the vectors

A,X ∈ Rn; we also use a similar notation for componentwise division.

Assume that A is independent of X and has the probability density

A ∼ πnoise(a).

To find the likelihood density of Y , conditioned on X = x such that

xj > 0 for all j = 1, . . . n, we write

Aj =
Yj

xj
, 1 ≤ j ≤ n.

Thus, we obtain by the change of variables formula that

π(y |x) = 1

x1x2 · · ·xn
πnoise

(y.

x

)

.

218



As an example, assume that the components of A ∈ Rn are mutually

independent and log-normally distributed:

Wi := logAi ∼ N (w0,σ
2), w0 = logα0.

To find an explicit formula for the density of A, we note that if

w = log a, where the logarithm is applied componentwise, we have

dw =
1

a1a2 · · · an
da for a1, . . . , an > 0.

Thus, the probability density of A vanishes if any of the components of

a is zero or negative, and otherwise it holds that

πnoise(a) ∝
1

a1a2 · · · an
exp

(

− 1

2σ2
‖log(a/α0)‖2

)

.
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By substituting this formula in

π(y |x) = 1

x1x2 · · ·xn
πnoise

(y.

x

)

,

we find that

π(y |x) ∝ 1

y1y2 · · · yn
exp

(

− 1

2σ2

∥
∥
∥
∥
log

(
y.

α0x

)∥
∥
∥
∥

2
)

.

for y ∈ Rn such that yj > 0 for all j = 1, . . . , n, and zero for other

y ∈ Rn. (Recall that it was assumed to begin with that the components

of x are positive.)

220



Incompletely known forward model

Consider having a noisy measurement with an incompletely known

forward model: The deterministic model with additive noise is

y = A(v)x+ e, y, e ∈ Rm, x ∈ Rn and A(v) ∈ Rm×n, where A(v)

depends on a parameter vector v ∈ Rk.

The corresponding stochastic extension is

Y = A(V )X + E.

Assume that E, X and V are mutually independent. How to construct

the likelihood model π(y |x), assuming that the noise is distributed

according to πnoise and the parameter according to πparam?
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To begin with, fix X = x and V = v in order to get the conditional

density for Y :

π(y |x, v) = πnoise(y −A(v)x).

Subsequently, we marginalize with respect to the parameter V which is

of secondary interest:

π(y |x) =

∫

Rk

π(y, v |x)dv =

∫

Rk

π(y |x, v)πparam(v)dv

=

∫

Rk

πnoise(y −A(v)x)πparam(v)dv.
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On sampling
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Before moving on to construction of priors, we touch the subject of how

to draw a sample of realizations from a given probability distribution.

Why is such consideration relevant?

• visual inspection of priors,

• estimation of integrals of the type

I =

∫

f(x)π(x)dx

with the help of Markov chain Monte Carlo (MCMC) techniques.
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In what follows, we assume to have random number generators for two

elementary distributions at our disposal:

• Standard normal distribution

π(x) =
1√
2π

exp

(

−1

2
x2

)

;

in Matlab the command randn.

• Uniform distribution over the interval [0, 1],

π(x) = χ[0,1](x);

in Matlab the command rand.

225



Sampling from Gaussian distributions

Suppose that we want to create a sample of realizations for a

multivariate Gaussian random variable X ∼ N (x0,Γ), with the

probability density

π(x) =

(
1

(2π)n det(Γ)

)1/2

exp

(

−1

2
(x− x0)

TΓ−1(x− x0)

)

.

Since Γ−1 is (by assumption) symmetric and positive definite, it has a

Cholesky decomposition

Γ−1 = RTR,

where R is an upper triangular matrix. Notice that the probability

density of X can alternatively be written as

π(x) =

(
1

(2π)n det(Γ)

)1/2

exp

(

−1

2
‖R(x− x0)‖2

)

.
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Encouraged by this observation, we define a new random variable

W = R(X − x0) ⇐⇒ X = R−1W + x0,

which, in particular, means that

πW (w) = πX(R−1w + x0)|det(R−1)| = πX(R−1w + x0)|det(R)|−1.

Using the identity

det(Γ)−1 = det(Γ−1) = det(RT) det(R) = det(R)2,

leads finally to the formula

π(w) =
1

(2π)n/2
exp

(

−1

2
‖w‖2

)

.

In consequence, W is Gaussian white noise, i.e.,

W ∼ N (0, I).
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This transformation is called the whitening of X and the Cholesky factor

R of the inverse of the covariance the whitening matrix.

