
Chapter 2

Statistical foundations and dealing with data
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The population and the sample

• The population is the total collection of all objects to be
studied.

• The population may be either finite or infinite, while a sample
is a selection of just some items from the population.

• A population is finite if it contains a fixed number of elements.

• In general, either all of the observations for the entire
population will not be available, or they may be so many in
number that it is infeasible to work with them, in which case
a sample of data is taken for analysis.

• The sample is usually random, and it should be representative
of the population of interest.

• A random sample is one in which each individual item in the
population is equally likely to be drawn.
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Probability and probability distributions – some

definitions

• A random variable can take any value from a given set

• A discrete random variable can take on only certain specific
values (e.g., the sum of two dice thrown)

• A probability is the likelihood of a particular event happening

• A probability distribution function shows the outcomes that
are possible from a random process and how likely each one is
to occur

• A continuous random variable can take any value (possibly
only within a fixed range), and the probabilities associated
with each range of outcomes is shown in a probability density
function (pdf)
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Probability and probability distributions – some

definitions (Cont’d)

• The probability that a continuous variable takes on a specific
value is always zero, since the variable could be defined to any
arbitrary degree of accuracy (0.1 vs 0.1000001 etc.) and thus
we can only calculate the probability that the variable lies
within a particular range.

• There are many continuous distributions, including the
uniform and the normal.
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The normal distribution

• The normal (Gaussian) distribution is the most commonly
used in statistics

• It has many desirable properties and is easy to work with

• It is unimodal (has only one peak) and symmetric

• The moments of a distribution describe its properties.

• The first two moments of a distribution are its mean and
variance respectively

• Only knowledge of the mean and variance are required to
completely describe the distribution

• A normal distribution has a skewness of zero and a kurtosis of
3 (excess kurtosis of zero)

• Skewness and kurtosis are the (standardised) third and fourth
moments of the distribution respectively.

‘Introductory Econometrics for Finance’ c© Chris Brooks 2018 5



The normal distribution 2

• The formula for the pdf of a normal distribution is given by:

f (y) =
1

√
2πσ

e−(y−µ)2/2σ2

• A standard normally distributed variable can be constructed
from any normal random variable by subtracting its mean (µ)
and dividing by its standard deviation (σ):

Z =
y − µ

σ
Ñ(0, 1)

• The probability that a continuous random variable lies above a
certain value (or below a certain value) is given by the
cumulative density function (cdf)

• The cdf for a normal distribution has a sigmoid shape
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A plot of the pdf for a normal distribution
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The central limit theorem

• If we take N draws from a normally distributed random
variable with population mean µ and variance σ2 then the
sample mean will also be normally distributed with mean µ
and variance σ2/N

• In fact, the sample mean of any random variable (whether
normally distributed or not) will tend towards a normal
distribution as the sample size tends to infinity.

• This is known as the central limit theorem.
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Other important distributions

• Three other important continuous distributions are the
chi-squared (χ2), the F and the t (sometimes known as
Student’s t)

• These distributions all relate to the normal and to each other

• The sum of squares of n independent normal distributions will
be a χ2 distribution with n degrees of freedom

• The ratio of two independent χ2 distributions divided by their
respective degrees of freedom n1 and n2 will be an
F -distribution with n1 and n2 degrees of freedom

• The t distribution tends to the normal as its degrees of
freedom increase towards infinity

• Each of these distributions will be discussed later as it is used.
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Descriptive Statistics
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Measures of central tendency

• The average value of a series is its measure of location or
measure of central tendency, capturing its typical behaviour

• There are three broad methods to calculate the average value
of a series: the mean, median and mode

• The mean is the very familiar sum of all N observations
divided by N

• More strictly, this is known as the arithmetic mean

• The mode is the most frequently occurring value in a set of
observations

• The median is the middle value in a series when the
observations are arranged in ascending order

• Each of the three methods of calculating an average has
advantages and disadvantages
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The geometric mean

• The geometric mean involves calculating the Nth root of the
product of the N observations

• So the geometric mean of six numbers in a series would be
obtained by multiplying them together and taking the sixth
root

