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1. Coin tosses

® Think of a tossing a coin that is potentially weighted, i.e., does not
give the outcomes with 50% probability.

® Your task is to find out what the weight is.

® How to do this? Well, toss the coin lots and lots of times, record the
outcomes.

® What then? Calculate the share of tails and heads, i.e., the average
of tails / heads, i.e., the probability of getting tails / heads.
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2. Bernoulli distribution

® More formally, you can think of what you did as a stochastic
process with two possible outcomes, coded 0 and 1.

® Such a process is called a Bernoulli process.
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2. Bernoulli distribution

® More formally, you can think of what you did as a stochastic
process with two possible outcomes, coded 0 and 1.

® Such a process is called a Bernoulli process.

® |t yields a sequence of Os and 1s...
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2. Bernoulli distribution

® More formally, you can think of what you did as a stochastic
process with two possible outcomes, coded 0 and 1.

Such a process is called a Bernoulli process.

It yields a sequence of Os and 1s...

® How to estimate the probability of 1 occuring?
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3. Constructing the likelihood function

® How could we formalize this?

@ Let's denote the probability of heads for any given coin toss with P.
Then the probability of tails is 1 — P.

@ Let us toss the coin N times, and index the coin tosses by /.

© Let us further denote the outcome of coin toss i by y; which takes
value y; = 1 if heads, y; = 0 if tails; i=1,..., N.

® Given N coin tosses, our data are the outcomes y;, and the unknown
parameter is P.

® How can we estimate P?
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3. Constructing the likelihood function

® Let's start by applying the tool we know, i.e., Least Squares (LS):

; P2
min Z(y, P) (1)
® \We recall from Econometrics | that the answer LS gives is
prs_ 1 Sy
N 1
1
:N(1+1+'"+1+0+0+"'+0) (2)
nH N—nh
_ M-

® |n other words, LS gives the answer we would have calculated without
knowledge of econometrics.
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3. Constructing the likelihood function

® | et's take another approach and ask ourselves: With N coin tosses,
what is the likelihood of getting ny heads and N — ny = nt tails,
given P?
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3. Constructing the likelihood function

® | et's take another approach and ask ourselves: With N coin tosses,
what is the likelihood of getting ny heads and N — ny = nt tails,
given P?

® Answer:
L= Pri(1— p)N=nn (3)

e Equation (3) is the Likelihood function (uskottavuusfunktio) for our
data, and also our problem (of finding the best estimate of P).
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3. Constructing the likelihood function
® What is the next step?

® Let's find the value for P that maximizes the likelihood of observing
exactly ny heads and N — ng tails.

® How to do this? By maximizing the likelihood function with respect
to the unknown parameter P, i.e., by (recall y; = 1 if coin toss i gives
heads, y; = 0 if tails):

L=T[P"@1 - P)
max L= []P"(1-P)

1
=PXxPx..xPx(1-=P)x(1—=P)..x(1—-P)

—_— ——m—m——
ny

=P (1 — p)N=mn

N—nH

® This can obviously be done, but often the likelihood function is
difficult to work with.
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3. Constructing the likelihood function

® Trick: let's use a monotonic transformation, i.e., let's take logs:

max InL = Z[y,—lnP-l—(l—)/i)'n(l— Pl

—ZInPJr > In(1-P) (5)
N—ny
:nHInP+(N—nH)In(1—P)

e Now do the differentiation and solve for P.
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3. Constructing the likelihood function

® The ML estimate of P, IADML, is:

pML _ MH _ pLs
- (6)

® Note: the ML estimate is not always equal to the LS estimate.
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3. Constructing the likelihood function

® The idea underlying ML: construct the likelihood function.

® Ask: what parameter values are the likeliest to have lead to the data
we observe?
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4. ML estimation with observable characteristics

® Thus far we did not have any explanatory variables, i.e., observable
characteristics of the observation units.

