First interactive lecture of Topic 4: Transceiver and noise

February 24, 2022 Katsuyuki Haneda Department of Electronics and Nanoengineering

This lecture covers Pozar Chapters 10.1-3, 13.5 and 14.2.

Linear and non-linear circuits

- Linear circuits
 - E.g., resistance, inductance and capacitance, i.e., passive components
 - Output is always proportional to inputs at any frequency
 - Scattering parameter does NOT change depending on input power level
 - $-Y(f) = X(f)H(f) \rightarrow aX(f)H(f) = aY(f)$
- Non-linear circuits
 - E.g., diodes, operational amplifiers and transistors, i.e., active components
 - Scattering parameter depends on input power level
 - $-Y(f) = X(f)H(f) \rightarrow aX(f)H(f) \neq aY(f)$

$$X(f) = a_0 + a_1 X(f) + a_2 X^2(f) + ...$$

Linear Non-linear
response response

For example, the band-stop filter we studied in exercise 3.1 is a linear circuit.

Shape of receive spectrum remains the same, regardless of the source power.

Q1: The patch antenna, we studied in exercise 3.2, is ...

- 1. A linear circuit.
- 2. A non-linear circuit.
- 3. I do not know which one to choose.

Q2: Non-linear electric components, e.g., diodes, are usually <u>not</u> used as the following microwave circuits. Choose 5. if you do not know what to choose.

- 1. Mixers.
- 2. Amplifiers.
- 3. Filters.
- 4. Detectors.
- 5. I do not know which one to choose.

Characterization of amplifier (1): Single tone input

Characterization of amplifier (2): Two-tone input

Pozar Chapter 13.5

Characterization of mixer

 $v_0 = \cdots + a_2 v_i^2 + \cdots$ Mixer input-output relationship Up-conversion in the transmitter Down-conversion in the receiver $v_{i} = V_{0}(\cos \omega_{IF}t + \cos \omega_{LO}t), \ \omega_{IF} \ll \omega_{LO} \qquad v_{i} = V_{0}(\cos \omega_{RF1}t + \cos \omega_{LO}t),$ $\omega_{\rm RF1} - \omega_{\rm LO} = \Delta \omega$ $v_{\rm i} = V_0(\cos \omega_{\rm RF2}t + \cos \omega_{\rm L0}t),$ $= v_0 \Big|_{\omega = \omega_1 o + \omega_{\text{IE}}} = a_2 V_0^2$ $\omega_{\rm RF2} - \omega_{\rm LO} = -\Delta\omega$ Lower side band (LSB) Upper side band (USB) $v_0 = \dots + a_2 V_0^2 \{ \cos(\omega_{RF1} - \omega_{L0}) \dots \}$ $\omega_{\rm IF}, \omega_{\rm LO}$ $+\cos(\omega_{\rm RF2}-\omega_{\rm LO})\}$ $\omega_{\rm IF}$ $\omega_{\rm LO}$ $\omega_{\rm LO}$ $\omega_{\rm RF}$ ω $\omega_{\rm LO} - \omega_{\rm IF} \quad \omega_{\rm LO} + \omega_{\rm IF}$ $\omega_{\rm IF} = \Delta \omega$ $\omega_{\rm RF2} \omega_{\rm RF1}$

Homodyne / Direct-conversion receiver

(Example structure)

Superheterodyne receiver

(Example structure)

Q3: The following explains each component of the superheterodyne receiver. Choose an incorrect explanation. Choose 5. if you do not know what to choose.

- 1. The image filter removes the mirror spectrum of the signal of interest.
- 2. The channel filter is usually implemented at the radio frequency stage for ease of implementation.
- 3. The low-noise amplifier is operated either in linear or saturation regions in practical radio systems.
- 4. The local oscillator can tune frequencies to select a frequency of interest with a fixed band-pass filter.
- 5. I do not know which explanation is incorrect.

Sources of thermal noise

Which components add noise?

Pozar, Figure 14.13

Any resistor components generate noise!

Equivalent circuit model of a resistor

Noise temperature and figure: Definition

Pozar Chapter 10.2

Q4: What is the output signal-to-noise ratio S_o / N_o of the twoport network?

Q5: What is the equivalent noise temperature of a transmission line, T_{e} ?

Noise temperature of receiver

- The first component at the RF front-end is most influential to total noise of the receiver.
 - We therefore use "low-noise" amplifier in the receiver.

$$\begin{array}{c|c} N_i & G_1 & N_1 & G_2 & N_o \\ \hline R_1 & T_{e1} & T_{e2} & T_{e2} \end{array}$$

$$T_{cas} = T_{e1} + \frac{T_{e2}}{G_1}$$

Q6: There is a low noise amplifier of the following input, output and component parameters. Choose <u>an incorrect formula or explanation</u>. Choose 5. if you do not know what to choose.

S_i: input signal power N_i: input noise power

*T*_A = 150 K: input noise temperature

Room temperature $T_0 = 290$ K

Low noise amplifier $T_{\rm e}$ = 580 K: noise temperature $G_{\rm e}$ = 20 dB gain $F_{\rm e}$ = 4.77 dB noise figure

 S_{o} : output signal power N_{o} : output noise power

1.
$$(S_o / N_o) = (S_i / N_i) - F_e$$
 in dB.
2. $F_e = 1 + T_e / T_0$.
3. $N_o = kT_A BG_e + kT_e BG_e$.
4. (S_o / N_o) does not depend on G_e .
5. I do not know.

Pozar Example 10.2