If the whitening matrix is known, a random draw from a general

Gaussian density can be generated as follows:

1. Draw w ∈ Rn from the Gaussian white noise density.

2. Compute the sought for realization x ∈ Rn by solving the linear

system

w = R(x− x0),

which is almost trivial since R is triangular.
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Random draws from non-Gaussian densities using

direct sampling

Let us next consider how to draw a random sample directly from the

actual distribution in one dimension.

Let X be a real valued random variable with probability density π(x)

such that π(x) = 0 only at isolated points (this assumption can be

relaxed). Define the cumulative distribution function via

Φ(z) =

∫ z

−∞
π(x)dx.

Due to the assumptions on π, it follows from the fundamental theorem

of calculus that Φ is strictly increasing. In particular, Φ : R→ (0, 1) has

an inverse Φ−1 : (0, 1)→ R.
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Define a new random variable,

T = Φ(X).

Lemma. T ∼ Uniform([0, 1]).

Proof. Observe first that,

P{T < a} = P{Φ(X) < a} = P{X < Φ−1(a)}, 0 < a < 1.

On the other hand, due to the definition of a probability density,

P{X < Φ−1(a)} =

∫ Φ−1(a)

−∞
π(x)dx =

∫ Φ−1(a)

−∞
Φ′(x)dx

= Φ(Φ−1(a))− lim
x→−∞

Φ(x) = a− 0 = a,

which just means that T is distributed uniformly over the interval [0, 1].
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An algorithm for drawing from the density π:

1. Draw t ∼ Uniform([0, 1]),

2. Calculate x = Φ−1(t).

This technique is sometimes referred to as the Golden Rule.
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Example: Gaussian distribution with a bound constraint

Consider a one-dimensional normal distribution with a bound constraint,

π(x) ∝ πc(x) exp

(

−1

2
x2

)

,

where

πc(x) =







1 if x > c,

0 if x ≤ c

for some c ∈ R. Our aim is to generate a sample from this distribution.

In this case, the cumulative distribution function is

Φ(z) = C

∫ z

c
e−x2/2dx, C =

(∫ ∞

c
e−x2/2dx

)−1

,

where C > 0 is the normalizing constant of the corresponding probability

density.

232



The function Φ has to be calculated numerically. Fortunately, there are

routines available to do the needed integration: In Matlab, the built-in

error function, erf, is defined as

erf(t) =
2√
π

∫ t

0
e−s2ds.

We observe that

Φ(z) = C

(∫ z

0
−
∫ c

0

)

e−x2/2dx =
√
2C

(
∫ z/

√
2

0
−
∫ c/

√
2

0

)

e−s2ds

=

√

π

2
C
(

erf(z/
√
2)− erf(c/

√
2)
)

.

Since erf(t)→ 1 as t→∞, the same logic also shows that

C =

(√

π

2

(

1− erf(c/
√
2)
)
)−1

.

233



Altogether we have

Φ(z) =
erf(z/

√
2)− erf(c/

√
2)

1− erf(c/
√
2)

.

How about the inverse then?

Setting

Φ(z) = t ⇐⇒ z = Φ−1(t),

we find through a straightforward algebraic manipulation that

erf(z/
√
2) = t

(

1− erf(c/
√
2)
)

+ erf(c/
√
2),

or in other words (see erfinv in Matlab)

Φ−1(t) =
√
2 erf−1

(

t
(

1− erf(c/
√
2)
)

+ erf(c/
√
2)
)

.
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The generation of random draws in Matlab is then very simple:

a = erf(c/sqrt(2));

t = rand;

z = sqrt(2)*erfinv(t*(1-a)+a);

Note: If the bound c is large, the above program does not work because

the error function saturates quickly to unity. To be more precise, e.g. for

c=10, Matlab interprets that a in the above code is exactly one, which

means that the value of z is Inf independently of the random draw t.

In consequence, it is actually more advisable to use the complementary

error function erfc = 1− erf:

a = erfc(c/sqrt(2));

t = rand;

z = sqrt(2)*erfcinv((1-t)*a);
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Prior models

236



The prior density should reflect our beliefs on the unknown variable of

interest before taking the measurements into account.

Often, the prior knowledge is qualitative in nature, and transferring the

information into quantitative form expressed through a prior density can

be challenging.