• In finance, since the numbers in the series can be less than
one or negative, we use a slightly different method to
calculate the geometric mean compared to the one reported in
many non-finance statistics books
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The geometric mean (Cont’d)

• Here we add one to each data point, then multiply together,
take the Nth root and then subtract one at the end:

R̄G = [(1 + r1)(1 + r2) . . . (1 + rN)]
1/N − 1

where r1, r2, etc. are the data points that we wish to take the
geometric mean of

• The geometric mean will always be smaller than the
arithmetic mean unless all of the data points are the same.
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Measures of spread

• The spread of a series about its mean value can be measured
using the variance or standard deviation (which is the square
root of the variance)

• This quantity is an important measure of risk in finance

• The standard deviation scales with the data, whereas the
variance scales with the square of the data. S

• So, for example, if the units of the data points are US dollars,
the standard deviation will also be measured in dollars
whereas the variance will be in dollars squared

• Other measures of spread include the range (the difference
between the largest and smallest of the data points) and the
semi-interquartile range (the difference between the first and
third quartile points in the series

‘Introductory Econometrics for Finance’ c© Chris Brooks 2018 14



Measures of spread (Cont’d)

• The coefficient of variation divides the standard deviation by
the sample mean to obtain a unit-free measure of spread that
can be compared across series with different scales.
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Higher moments

• The higher moments of a data sample give further indications
of its features and shape.

• Skewness is the standardised third moment of a distribution
and indicates the extent to which it is asymmetric

• Kurtosis is the standardised fourth moment and measures
whether a series is fat or thin tailed

• Skewness can be positive or negative while kurtosis can only
be positive

• The formulae for skewness and kurtosis calculate the
quantities from the sample data in the same way that the
variance is calculated.
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Plot of a skewed series versus a normal

distribution
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Plot of a leptokurtic series versus a normal

distribution
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Some useful algebra for working with means,

variances and covariances

Means

• The mean of a random variable y is also known as its
expected value, written E(y)

• The expected value of a constant is the constant, e.g. E(c) =
c

• The expected value of a constant multiplied by a random
variable is equal to the constant multiplied by the expected
value of the variable: E(cy)=c E(y)

• It can also be stated that E(cy+d)= cE(y)+d , where d is
also a constant

• For two independent random variables, y1 and y2, E(y1y2) =
E(y1) E(y2).
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Some useful algebra for working with means,

variances and covariances 2

Variances

• The variance of a random variable y is usually written var(y)

• The variance of a random variable y is given by var(y) = E(y
- E(y))2

• The variance of a constant is zero: var(c) = 0

• For c and d constants, var(cy + d) = c2var(y)

• For two independent random variables, y1 and y2,
var(cy1 + dy2) = c2var(y1) + d2var(y2)

‘Introductory Econometrics for Finance’ c© Chris Brooks 2018 20



Some useful algebra for working with means,

variances and covariances 3

Covariances

• The covariance between two random variables, y1 and y2 may
be expressed as cov(y1, y2)

• cov(y1, y2) = E[(y1 - E(y1))(y2 - E(y2))]

• For two independent random variables, y1 and y2, cov(y1, y2)
= 0

• For four constants, c , d , e, and f , cov(c + dy1,
e + fy2)=df cov(y1, y2).
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Data types
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Types of Data and Notation

• There are 3 types of data which econometricians might use for
analysis:

1. Time series data
2. Cross-sectional data
3. Panel data, a combination of 1. & 2.

• The data may be quantitative (e.g. exchange rates, stock
prices, number of shares outstanding), or qualitative (e.g. day
of the week).

• Examples of time series data
Series Frequency

GNP or unemployment monthly, or quarterly
government budget deficit annually
money supply weekly
value of a stock market index as transactions occur
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Time Series versus Cross-sectional Data

• Examples of Problems that Could be Tackled Using a Time
Series Regression

– How the value of a country’s stock index has varied with that
country’s macroeconomic fundamentals.

– How the value of a company’s stock price has varied when it
announced the value of its dividend payment.

