Computational inverse problems

Nuutti Hyvonen, Jenni Heino,
Juha-Pekka Puska

nuutti.hyvonen@aalto.fi, juha-pekka.puska@aalto.fi

Eleventh lecture, April 5, 2021.

310



Does the above M—H algorithm really work? It is not quite obvious...

According to our construction, the Markov process introduced at the
beginning, i.e. the one involving R and 7, is with the choice

K(x,y) = (1 —r(z))R(z,y) = a(z,y)q(z,y)

such that p is its invariant density. In the actual M—H algorithm, ¢(x, y)
is the employed proposal kernel, i.e. a probability density in its second
variable, and 0 < a(x,y) < 1 is the acceptance probability that depends
on both the current location x and the proposed location y (unlike
r(x)). If one is able to define 0 < r(x) <1 and a transition kernel
R(x,y) for any given q(x,y) and a(z,y) so that the above identity is
satisfied, our construction is legitimate.
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It is easy to verify that this is achived by first setting

r(r)=1- /&(w,y)Q(w,y)dy, r e R",

and then simply defining

a(z,y)q(x,y)
1 —7r(x)

R(z,y) = ,  x,y€R™

Indeed, with these choices it is obvious that
(1= r(@)R(w.y) = (. p)alay) and [ Rlay)dy =1
Moreover, clearly r(z) < 1 and also
r(z) >1-— /q(a:,y)dy =0
for any z € R"™.
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Example

Consider sampling in R? from the density

() o exp (-10(;@ —9)? — (g — 2)4) |
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We use white noise random walk proposal

1 1 ,
q(x,y) = exp (—W\!x—yll )

V2my?

Note that now the transition kernel is symmetric, i.e.,

q(z,y) = q(y, z),
and hence

()

a(x,y) = W
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v = 0.02; acceptance rate 95.6 %
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~v = 0.7; acceptance rate 24.5 %
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~v = 4; acceptance rate 1.4 %
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Adapting the Metropolis-Hastings sampler

With the white noise random walk proposal density (used in the
numerical example of the previous lecture), the sampler does not take
into account the form of the posterior density.

However, the shape of the density can be taken into account when
designing the proposal density in order to minimize the number of
‘wasted proposals’. In high-dimensional setting, this becomes especially
useful if the posterior density is highly anisotropic, i.e., if the posterior is
stretched in some directions.

The proposal distribution can be updated while the sampling algorithm
moves around the posterior density. This process is often called
adaptation.
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Gibbs sampler
Let us first consider some notational details:
e [ ={1,2,...,n} is the index set of R".

o [ = U;n:l I,,, is a partitioning of the index set into disjoint
nonempty subsets.

e The number of elements in I; is denoted by k;; ky +--- 4+ ky,, = n.
e We partition R” as R® = R** x ... x R*¥" and correspondingly
r=[xr;...;x7, ] € R, ijERkj,
where x; € R is a component of the vector x;; if and only if 7 € I;.

In practice, it often holds that k; =1 for all 7 = 1,...,m, meaning that
m =n and xj, is just the jth component of the original vector x.
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Transition kernel for the Gibbs sampler

Suppose that we are still aiming at sampling some given probability
density p : R™ — R, and recall the Markov process considered at the
previous lecture: If you are currently at some x € R", either

1. stay put at x with the probability r(z), 0 < r(x) <1, or
2. move away from x using a transition kernel R(x,y) otherwise.

Recall also that we made the definition

K(z,y) = (1 —r(z))R(z,y).

For the Gibbs sampler, we choose r(x) = 0 for all x € R", i.e., moving is
obligatory, and define

m

K(z,y) = R(z,y) = || p(ur,

1=1

yjl,...,y[i_l,iljjiJrl,...,ZU[m),
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where the conditional densities are defined in the natural way based
on p, l.e.,

p(yjl,---,ylmaf[lqu,---,ﬂflm)

p(yIz Yry5- - - 7yf7;_17x11_|_17 s e 7x1m)

B kai p(yfla"'7yfi7xfi+1,--.$[m)dyli.

Such a transition kernel K does not, in general, satisfy the detailed
balance equation, i.e.,

p(y) K (y,z) # p(z)K(z,y),
but it satisfies the (standard) balance equation,
| K@)z = [ pla) Koy,

which is a sufficient condition for p being an invariant density of the
above introduced Markov process. (See the slides of the previous lecture
for the details.)
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Proof: Consider first the left-hand side of the balance equation.

Due to the basic properties of probability densities, we have

/ p(CUIZ-
RFi

for all i = 1,...,m. By integrating the kernel K (y, ) over RF» we

xfl?"'7xfi—17y1¢+17'"7yfm)dxfz‘ — 1

thus get
m
K(y,x)dxy, :/ HP(SI?IZ- LIy s Tl s Ylirs -+ YL, )AL,
RFm Rkm
=1
m—1
= H p(r, 1311,---,affi_l,ylurl,---,y[m)/ p(zr, | %1, 521, )dzr,,
) Rkm
1=1
m—1
= HP(CUI@- 51711,---,CUIi_layIiH,---,yIm)-
i=1
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Inductively, by always integrating with respect to the last block of z with
respect to which we have not yet integrated, we easily obtain that

altogether

K(y,z)dx =1,
Rn

which in turn implies that

| pwK@a)de = ply) [ K.a)de = pl)
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Next, we consider the right-hand side of the balance equation. Since
K (x,y) is independent of x;, and due to the definition of marginal
probability densities, we have

/Rkl p(x)K(x,y)dr;, = K(x,y) /Rkl p(x)dxr, =: K(z,y)p(zr,,..., 21, ).