A good prior should have the following property: Denote by x a possible

realization of a random variable X ∼ πpr(x). If E is a collection of

expected (i.e., something you would expect to see) vectors x and U is a

collection of unexpected ones, then it should hold that

πpr(x)- πpr(x
′) when x ∈ E, x′ ∈ U,

i.e., the prior assigns a clearly higher probability to the realization that

we expect to see.
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Example: Impulse prior densities

Consider, e.g., an imaging problem where the unknown is the discretized

distribution of a physical parameter, i.e., a pixel image.

Assume that our prior information is that the image contains small and

well localized objects in almost constant background. In such a case, one

may try impulse prior densities, which have low average amplitude but

allow outliers. (The ‘tail’ of an impulse prior density is long, although

the expected value is small.)

Examples of impulse prior densities: Let x ∈ Rn represent a pixel image,

where the component xj is the intensity of the jth pixel. (In all of the

following examples, Xj and Xk are assumed to be independent for

j .= k.)
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The &1 prior:

πpr(x) =
(α

2

)n
exp(−α‖x‖1), α > 0.

where the &1-norm is defined as

‖x‖1 =
n
∑

j=1

|xj |.

More enhanced impulse noise effect can be obtained by taking even

smaller power of the components of x:

πpr(x) ∝ exp



−α
n
∑

j=1

|xj |p


 , 0 < p < 1, α > 0.
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Another choice is the Cauchy density that is defined via

πpr(x) =
(α

π

)n n
∏

j=1

1

1 + α2x2
j

, α > 0.

The entropy of an image is defined as

E(x) = −
n
∑

j=1

xj log
xj

x0
,

where it is assumed that xj > 0, j = 1, . . . n, and x0 > 0 is a given

constant. The entropy density is then of the form

π(x) ∝ exp
(

αE(x)
)

, α > 0.
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Log-normal density: The logarithm of a single pixel x ∈ R is normally

distributed, i.e.,

w = log x, w ∼ N (w0,σ
2).

The explicit density of x is then

π(x) =
1

x
√
2πσ2

exp

(

− 1

2σ2
(log x− w0)

2

)

, x > 0.

Do these priors represent our beliefs? How do these priors looks like?
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To underline the interpretation as a pixel image, we add a positivity

constraint to the above introduced priors, that is, we make the

replacement

πpr(x)→ Cπ+(x)πpr(x),

where π+(x) is one if all components of x are positive, and zero

otherwise. Here, C is a normalizing constant: If πpr(x) is a probability

density, the same does not typically apply to π+(x)πpr(x) without

appropriate scaling.

For visual inspection we make random draws of pixel images from the

constrained densities. As all components are independent, drawing can

be done componentwise.

To make the draws from one-dimensional densities, we calculate the

cumulative distribution of the prior density and employ the Golden Rule,

as presented at the previous lecture.
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Example: Drawing from &1 prior

The one-dimensional cumulative distribution of the positively

constrained &1 prior is

Φ(t) = α

∫ t

0
e−αsds = 1− e−αt.

The inverse cumulative distribution is thus

Φ−1(t) = − 1

α
log(1− t).

For each pixel xj , we draw tj from the uniform distribution

Uniform([0, 1]) and calculate xj = −1/α log(1− tj).
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The Matlab code for doing this is very simple:

A=rand(100,100);

alfa=1;

AL1inv=-1/alfa*log(1-A);

figure

imagesc(AL1inv)

colormap gray

axis square
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Two random draws of pixel images from a &1-prior.
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Example: Drawing from Cauchy prior

The one-dimensional cumulative distribution of the positively

constrained Cauchy prior is

Φ(t) =
2α

π

∫ t

0

1

1 + α2s2
ds =

2

π
arctan(αt),

meaning that the inverse cumulative distribution is

Φ−1(t) =
1

α
tan

πt

2
.

As in the case of the &1-prior, we draw tj from the uniform distribution

and then calculate xj = 1/α tan(πt/2).
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Two random draws of pixel images from a Cauchy prior.
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How do these priors compare to white noise?

Let us consider a Gaussian prior with a positivity constraint, i.e.,

πpr(x) ∝ π+(x) exp

(

− 1

2α2
‖x‖2

)

, α > 0.

Previously, we implemented drawing from a standard Gaussian

distribution with a bound c. In particular, we were able to calculate the

one-dimensional cumulative distribution function

Φ−1(t) =
√
2 erf−1

(

t
(

1− erf(c/
√
2)
)

+ erf(c/
√
2)
)

.

A similar derivation for c = 0 and the variance α2 instead of 1 yields in

the current case that

Φ−1(t) =
√
2α erf−1(t).
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