– The effect on a country’s currency of an increase in its interest
rate

• Cross-sectional data are data on one or more variables
collected at a single point in time, e.g.

– A poll of usage of internet stock broking services
– Cross-section of stock returns on the New York Stock

Exchange
– A sample of bond credit ratings for UK banks
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Cross-sectional and Panel Data

• Examples of Problems that Could be Tackled Using a
Cross-Sectional Regression

– The relationship between company size and the return to
investing in its shares

– The relationship between a country’s GDP level and the
probability that the government will default on its sovereign
debt.

• Panel Data has the dimensions of both time series and
cross-sections, e.g. the daily prices of a number of blue chip
stocks over two years.

• It is common to denote each observation by the letter t and
the total number of observations by T for time series data,
and to denote each observation by the letter i and the total
number of observations by N for cross-sectional data.
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Continuous and Discrete Data

• Continuous data can take on any value and are not confined
to take specific numbers.

• Their values are limited only by precision.

– For example, the rental yield on a property could be 6.2%,
6.24%, or 6.238%.

• On the other hand, discrete data can only take on certain
values, which are usually integers

– For instance, the number of people in a particular underground
carriage or the number of shares traded during a day.

• They do not necessarily have to be integers (whole numbers)
though, and are often defined to be count numbers.

– For example, until recently when they became ‘decimalised‘,
many financial asset prices were quoted to the nearest 1/16 or
1/32 of a dollar.
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Cardinal, Ordinal and Nominal Numbers

• Another way in which we could classify numbers is according
to whether they are cardinal, ordinal, or nominal.

• Cardinal numbers are those where the actual numerical values
that a particular variable takes have meaning, and where there
is an equal distance between the numerical values.

– Examples of cardinal numbers would be the price of a share or
of a building, and the number of houses in a street.

• Ordinal numbers can only be interpreted as providing a
position or an ordering.

– Thus, for cardinal numbers, a figure of 12 implies a measure
that is ‘twice as good’ as a figure of 6. On the other hand, for
an ordinal scale, a figure of 12 may be viewed as ‘better’ than
a figure of 6, but could not be considered twice as good.
Examples of ordinal numbers would be the position of a runner
in a race.
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Cardinal, Ordinal and Nominal Numbers (Cont’d)

• Nominal numbers occur where there is no natural ordering of
the values at all.

– Such data often arise when numerical values are arbitrarily
assigned, such as telephone numbers or when codings are
assigned to qualitative data (e.g. when describing the
exchange that a US stock is traded on).

• Cardinal, ordinal and nominal variables may require different
modelling approaches or at least different treatments, as
should become evident in the subsequent chapters.
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Arithmetic and geometric series, present and future values
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Arithmetic series

• An arithmetic progression is a sequence where a specific entry
in that series is formed by adding a fixed number, known as
the common difference, to the previous one.

• For example: 2, 5, 8, 11, . . . or –10, –30, –50, . . .

• The first of these is an arithmetic series with an initial value
of 2 and adds 3 each time we move from one entry in the
sequence to the next

• The second set is an arithmetic series with an initial value of
–10 and a common difference of –20
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Geometric series

• A geometric progression is a series where instead of adding a
fixed amount to move from one entry to the next, we multiply
by a fixed amount (the common ratio).

• For example: 4, 8, 16, 32, . . . or 2, 1, 0.5, 0.25, . . .

• The first of these is a geometric series with an initial value of
4 and a common ratio of 2

• The second set is a geometric series with an initial value of 2
and a common ratio of 0.5

• Geometric series are very useful in finance as they describe the
situation where a sum of money is invested and earns a
certain percentage of interest in each time period.
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Sums of geometric series

• To develop some notation, let a denote the initial value of a
geometric series (starting with the term numbered 0 and
ending with term numbered n − 1), and let d denote the
common ratio

• We could write a geometric series containing n terms as
a, ad , ad2, ad3, . . . , adn−1

• There is an expression that can be used to calculate the sum
of the first n terms, denoted Sn, of the series (running from a

to adn−1):

Sn =
a(1− dn)

