

School of Electrical Engineering

Sensors & Buses

Protopaja / Protocamp / ELEC-D0301

Shahram Barai 9.6.2022

Sensors

 Sensor can detect an spect of the physical environment and turn it into useful information

Sensors classification:

- Active sensor
 - requaire an external signal
- Passive sensor
 - work without any external signal
- Analog sensor
 - produce an analog output, ie a continuous signal
- Digital sensor
 - work with discreate, digital data

Protocamp ELEC-D0301 9.6.2022 Page 2 (17)

Sensors

- Light, Colour
 - LDR (photoresistor), Phtodiodes
- Sound
 - Microphone, Piezo
- Temperature
 - Thermistor, Termocouple, PT100, LM35...
- Humidity, Moisture
 - e.g. DHT11
- Pressure
 - e.g. MPX5100AP
- Gas Contents
 - e.g. MQx (for different gases), MQ3 (for athanol)
- Force Sensors
 - Force Sensing Resistor, Load Cell
- Tilt Sensors
 - Accelerometer

Aalto University School of Electrical Engineering **Protocamp ELEC-D0301** 9.6.2022 Page 3 (17)

Calibration

- Errors is Sensor Measurement
 - Improper Zero Reference
 - Shift in Sensor Range
 - Mechanical Damage
- Calibration Methods
 - One point calibration
 - Two point calibration
 - (Multi-point Curve Fitting)
- Characteristic curve
 - Offset
 - Sensitivity or Slope
 - Linearity

Protocamp ELEC-D0301 9.6.2022 Page 4 (17)

One Point Calibration

• One point calibration is used to correct the sensor offset errors when accurate measurement of only a single level is required and the sensor is linear.

- How to do it:
 - 1. Take a measurement with your sensor.
 - 2. Compare that measurement with your reference standard.
 - 3. Subtract the sensor reading from the reference reading to get the offset.
 - 4. In your code, add the offset to every sensor reading to obtain the calibrated value.

Protocamp ELEC-D0301 9.6.2022 Page 5 (17)

Two Point Calibration

- Sensor output -> linear over the measurement range.
- It can be applied to either raw or scaled sensor outputs.
- It is used to correct both slope and offset errors.

How to do it:

- Take two measurements with your sensor: One near the low end of the measurement range and one near the high end of the measurement range. Record these readings as "RawLow" and "RawHigh"
- 2. Repeat these measurements with your reference instrument. Record these readings as "ReferenceLow" and "ReferenceHigh"
- 3. Calculate "RawRange" as RawHigh RawLow.
- 4. Calculate "ReferenceRange" as ReferenceHigh ReferenceLow
- 5. In your code, calculate the "CorrectedValue" using the formula below:

CorrectedValue = (((RawValue – RawLow) * ReferenceRange) / RawRange) + ReferenceLow

Ideal Response

Raw High

Actual Response

Reference High

Reference Low

Measured Parameter

Sensor Output

Raw Low

Two Point Calibration

Temperature sensor:

- Physical standards -> normal sea-level atmospheric pressure
 - **ReferenceLow** = 0°C
 - **ReferenceHigh** = 100°C
 - **ReferenceRange** = 100°C
- Raw reading are:
 - **RawLow** = 0.5°C (ice-water bath)
 - **RawHigh** = 95°C (boiling water)
 - RawRange = 95.5°C

CorrectedValue = (((37 + 0.5) * 100) / 95.5) + 0.0 = <u>39.3°C</u>

Analog & Digital Sensor Output

- If analog sensor data is processed by digital hardware it must be converdet.
- Most sensors have A/D converters built in
- High preformance sensors usually have only analog inputs

Protocamp ELEC-D0301 9.6.2022 Page 8 (17)

A/D Converters

- Convert analog data to digital through quantisation
 - Leads to some data loss
- Sampling Frequency must be higher than 2 x maximum frequency being sampled.
 - With low sampling frequency aliasing may occur

- MCU's usually have builtin A/D's
 - E.g. in Arduino UNO whenever we use analog pins (analog_read(___)) MCU's
 A/D unit is used (sampling frequency 1kHz & Bit depth 10 bit).
- Noise considerations:
 - Component noise
 - ADC saturation: amplify signal before feeding it to the ADC.

