
Chapter 4

Further development and analysis of the classical linear
regression model
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Generalising the Simple Model to Multiple Linear
Regression

• Before, we have used the model

yt = α+ βxt + ut t = 1,2,...,T
• But what if our dependent (y) variable depends on more than
one independent variable?
For example the number of cars sold might plausibly depend
on

1. the price of cars
2. the price of public transport
3. the price of petrol
4. the extent of the public’s concern about global warming

• Similarly, stock returns might depend on several factors.
• Having just one independent variable is no good in this case -
we want to have more than one x variable. It is very easy to
generalise the simple model to one with k − 1 regressors
(independent variables).
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Multiple Regression and the Constant Term

• Now we write

yt = β1 + β2x2t + β3x3t + ...+ βkxkt + ut , t=1,2,..., T

• Where is x1? It is the constant term. In fact the constant
term is usually represented by a column of ones of length T:

x1 =















1
1
·
·
·
1















β1 is the coefficient attached to the constant term (which we
called α before).
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Different Ways of Expressing the Multiple Linear
Regression Model

• We could write out a separate equation for every value of t:

y1 = β1 + β2x21 + β3x31 + · · · + βkxk1 + u1

y2 = β1 + β2x22 + β3x32 + · · · + βkxk2 + u2

. . . . . . . . . . . .

yT = β1 + β2x2T + β3x3T + · · ·+ βkxkT + uT

• We can write this in matrix form

y = Xβ + u

where: y is T × 1

X is T × k

β is k × 1

u is T × 1
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Inside the Matrices of the Multiple Linear
Regression Model

• e.g. if k is 2, we have 2 regressors, one of which is a column
of ones:











y1
y2
...
yT











=











1 x21
1 x22
...

...
1 x2T











[

β1
β2

]

+











u1
u2
...
uT











T × 1 T × 2 2× 1 T × 1

• Notice that the matrices written in this way are conformable.
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How Do We Calculate the Parameters (the β) in
this Generalised Case?

• Previously, we took the residual sum of squares, and
minimised it w.r.t. α and β.

• In the matrix notation, we have

û =











û1
û2
...
ûT











• The RSS would be given by

û′û = [û1 û2 · · · ûT ]











û1
û2
...
ûT











= û21 + û22 + · · ·+ û2T =
∑

û2t
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The OLS Estimator for the Multiple Regression
Model

• In order to obtain the parameter estimates, β1, β2,..., βk , we
would minimise the RSS with respect to all the βs.

• It can be shown that

β̂ =









β̂1

β̂2
...
β̂k









= (X ′X )−1X ′y
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Calculating the Standard Errors for the Multiple
Regression Model

• Check the dimensions: β̂ is k × 1 as required.

• But how do we calculate the standard errors of the coefficient
estimates?

• Previously, to estimate the variance of the errors, σ2, we used

s2 =
∑

û2

T−2 .

• Now using the matrix notation, we use

s2 =
û′û

T − k

• where k = number of regressors. It can be proved that the
OLS estimator of the variance of β̂ is given by the diagonal
elements of s2(X ′X )−1, so that the variance of β̂1 is the first
element, the variance of is the second element, and ... , and
the variance of β̂k is the k th diagonal element.
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Calculating Parameter and Standard Error
Estimates for Multiple Regression Models: An

Example

• Example: The following model with k=3 is estimated over 15
observations:

y = β1 + β2x2 + β3x3 + u

and the following data have been calculated from the original
X’s.

(X ′X )−1 =







2.0 3.5 −1.0

3.5 1.0 6.5

−1.0 6.5 4.3






, (X ′y) =







−3.0

2.2

0.6






, û′û = 10.96
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Calculating Parameter and Standard Error
Estimates for Multiple Regression Models: An

Example (Cont’d)
Calculate the coefficient estimates and their standard errors.

• To calculate the coefficients, just multiply the matrix by the
vector to obtain (X ′X )−1X ′y .