1− d

• For instance, if a geometric series begins with 2 and has a
common ratio of 3, the sum of the first 8 terms would be:
Sn = 2× (1− 38)/(1 − 3) = 6560.
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Sums of infinite geometric series

• Of particular use in financial applications is the infinite sum of
a geometric progression, denoted S∞

• We can see what will happen to the sum of n terms as n tends
to infinity, since the term dn will tend towards zero (so long as
0 < d < 1), in which case the expression can be simplified as:

S∞ =
a

1− d

• Here, even though there is an infinite number of terms in the
series, their sum is finite

• Note that if d ≥ 1, the series would not converge (i.e.,
successive terms would not become smaller and smaller) and
therefore the sum would be infinite.
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Present values and future values

• Money has time value

• This means that receipt of a given amount of money is worth
a different amount depending on when it is received

• In general, money has positive time value

• As a result of the time value of money, we cannot simply
combine cashflows in their raw form into financial calculations
if they are received at different points in time

• The way that we ensure we are comparing like-with-like is to
transform the cashflows to what they would be worth if they
were all received at the same point in time
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Present values and future values (Cont’d)

• So we either transform all cashflows to the amount that they
would be worth at some given point in the future (the future

value) or we transform all future cashflows into the equivalent
amount that they would be worth if received today (the
present value).
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Future values

• Suppose that we place £100 in a bank savings account for
five years, paying an annual interest rate of 2%

• The sum of money in the account at the end of the period
would be given by
PT = P0 × (1 + r)T

• where PT denotes the terminal (future) value of the account,
r is the interest rate, P0 is the amount placed in the account
now, and T is the number of time periods for which the
money is invested

• In this example, the future value of the investment at the end
of the first year would be PT = £100 × (1 + 0.02) =
£102,while at the end of the second year it would have grown
to PT = £100 × (1 + 0.02)2 = £102 × (1 + 0.02) = £104.04
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Future values (Cont’d)

• The savings balance would continue to grow in this way until,
at the end of the fifth year, it would have reached PT =
£100 × (1 + 0.02)5 = £110.41

• In this case the interest is compounded annually – interest is
paid this year on the total value of this year’s end savings,
which will comprise both last year’s savings value and last
year’s interest.
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Future values – calculating the interest rate

• We can rearrange the future value formula on the previous
slide to make r the subject

• This would enable us to calculate the rate of interest required
to secure a specific future value, PT , given the initial
investment, P0:

r = (
PT

P0
)1/T − 1

• For example, if we make an initial investment of £1000 and
no further investments, and we leave the funds for ten years,
what rate of interest is required to enable us to achieve a sum
of £1500 by the end of the decade?

• The calculation is
r = [1500/1000]1/10 − 1 = 0.0414

• So an annual interest rate of about 4.14% is required.
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Future values - calculating the time to achieve a

certain sum

• A further rearrangement of the equations on the previous
slides enables us to make the term of the investment, T , the
subject of the formula:

T =
ln(PT /P0)

ln(1 + r)

• So, for instance, if we can invest £1000 initially and wish it to
grow to £2000, assuming an interest rate of 10%, how many
years do we need to wait?

• We would have T = ln(2000/1000)/ ln(1 + 0.1) = 7.273
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Future values - calculating the time to achieve a

certain sum (Cont’d)

• Notice that we can use the formula above to determine how
many years it would take for an investment to grow by a
factor of Z

T =
ln(Z )

ln(1 + r)

where PT = ZP0

• So, for example, if we wanted to triple the initial investment
with r = 10%, we would set Z = 3 and we would have
T = ln(3)/ ln(1 + 0.1) = 11.527 years.
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Compounding frequency

• The above examples assumed that interest was received
annually but in many cases it will be received more frequently

• The future value of an investment (PT ) when interest of r per
year in total is paid n times per year for T years on the
original amount P0 is given by

PT = P0[1 +
r

n
]nT

• In the limit, as the compounding frequency increases and so
we have more and more shorter and shorter time periods (i.e.,
we move from annual to monthly to weekly to daily to hourly
compounding and so on), we would eventually reach a
situation where the time period was infinitesimally small
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Compounding frequency (Cont’d)

• We would term this continuous compounding. If interest is
compounded continuously at an annual equivalent rate r , we
would write
PT = P0e

rT

• If T = 5 and r = 2%, then the terminal value if interest is
continuously compounded is PT = e0.02×5 = £110.52.