® To extend our coin example, assume that instead of tossing a single
coin N times, you toss N different coins once each.

® Assume further that you observe some characteristics of each coin i.
Denote the characteristics with X.

® | et suppose you want to study how characteristics X affect the
probability of getting heads.
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4. ML estimation with observable characteristics

® By now you know how to build a linear probability model for this
setting.

® How could you introduce the explanatory variable into our ML setup?
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4. ML estimation with observable characteristics

® By building on what we studied in the previous lecture.
® Step #1: Assume that
yi=le XiB+e¢ >0

yi=0& XiB+¢ <0

® Step #2: assume a distribution for €. Let's denote the CDF of e with
F(.). Let's further assume it is symmetric.
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4. ML estimation with observable characteristics

Step #3: Now (due to the symmetry of F(.)) the probability of
observing y; =1 is

1 - F(=XiB) = F(XiB)

Notice that this is not that different from assuming the probability of
observing y; =1 is P.

Indeed, | can replace P with F(X;3) in the likelihood function we
just worked with.

The difference is that the unknown parameters are now 3, not P.
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4. ML estimation with observable characteristics

® We can now write the likelihood and the log likelihood functions as:
L=Pr(Yi=y1, ... Yu = yn) = [[ F(X:8)" 1L — F(XiB)' ™ (7)

InL=> {yiln F(XiB) + (1 — yi) In[1 — F(XiB)]} (8)
® The marginal effect (wrt. to the k™ expl. variable X)) is now given

by:
IF(XiB)

X f(XiB) 0B« (9)
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4. ML estimation with observable characteristics

® Key question: What is F()?
® Obviously, F() is a cdf and hence [0, 1].

® F() need not be symmetric (around 0), but most of the time is.
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4. ML estimation with observable characteristics

® F() could come from:

@ Theory (= assumptions).
® Data (non- / semi-parametric regression).

© Past practice.
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4. ML estimation with observable characteristics

® Does the choice matter F() empirically?

® Experience shows that in most (“well-behaved™”) data sets and as long
as F(.) symmetric, makes essentially no difference to marginal effects.

e Key for being “well-behaved”; mean of the dependent variable neither
“very" large nor “very” small.
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5. Estimation

® |f we assume that the error term has a normal distribution, then we
are estimating a probit model.

® Another popular model is the logit model where error term has an
extreme value distribution. This yields the following expression for the
probability that y; = 1:

exp(xB)  _ _exp(xB)

Pr(Y = 11X =x) = S o0) + oxp xB) 1+ exp ()

® Note that the exp(0) in the denominator is the exponential of the
utility from choosing the outside good, which has been normalized to
be zero.
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5. Estimation

® QOne cannot estimate probit or logit with OLS.

One needs either

@ maximum likelihood (this is what the Stata probit / logit functions do).
@ nonlinear least squares (usually not used)

© generalized method of moments (sometimes used).

Let's estimate the VI decision of cinema’s in Gil's data with OLS,
probit and logit.

Unlike OLS, where we can solve for the coefficients using matrix
algebra, ML models require (numerical) optimization.
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How to calculate the ME?

@ The derivative is going to depend on X.
® Different ME for each possible value of X.

©® How to average?
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How to calculate the ME?

® Many solutions:

@ Only at the mean of X (and other variables).
@® At some interesting value of X.

© Some avg example: weighted avg.
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Stata commands for OLS, probit and logit

Stata code

1| regr vi_ever capacity_-1000, robust
2| probit vi_ever capacity_1000

3| margins

4| logit vi_ever capacity-1000

5| margins
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OLS results

regr vi_ever capacity 1000, robust

Linear regression Number of obs = 393
F(1, 391) = 108.07
Prob > F 0.0000
R-squared 0.1844
Root MSE = .44887

Robust
vi_ever Coef.  Std. Err. t P>t| [95% Conf. Interval]
capacity_1000 .1841115  .0177105 10.40  0.000 .1492917 .2189313
“cons 1281997  .0355462 3.61  0.000 0583142 1980853
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Probit results