• To calculate the standard errors, we need an estimate of σ 2.

s2 =
RSS

T − k
=

10.96

15− 3
= 0.91

• The variance-covariance matrix of β̂ is given by

s2(X ′X )−1 = 0.91(X ′X )−1 =





1.82 3.19 −0.91
3.19 0.91 5.92
−0.91 5.92 3.91
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Calculating Parameter and Standard Error
Estimates for Multiple Regression Models: An

Example (Cont’d)

• The variances are on the leading diagonal:

var(β̂1) = 1.82 SE (β̂1) = 1.35

var(β̂2) = 0.91 ⇔ SE (β̂2) = 0.95

var(β̂3) = 3.91 SE (β̂3) = 1.98

• We write:

ŷ = 1.10 − 4.40x2 + 19.88x3

(1.35) (0.96) (1.98)
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Testing Multiple Hypotheses: The F -test

• We used the t-test to test single hypotheses, i.e. hypotheses
involving only one coefficient. But what if we want to test
more than one coefficient simultaneously?

• We do this using the F-test. The F-test involves estimating 2
regressions.

• The unrestricted regression is the one in which the coefficients
are freely determined by the data, as we have done before.

• The restricted regression is the one in which the coefficients
are restricted, i.e. the restrictions are imposed on some βs.
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The F -test: Restricted and Unrestricted
Regressions

• Example

The general regression is

yt = β1 + β2x2t + β3x3t + β4x4t + ut

• We want to test the restriction that β3 + β4 = 1 (we have
some hypothesis from theory which suggests that this would
be an interesting hypothesis to study). The unrestricted
regression is (13) above, but what is the restricted regression?

yt = β1 + β2x2t + β3x3t + β4x4t + ut s.t. β3 + β4 = 1

• We substitute the restriction (β3 + β4 = 1) into the regression
so that it is automatically imposed on the data.

β3 + β4 = 1 ⇒ β4 = 1− β3
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The F -test: Forming the Restricted Regression

yt = β1 + β2x2t + β3x3t + (1− β3)x4t + ut

yt = β1 + β2x2t + β3x3t + x4t − β3x4t + ut

• Gather terms in β’s together and rearrange

(yt − x4t) = β1 + β2x2t + β3(x3t − x4t) + ut

• This is the restricted regression. We actually estimate it by
creating two new variables, call them, say, Pt and Qt .

Pt = yt − x4t

Qt = x3t − x4t

So Pt = β1 + β2x2t + β3Qt + ut is the restricted regression we
actually estimate.
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Calculating the F -Test Statistic

• The test statistic is given by

test statistic =
RRSS − URSS

URSS
×

T − k

m

where URSS = RSS from unrestricted regression

RRSS = RSS from restricted regression

m = number of restrictions

T = number of observations

k = number of regressors in unrestricted regression

including a constant in the unrestricted regression

(or the total number of parameters to be estimated).
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The F -Distribution

• The test statistic follows the F-distribution, which has 2 d.f.
parameters.

• The value of the degrees of freedom parameters are m and
(T-k) respectively (the order of the d.f. parameters is
important).

• The appropriate critical value will be in column m, row (T-k).

• The F-distribution has only positive values and is not
symmetrical. We therefore only reject the null if the test
statistic > critical F-value.
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Determining the Number of Restrictions in an
F -test

• Examples :

H0 : hypothesis No. of restrictions,m
β1 + β2 = 2 1
β2 = 1 and β3 = −1 2
β2 = 0, β3 = 0 and β4 = 0 3

• If the model is yt = β1 + β2x2t + β3x3t + β4tx4t + ut ,

then the null hypothesis

H0 : β2 = 0, and β3 = 0 and β4 = 0 is tested by the
regression F-statistic. It tests the null hypothesis that all of
the coefficients except the intercept coefficient are zero.

• Note the form of the alternative hypothesis for all tests when
more than one restriction is involved: H1 : β2 6= 0, or β3 6= 0
or β4 6= 0
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What we Cannot Test with Either an F or a t-test

• We cannot test using this framework hypotheses which are
not linear or which are multiplicative, e.g.

H0 : β2β3 = 2 or H0 : β
2
2 = 1

cannot be tested.
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The Relationship between the t and the
F -Distributions

• Any hypothesis which could be tested with a t-test could have
been tested using an F-test, but not the other way around.

• For example, consider the hypothesis

H0 : β2 = 0.5
H1 : β2 6= 0.5

We could have tested this using the usual t-test:

test stat = β̂2−0.5

SE(β̂2)

or it could be tested in the framework above for the F-test.