‘Introductory Econometrics for Finance’ c© Chris Brooks 2018 42



Present value

• The reverse of calculating the future value would be where we
calculate the present value of an amount of money to be
received at some point in the future

• Instead of an interest rate as we would have for a future value
calculation, in the case of present values we use a discount
rate, which is the rate at which we would reduce the future
payment into today’s terms

• We would write

P0 =
PT

(1 + r)T

where P0 is the present value, r is the discount rate, PT is the
sum to be paid or received in the future, and T is the number
of periods into the future that it will be paid or received
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Present value (Cont’d)

• Example: What is the present value of £100 to be received in
five years’ time if the discount rate is 2%?

P0 =
$100

(1 + 0.02)5
= $90.57

• This shows that £100 in five years’ time is worth £90.57 in
today’s money terms.
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Present value calculations for pricing bonds

• A bond pays a £10 coupon annually with the next coupon
due immediately.

• The bond has exactly five years left to maturity when it will
be redeemed at its par value of £100 and an appropriate
discount rate is 10%.

• What would be a fair price to pay today for the bond?

• We would calculate the fair price as the discounted sum of the
six coupon payments (one now and one at the end of each of
the next five years) and plus the discounted value of the par
amount of the bond.
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Present value calculations for pricing bonds

(Cont’d)

• If we let the fair price in pounds be denoted by P0, the
calculation would be

P0 = 5 +
5

(1 + 0.1)
+

5

(1 + 0.1)2
+

5

(1 + 0.1)3
+

5

(1 + 0.1)4
+

5

(1 + 0.1)5
+

100

(1 + 0.1)5

• The fair price to pay for the bond is P0 =£86.04.
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Present value calculations for pricing irredeemable

bonds

• If the bond under study was irredeemable (so that it had an
infinite lifetime like a stock), we would need to use the S∞
formula to calculate its present value.

• As an illustration, what should an investor pay today for a
perpetual (irredeemable) bond that pays a coupon of £5 every
six months if the appropriate rate to discount future cashflows
is 4% per annum and the next coupon will be paid
immediately?

• We could discount each cashflow with the discount rate for six
months, which would be 2%

• We could write this as an infinite series beginning with £5:

5,
5

(1 + 0.02)
,

5

(1 + 0.02)2
,

5

(1 + 0.02)3
,

5

(1 + 0.02)4
, . . .

‘Introductory Econometrics for Finance’ c© Chris Brooks 2018 47



Present value calculations for pricing irredeemable

bonds (Cont’d)

• We need to be slightly careful as the common difference here
is 1/(1 + 0.02)

• Then we would have the value as
S∞ = £5/(1 − [1/(1 + 0.02)]) = £255.
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Internal rate of return

• It is sometimes the case that we know both the present value
of a particular set of cashflows, and all of the future
cashflows, but we do not know the discount rate

• The value of r that would equate the amount to be paid
today P0 to the present value of all of the cashflows we would
receive if we purchased the asset is known as the internal rate
of return or IRR

• We could calculate that by solving the annuity formula above
for r

• More generally, if the future cashflow payments were not fixed
but varied over time, we would have a more flexible formula:

P0 = a0 +
a1

(1 + r)
+

a2

(1 + r)2
+

a3

(1 + r)3
+

a4

(1 + r)4
+ . . .+

aT

(1 + r)
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Internal rate of return (Cont’d)

• If there are only one or two time-periods, we could solve the
equation by hand; for more we would need to use a
spreadsheet.
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Returns in Financial Modelling

• It is preferable not to work directly with asset prices, so we
usually convert the raw prices into a series of returns. There
are two ways to do this:

Simple returns or log returns

Rt =
pt−pt−1

pt−1
∗ 100% Rt = ln pt

pt−1
∗ 100%

where, Rt denotes the return at time t, Pt denotes the asset
price at time t and ln denotes the natural logarithm

• We also ignore any dividend payments, or alternatively assume
that the price series have been already adjusted to account for
them.