By substituting the definition of K in the above formula, we see that

|, p@K @ e, = K@ pplen,...a1,)

m
— <Hp(yl7; Yryy - - - 7y1¢—17x17:+1’ T ’xlm)>

1=2

xp(yr, |Tr,, -2, )p(Xrys -, 21, )

yjl,...,y[i1,x[l.+1,...,:13[m)> p(Yr,, T1ys -, T, ).

— <H p(yli
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Next, we integrate with respect to x7, over R¥2. By denoting

YL 13T Liqs -5 T1,,), i =2,...,m,

a; = p(yli

we may write

/ / p(x)K(x,y)dxr, dry, = / p(yr,, 1, ..., 2, )dry,
RF2 JRF1 RF2 7

’L:

:Ha”l:p(yIZ’y117x137"'7x1m)/k p(y[1,$[2,...,33[m)d33[2
R72

1=3
™m
— Ha”ip(yfz |y1173713, o .. ,$[m)p(y[1,33[3, .. .,le[m>
1=3
™m
— Ha,z-p(y[l,yjz,xjg), e T, ).
1=3
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We can continue inductively integrating over the remaining blocks
Tr,,...,Tr, in turns, which eventually results in

| @K s = pun - om,) = o)

and the proof is complete.
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Gibbs sampler algorithm

1. Choose the initial value z° € R™ and set k = 0.

2. Draw the next sample as follows:
(a) Set z = 2% and j = 1.
(b) Draw y;, € R* from the k;-dimensional distribution
P YLy YL Tl s> TL, ).
(c) If j =m, set y = |yr,;---;Ym] and terminate the inner loop.

Otherwise, set j < j + 1 and return to step (b).

3. Set 2Ft1 =y, increase k < k + 1 and return to step 2, unless the
chosen stopping criterion is satisfied.
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Single component Gibbs sampler algorithm

1. Choose the initial value 2° € R™ and set k = 0.

2. Draw the next sample as follows:
(a) Set z = 2% and j = 1.

(b) Draw t € R from the one-dimensional distribution

p(t’yla"'7yj—17xj—|—17"'7xn> O(p(yl,--.,yj_l,t,xj_|_1,.--,$n)
and set y; =t.
(c) f j=mn,sety=[y1,...,yn]’ and terminate the inner loop.

Otherwise, set j < j + 1 and return to step (b).

3. Set 2Ft1 =y, increase k < k + 1 and return to step 2, unless the
chosen stopping criterion is satisfied.

328



Example

Consider again the density

1

7(x) o exp (-10(9[;% — )2 — (ag — 1)4) , zeR2
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How to judge the quality of a sample?
Essential questions:
e What sampling strategy and/or proposal distribution works the best?
e |s the sample big enough?
Consider estimates of the form
|
[ f@m@)de = B0}~ 3 3 ).
j=1

and recall that the Central Limit Theorem gives some answers regarding

the convergence.
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Assume that the variables Y, = f(X;) € R are mutually independent
and identically distributed with F{Y;} = ¢ and var(Y;) = o2, and define

N ~
1 VN(Yy — 7)
YNzﬁgli/J and ZN: .
J:

o

Then, Yy — E{Y'} almost surely (LLN). Moreover, Zy is
asymptotically (standard) normally distributed, that is,

1 ® 1
A}i_r)rloo P{Z, <z} = T /_OO exp (—532> ds.

Loosely speaking, the above result says that the approximation error

behaves as
| N

g=1

VN

provided that the samples {z;} are independent.
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Let us have another look at the sample histories corresponding to our
standard example. First, the Metropolis—Hastings algorithm for the three
choices of v (the vertical component is plotted):

(Pt atinai e
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Clearly, consecutive elements are not independent.
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Then, the Gibbs sampler (both components are plotted):
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The results are somewhat better, but there is still some correlation
between consecutive elements — especially for the vertical component.
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If every kth sample point is independent, one might expect the

discrepancy to behave as 1/1/N/k = \/k/N instead of 1/v/N.

Consequently, one should try to choose the proposal distribution so that
the correlation length is as small as possible.

Quick visual assessment: Take a look at the sample histories of
individual components. How should they look like?

Consider a white noise signal, where the sample points are independent
and the sample history looks like a "fuzzy worm". This is something one

could aim at.

! ! ! ! !
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

4 !
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Autocovariance and correlation length

Denote by f.(z;) € R, j =1,..., N, the centered sample points, i.e.,
| N
Mo = (o) = DS T

Define the normalized autocovariance of the sample as

1 N—k
’yl% — ,VCQ)(N - k‘) J:Zl fC(xj)fC(xj-Hﬂ)a k > 17

where 7§ = ~ Zjvzl fe(x;)? is the mean energy of the signal.

The correlation length of the sample {f(:pj)}j.il

on the decay of the normalized autocovariance sequence of the sample.

can be estimated based
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For a white noise sample, 7,3 ~ 0 for any k > 0, where the estimate gets
better as the sample, i.e., N, increases.

We test this hypothesis by drawing two white noise samples (N = 5000
and N = 100000) and plotting the function k + ~7 in both cases.

N=5000 N=100000
1 - 1 -
0.8 {08t
0.6 i 06f
0.4 | 04y
0.2 i 0.2

0 50 100 0 50 100
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Normalized autocovariance sequences for the MH example.
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Normalized autocovariances for the Gibbs example;
horizontal component in blue and vertical in red.
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