• Note that the two tests always give the same result since the
t-distribution is just a special case of the F-distribution.

• For example, if we have some random variable Z, and
Z ∼ t(T − k) then also Z 2 ∼ F (1,T − k)
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F -test Example

• Question: Suppose a researcher wants to test whether the
returns on a company stock (y) show unit sensitivity to two
factors (factor x2 and factor x3) among three considered. The
regression is carried out on 144 monthly observations. The
regression is yt = β1 + β2x2t + β3x3t + β4x4t + ut

– What are the restricted and unrestricted regressions?

– If the two RSS are 436.1 and 397.2 respectively, perform the
test.

• Solution:

Unit sensitivity implies H0:β2 = 1 and β3 = 1. The
unrestricted regression is the one in the question. The
restricted regression is (yt − x2t − x3t) = β1 + β4x4t + ut or
letting zt = yt − x2t − x3t , the restricted regression is
zt = β1 + β4x4t + ut
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F -test Example (Cont’d)

In the F-test formula, T=144, k=4, m=2, RRSS=436.1,
URSS=397.2

F-test statistic = 6.68. Critical value is an F(2,140) = 3.07
(5%) and 4.79 (1%).

Conclusion: Reject H0.
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Data Mining

• Data mining is searching many series for statistical
relationships without theoretical justification.

• For example, suppose we generate one dependent variable and
twenty explanatory variables completely randomly and
independently of each other.

• If we regress the dependent variable separately on each
independent variable, on average one slope coefficient will be
significant at 5%.

• If data mining occurs, the true significance level will be
greater than the nominal significance level.
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Goodness of Fit Statistics

• We would like some measure of how well our regression model
actually fits the data.

• We have goodness of fit statistics to test this: i.e. how well
the sample regression function (srf) fits the data.

• The most common goodness of fit statistic is known as R2.
One way to define R2 is to say that it is the square of the
correlation coefficient between y and ŷ .

• For another explanation, recall that what we are interested in
doing is explaining the variability of y about its mean value, ,
i.e. the total sum of squares, TSS:

TSS =
∑

t

(yt − ȳ)2

• We can split the TSS into two parts, the part which we have
explained (known as the explained sum of squares, ESS) and
the part which we did not explain using the model (the RSS).
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Defining R
2

• That is,

TSS = ESS + RSS
∑

t

(yt − ȳ)2 =
∑

t

(ŷt − ȳ)2 +
∑

t

û2t

• Our goodness of fit statistic is

R2 =
ESS

TSS

• But since TSS = ESS + RSS, we can also write

R2 =
ESS

TSS
=

TSS − RSS

TSS
= 1−

RSS

TSS

• R2 must always lie between zero and one. To understand this,
consider two extremes

RSS = TSS i.e. ESS = 0 so R2 = ESS/TSS = 0

ESS = TSS i.e. RSS = 0 so R2 = ESS/TSS = 1
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The Limit Cases: R
2 = 0 and R

2 = 1

y–

y
t

x
t

y
t

x
t
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Problems with R
2 as a Goodness of Fit Measure

• There are a number of them:

1. R2 is defined in terms of variation about the mean of y so that
if a model is reparameterised (rearranged) and the dependent
variable changes, R2 will change.

2. R2 never falls if more regressors are added. to the regression,
e.g. consider:

Regression 1 : yt = β1 + β2x2t + β3x3t + ut

Regression 2 : yt = β1 + β2x2t + β3x3t + β4x4t + ut

R2 will always be at least as high for regression 2 relative to
regression 1.

3. R2 quite often takes on values of 0.9 or higher for time series
regressions.
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Adjusted R
2

• In order to get around these problems, a modification is often
made which takes into account the loss of degrees of freedom
associated with adding extra variables. This is known as R̄2,
or adjusted R2:

R̄2 = 1−

[

T − 1

T − k
(1− R2)

]

• So if we add an extra regressor, k increases and unless R2

increases by a more than offsetting amount, R̄2 will actually
fall.

• There are still problems with the criterion:

1. A “soft” rule
2. No distribution for R̄2 or R2
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A Regression Example: Hedonic House Pricing
Models

• Hedonic models are used to value real assets, especially
housing, and view the asset as representing a bundle of
characteristics.