‘Introductory Econometrics for Finance’ c© Chris Brooks 2018 51



Log Returns

• The returns are also known as log price relatives, which will be
used throughout this book. There are a number of reasons for
this:

1. They have the nice property that they can be interpreted as
continuously compounded returns.

2. Can add them up, e.g. if we want a weekly return and we have
calculated daily log returns:

r1 = ln p1/p0 = ln p1 − ln p0

r2 = ln p2/p1 = ln p2 − ln p1

r3 = ln p3/p2 = ln p3 − ln p2

r4 = ln p4/p3 = ln p4 − ln p3

r5 = ln p5/p4 = ln p5 − ln p4

ln p5 − ln p0 = ln p5/p0
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A Disadvantage of using Log Returns

• There is a disadvantage of using the log-returns. The simple
return on a portfolio of assets is a weighted average of the
simple returns on the individual assets:

Rpt =
N
∑

i=1

wiRit

• But this does not work for the continuously compounded
returns.
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Real Versus Nominal Series

• The general level of prices has a tendency to rise most of the
time because of inflation

• We may wish to transform nominal series into real ones to
adjust them for inflation

• This is called deflating a series or displaying a series at
constant prices

• We do this by taking the nominal series and dividing it by a
price deflator:

real seriest = nominal seriest ∗ 100/deflatort
(assuming that the base figure is 100)

• We only deflate series that are in nominal price terms, not
quantity terms.
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Deflating a Series

• If we wanted to convert a series into a particular year’s figures
(e.g. house prices in 2010 figures), we would use:

real seriest = nominal seriest ∗ deflatorreference year/deflatort

• This is the same equation as the previous slide except with
the deflator for the reference year replacing the assumed
deflator base figure of 100

• Often the consumer price index, CPI, is used as the deflator
series.
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Portfolio Theory using Matrix Algebra

‘Introductory Econometrics for Finance’ c© Chris Brooks 2018 56



Portfolio Theory and Matrix Algebra - Basics

• Probably the most important application of matrix algebra in
finance is to solving portfolio allocation problems

• Suppose that we have a set of N stocks that are included in a
portfolio P with weights w1,w2, . . . ,wN and suppose that
their expected returns are written as E (r1),E (r2), . . . ,E (rN).
We could write the N × 1 vectors of weights, w , and of
expected returns, E (r), as

w =









w1

w2

. . .
wN









E (r) =









E (r1)
E (r2)
. . .

E (rN)









• The expected return on the portfolio, E (rP) can be calculated
as E (r)′w .
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The Variance-Covariance Matrix

• The variance-covariance matrix of the returns, denoted V

includes all of the variances of the components of the portfolio
returns on the leading diagonal and the covariances between
them as the off-diagonal elements.

• The variance-covariance matrix of the returns may be written

V =











σ11 σ12 σ13 . . . σ1N
σ21 σ22 σ23 . . . σ2N
...

...
σN1 σN2 σN3 . . . σNN











• For example:
– σ11 is the variance of the returns on stock one, σ22 is the

variance of returns on stock two, etc.

– σ12 is the covariance between the returns on stock one and
those on stock two, etc.
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Constructing the Variance-Covariance Matrix

• In order to construct a variance-covariance matrix we would
need to first set up a matrix containing observations on the
actual returns , R (not the expected returns) for each stock
where the mean, r i (i = 1, . . . ,N), has been subtracted away
from each series i.

• We would write

R =











r11 − r̄1 r21 − r̄2 r31 − r̄3 . . . rN1 − r̄N
r12 − r̄1 r22 − r̄2 r32 − r̄3 . . . rN2 − r̄N

...
...

r1T − r̄1 r2T − r̄2 r3T − r̄3 . . . rNT − r̄N











• rij , is the jth time-series observation on the ith stock. The
variance-covariance matrix would then simply be calculated as
V = (R ′R)/(T − 1).
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The Variance of Portfolio Returns

• Suppose that we wanted to calculate the variance of returns
on the portfolio P

– A scalar which we might call VP

• We would do this by calculating

VP = w ′Vw

• Checking the dimension of VP , w
′ is (1× N), V is (N × N)

and w is (N × 1) so VP is (1×N × N × N × N × 1), which is
(1× 1) as required.
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The Correlation between Returns Series

• We could define a correlation matrix of returns, C, which
would be

C =











1 C12 C13 . . . C1N

C21 1 C23 . . . C2N
...