. probit vi_ever capacity_1000

Iteration 0: log likelihood = -269.08833
Iteration 1: log likelihood = -229.07358
Iteration 2: log likelihood = -228.75776
Iteration 3: log likelihood = -228.75752
Iteration 4: log likelihood = -228.75752
Probit regression Number of obs = 393
LR chi2(1) 80.66
Prob > chi2 0.0000
Log likelihood = -228.75752 Pseudo R2 = 0.1499
vi_ever Coef.  Std. Err. z P>|z| [95% Conf. Interval
capacity_1000 5689945  .0698458 8.15  0.000 4320993 .7058897
_cons -1.108613  .1320205 -8.40  0.000 -1.367369  -.8498576
. margins
Predictive margins Number of obs = 393
Model VCE : 0IM
Expression  : Pr(vi_ever), predict(
Delta-method
Margin  Std. Err. z p>z| [95% Conf. Interval
_cons 4314227 0225493 19.13  0.000 .3872268 4756185
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Logit results

logit vi_ever capacity 1000

Iteration 0: log likelihood = -269.08833
Iteration 1: log likelihood = -228.60832
Iteration 2: log likelihood = -228.44027
Iteration 3: log likelihood = -228.44013
Iteration 4: log likelihood = -228.44013
Logistic regression Number of obs - 393
LR chi2(1) 81.30
Prob > chi2 = 0.0000
Log likelihood = -228.44013 Pseudo R2 - 0.1511
vi_ever Coef.  Std. Err. z  P>lz| [95% Conf. Interval
capacity_1000 9644566  .1268482 7.60  0.000 .7158387 1.213075
“cons | -1.843564  .2296731  -8.03  0.000  -2.293715 -1.393413
. margins
Predictive margins Number of obs - 393
Model VCE ;oM
Expression  : Pr(vi_ever), predict(
Delta-method
Margin  Std. Err. z P>zl [95% Conf. Interval
_cons 4351145  .0224736  19.36  0.000 .3910671 .4791619
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Stata commands different marginal effects

Stata code

1| probit vi_ever capacity-1000
2| margins

3| margins , atmeans

4| logit vi_ever capacity-1000
5| margins

6| margins , atmeans
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Probit results

. margins
Predictive margins Number of obs = 393
Model VCE 1 OIM
Expression  : Pr(vi_ever), predict()
Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]
_cons 4314227 .0225493  19.13  0.000 .3872268 4756185

. margins , atmeans

Adjusted predictions Number of obs = 393
Model VCE 1 0IM

Expression ¢ Pr(vi_ever), predict()

at : capacit~1000 = 1.667005 (mean)

Delta-method
Margin std. Err. z P>z [95% Conf. Interval]

_cons .4364026 .026794 16.29 0.000 .3838872 .4889179
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Logit results

. margins
Predictive margins Number of obs = 393
Model VCE 1 OIM
Expression  : Pr(vi_ever), predict()
Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]
_cons 4351145  .0224736  19.36  0.000 3910671 4791619

. margins , atmeans

Adjusted predictions Number of obs = 393
Model VCE 1 0IM

Expression ¢ Pr(vi_ever), predict()

at : capacit~1000 = 1.667005 (mean)

Delta-method
Margin std. Err. z P>z [95% Conf. Interval]

_cons .4413192 .0280628 15.73 0.000 .3863171 .4963214
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Probit, Logit, ...7

® One can use any cumulative density function (cdf).

Most popular are probit and logit.

Differences in ME between probit and logit small. If you only are
interested in ME (and especially with large data), OLS works OK.

Choice may depend on convenience / prior practice.
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Why not LPM?

® Sometimes you are interested in the actual parameters, not only the
ME.

® Example: estimating the demand for a good in order to understand
substitution patterns.
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