• Des Rosiers and Thérialt (1996) consider the effect of various
amenities on rental values for buildings and apartments 5
sub-markets in the Quebec area of Canada.

• The rental value in Canadian Dollars per month (the
dependent variable) is a function of 9 to 14 variables
(depending on the area under consideration). The paper
employs 1990 data, and for the Quebec City region, there are
13,378 observations, and the 12 explanatory variables are:
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Hedonic House Pricing Models: Variable
Definitions

LnAGE log of the apparent age of the property
NBROOMS number of bedrooms
AREABYRM area per room (in square metres)
ELEVATOR a dummy variable = 1 if the building has an

elevator; 0 otherwise
BASEMENT a dummy variable = 1 if the unit is located in a

basement; 0 otherwise
OUTPARK number of outdoor parking spaces
INDPARK number of indoor parking spaces
NOLEASE a dummy variable = 1 if the unit has no lease

attached to it; 0 otherwise
LnDISTCBD log of the distance in kilometres to the central

business district (CBD)
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Hedonic House Pricing Models: Variable
Definitions (Cont’d)

SINGLPAR percentage of single parent families in the area
where the building stands

DSHOPCNTR distance in kilometres to the nearest shopping
centre

VACDIFF1 vacancy difference between the building and the
census figure

– The coefficient estimates themselves show the Canadian dollar
rental price per month of each feature of the dwelling.
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Hedonic House Price Results Dependent Variable:
Canadian Dollars per Month

A priori
Variable Coefficient t-ratio sign expected

Intercept 282.21 56.09 +
LnAGE −53.10 −59.71 −
NBROOMS 48.47 104.81 +
AREABYRM 3.97 29.99 +
ELEVATOR 88.51 45.04 +
BASEMENT −15.90 −11.32 −
OUTPARK 7.17 7.07 +
INDPARK 73.76 31.25 +
NOLEASE −16.99 −7.62 −
LnDISTCBD 5.84 4.60 −
SINGLPAR −4.27 −38.88 −
DSHOPCNTR −10.04 −5.97 −
VACDIFF1 0.29 5.98 −

Notes: Adjusted R2 = 0.651; regression F-statistic = 2082.27.
Source: Des Rosiers and Thérialt (1996). Reprinted with permission of American Real
Estate Society.
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Tests of Non-nested Hypotheses

• All of the hypothesis tests concluded thus far have been in the
context of “nested” models.

• But what if we wanted to compare between the following
models?

Model 1: yt = α1 + α2x2t + ut

Model 2: yt = β1 + β2x3t + vt

• We could use R2 or adjusted R2, but what if the number of
explanatory variables were different across the 2 models?

• An alternative approach is an encompassing test, based on
examination of the hybrid model:

Model 3: yt = γ1 + γ2x2t + γ3x3t + wt
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Tests of Non-nested Hypotheses (Cont’d)

• There are 4 possible outcomes when Model 3 is estimated:

• γ2 is significant but γ3 is not

• γ3 is significant but γ2 is not

• γ2 and γ3 are both statistically significant

• Neither γ2 nor γ3 are significant

• Problems with encompassing approach

• Hybrid model may be meaningless

• Possible high correlation between x2 and x3.
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Quantile Regression - Background

• Standard regression approaches effectively model the
(conditional) mean of the dependent variable

• We could calculate from the fitted regression line the value
that y would take for any values of the explanatory variables

• But this would be an extrapolation of the behaviour of the
relationship between y and x at the mean to the remainder of
the data

• This approach will often be suboptimal

• For example, there might be a non-linear (e.g., ∩-shaped)
relationship between x and y

• Estimating a standard linear regression model may lead to
seriously misleading estimates of this relationship as it will
9́1average’ the positive and negative effects.
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Quantile Regression – Background 2

• It would be possible to include non-linear (i.e. polynomial)
terms in the regression model (for example, squared, cubic, . .
. terms)

• But quantile regressions represent a more natural and flexible
way to capture the complexities by estimating models for the
conditional quantile functions

• Quantile regressions can be conducted in both time-series and
cross-sectional contexts

• It is usually assumed that the dependent variable, often called
the response variable, is independently distributed and
homoscedastic

• Quantile regressions are more robust to outliers and
non-normality than OLS regressions
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Quantile Regression – Background 3