...
CN1 CN2 CN3 . . . 1











• This matrix would have ones on the leading diagonal and the
off-diagonal elements would give the correlations between
each pair of returns

• Note that the correlation matrix will always be symmetrical
about the leading diagonal
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The Correlation between Returns Series (Cont’d)

• Using the correlation matrix, the portfolio variance is

VP = w ′SCSw

where S is a diagonal matrix containing the standard
deviations of the portfolio returns.
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Selecting Weights for the Minimum Variance

Portfolio

• Although in theory the optimal portfolio on the efficient
frontier is better, a variance-minimising portfolio often
performs well out-of-sample

• The portfolio weights w that minimise the portfolio variance,
VP is written

min
w

w ′Vw

• We also need to be slightly careful to impose at least the
restriction that all of the wealth has to be invested (weights
sum to one)

• This restriction is written as w ′· 1N = 1, where 1N is a column
vector of ones of length N.
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Selecting Weights for the Minimum Variance

Portfolio (Cont’d)

• The minimisation problem can be solved to

wMVP =
1N ·V−1

1N ·V−1· 1′N

where MVP stands for minimum variance portfolio
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Selecting Optimal Portfolio Weights

• In order to trace out the mean-variance efficient frontier, we
would repeatedly solve this minimisation problem but in each
case set the portfolio’s expected return equal to a different
target value, R̄

• We would write this as

min
w

w ′Vw subject to w ′· 1N = 1,w ′E (r) = R̄

• This is sometimes called the Markowitz portfolio allocation
problem

– It can be solved analytically so we can derive an exact solution

• But it is often the case that we want to place additional
constraints on the optimisation, e.g.

– Restrict the weights so that none are greater than 10% of
overall wealth
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Selecting Optimal Portfolio Weights (Cont’d)

– Restrict them to all be positive (i.e. long positions only with
no short selling)

• In such cases the Markowitz portfolio allocation problem
cannot be solved analytically and thus a numerical procedure
must be used
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Selecting Optimal Portfolio Weights

• If the procedure above is followed repeatedly for different
return targets, it will trace out the efficient frontier

• In order to find the tangency point where the efficient frontier
touches the capital market line, we need to solve the following
problem

max
w

w ′E (r)− rf

(w ′Vw)
1
2

subject to w ′· 1N = 1

• If no additional constraints are required on weights, this can
be solved as

w =
V−1[E (r)− rf · 1N ]

1′NV
−1[E (r)− rf · 1N ]

• Note that it is also possible to write the Markowitz problem
where we select the portfolio weights that maximise the
expected portfolio return subject to a target maximum
variance level.
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Bayesian versus Classical Statistics

• The philosophical approach to model-building used here
throughout is based on ‘classical statistics’

• This involves postulating a theory and then setting up a
model and collecting data to test that theory

• Based on the results from the model, the theory is supported
or refuted

• There is, however, an entirely different approach known as
Bayesian statistics

• Here, the theory and model are developed together

• The researcher starts with an assessment of existing knowledge
or beliefs formulated as probabilities, known as priors

• The priors are combined with the data into a model
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Bayesian versus Classical Statistics (Cont’d)

• The beliefs are then updated after estimating the model to
form a set of posterior probabilities

• Bayesian statistics is a well established and popular approach,
although less so than the classical one

• Some classical researchers are uncomfortable with the
Bayesian use of prior probabilities based on judgement

• If the priors are very strong, a great deal of evidence from the
data would be required to overturn them

• So the researcher would end up with the conclusions that
he/she wanted in the first place!

• In the classical case by contrast, judgement is not supposed to
enter the process and thus it is argued to be more objective.
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