Protocamp ELEC-D0301 9.6.2022 Page 9 (17)

Buses

- Needed to communicate to sensors & other devices
- Implemented with hardware or software drivers
- Operate according to protocols
 - SPI, I2C, UART
- Parallel vs Serial
- Asynchronous vs Synchronous

Asynchronous Transmission

Protocamp ELEC-D0301 9.6.2022 Page 10 (17)

UART

- Stands for Universal Asynchronous Reception and Transmission
 - Only GND, TX and RX, no separate clock signal
 - Simple, Easy to use
- Protocol not defined, several standard electrical interfaces
- Usually used for specific peripherals, E.g. Bluetooth transmitters, GPS, GSM
- Arduino library: (Serial, SoftwareSerial)

Aalto University School of Electrical Engineering **Protocamp ELEC-D0301** 9.6.2022 Page 15 (17)

UART

Advantages of using UART

- Simple to operate, well documented as it is a widely used method with a lot of resources online
- No clock needed
- Parity bit to allow for error checking

Disadvantages of using UART

- Size of the data frame is limited to only 9 bits
- Cannot use multiple master systems and slaves
- Baud rates of each UART must be within 10% of each other to prevent data loss.
- Low speed

Protocamp ELEC-D0301 9.6.2022 Page 16 (17)

I2C

- Inter-Integrated Circuit, Display Data Channel, System Management Bus...
 - Low speed: 400 / 100 kHz usually, but higher speed devices available (>1 MHz)
 - Developed, Patented & Controlled by Philips Semiconductors
- Master initiated, half-duplex
 - SDA (SerialData), SCL (SerialClock)
 - Several devices can share same bus, (each has 7-bit unique address)
 - Devices interface open-collector/open-drain (pull-up resistors)
 - Available at VGA, DVI, HDMI-Connectors
 - Used in PCI, DIMM etc. for identification & configuration
- Easy to use with Arduino (Wire Library)

Aalto University School of Electrical Engineering Protocamp ELEC-D0301 9.6.2022 Page 13 (17)

I2C

Advantages of using I2C

- Has a low pin/signal count even with numerous devices on the bus
- Flexible, as it supports multi-master and multi slave communication.
- Simple as it only uses 2 bidirectional wires to establish communication among multiple devices.
- Adaptable as it can adapt to the needs of various slave devices.
- Support multiple masters.

Disadvantages of using I2C

- Slower speed as it requires pull-up resistors rather than push-pull resistors used by SPI. It also has an open-drain design = limited speed.
- Requires more space as the resistors consume valuable PCB real estate.
- May become complex as the number of devices increases.

Aalto University School of Electrical Engineering Protocamp ELEC-D0301 9.6.2022 Page 14 (17)

SPI

- Serial Peripheral Interface Bus
 - High speed (up to > 10 MB/s), full duplex capable
- Master initiated, simultaneous bidirectional data transfer capable
 - MISO (master in slave out), MOSI (master out slave in), SCK (serial clock), SS/CS (slave / chip select)
- Easy to use with Arduino libraries (SPI Library)

Protocamp ELEC-D0301 9.6.2022 Page 11 (17)

SPI

Advantages of using SPI

- The protocol is simple as there is no complicated slave addressing.
- It is the fastest protocol compared to UART and I2C.
- No start and stop bits unlike UART which means data can be transmitted continuously without interruption
- Separate MISO and MOSI lines which means data can be transmitted and received at the same time

Disadvantages of using SPI

- More Pin ports are occupied, the practical limit to a number of devices.
- There is no flow control specified, and no acknowledgement mechanism confirms whether data is received unlike I2C
- Uses four lines MOSI, MISO, NCLK, NSS
- No form of error check unlike in UART (using parity bit)
- Only 1 master

Protocamp ELEC-D0301 9.6.2022 Page 12 (17)

Other

1-Wire:

- Low speed single datawire bus by Dallas/Maxim
- Several devices can share same data bus
- E.g. used in DS18x20 digital interfave temperature sensors
- Arduino library (OneWire)

MIPI:

- Camera & Display Serial interface, HD resolutions
- Requires driver to work
- Found on Raspberry Pi platforms

USB:

- Hard, complicated protocol
- Always requires a driver, usually it is easier to use a general Serialover-USP that emulates traditional serial port (UART)
- Supplies power, max 500 mA

Protocamp ELEC-D0301 9.6.2022 Page 17 (17)