• Quantile regression is a non-parametric technique since no
distributional assumptions are required to optimally estimate
the parameters

• The notation and approaches commonly used in quantile
regression modelling are different to those that we are familiar
with in financial econometrics

• Increased interest in modelling the ’tail behaviour’ of series
have spurred applications of quantile regression in finance

• A common use of the technique here is to value at risk
modelling

• This seems natural given that the models are based on
estimating the quantile of a distribution of possible losses.
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Quantiles – A Definition
• Quantiles, denoted τ , refer to the position where an
observation falls within an ordered series for y , for example:

– The median is the observation in the very middle
– The (lower) tenth percentile is the value that places 10% of

observations below it (and therefore 90% of observations
above)

• More precisely, we can define the τ -th quantile, Q(τ), of a
random variable y having cumulative distribution F(y) as

Q(τ) = inf y : F (y) ≥ τ

where inf refers to the infimum, or the ’greatest lower bound’,
which is the smallest value of y satisfying the inequality

• By definition, quantiles must lie between zero and one

• Quantile regressions effectively model the entire conditional
distribution of y given the explanatory variables.
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Estimation of Quantile Functions
• The OLS estimator finds the mean value that minimises the
RSS and minimising the sum of the absolute values of the
residuals will yield the median

• The absolute value function is symmetrical so that the median
always has the same number of data points above it as below
it

• If the absolute residuals are weighted differently depending on
whether they are positive or negative, we can calculate the
quantiles of the distribution

• To estimate the τ -th quantile, we would set the weight on
positive observations to τ and that on negative observations
to 1-τ

• We can select the quantiles of interest and common choices
would be 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95

• The fit is not good for values of τ too close to its limits of 0
and 1.
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Estimation of Quantile Functions 2

• We could write the minimisation problem for a set of quantile
regression parameters β̂τ , each element of which is a k × 1
vector, as

β̂τ = argmin
β





∑

i :yi>βxi

τ |yi − βxi |+
∑

i :yi<βxi

(1− τ)|yi − βxi |





• As above, for the median, τ = 0.5 and the weights are
symmetric but for all other quantiles they will be asymmetric

• This optimisation problem can be solved using a linear
programming representation via the simplex algorithm or
within the generalised method of moments framework.
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Quantile Regression – How not to do it

• As an alternative to quantile regression, it would be tempting
to think of partitioning the data and running separate
regressions on each of them

– For example, dropping the top 90% of the observations on y

and the corresponding data points for the xs, and running a
regression on the remainder

• However, this process, tantamount to truncating the
dependent variable, would be wholly inappropriate

– It could lead to potentially severe sample selection biases

• In fact, quantile regression does not partition the data

– All observations are used in the estimation of the parameters
for every quantile
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Quantile Regression Example

• A study by Bassett and Chen (2001) performs a style
attribution analysis for a mutual fund and, for comparison, the
S&P500 index

• To examine how a portfolio’s exposure to various styles varies
with performance, they use a quantile regression approach

• They conduct a style analysis by regressing the returns of a
fund on the returns of a large growth portfolio, the returns of
a large value portfolio, the returns of a small growth portfolio,
and the returns of a small value portfolio

• These style portfolio returns are based on the Russell style
indices

• The parameter estimates on each of these style-mimicking
portfolio returns will measure the extent to which the fund is
exposed to that style.
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Quantile Regression Example – Discussion of
Results

• We can determine the actual investment style of a fund
without knowing anything about its holdings purely based on
an analysis of its returns ex post and their relationships with
the returns of style indices

• The results are shown from a standard OLS regression and
quintile regressions for τ = 0.1, 0.3, 0.5 (i.e. the median),
0.7, and 0.9

• The data are observed over the five years to December 1997
with standard errors based on a bootstrapping procedure

• Notice that the sum of the style parameters for a given
regression is always one (except for rounding errors)

• The OLS results (column 2) show that the mean return has
by far its biggest exposure to large value stocks (and this
parameter estimate is also statistically significant).
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Quantile Regression Example – Discussion of
Results 2

• Comparing the mean (OLS) results with those for the median,
Q(0.5), the latter show much higher exposure to large value,
less to small growth and none at all to large growth.

• We can examine the factor tilts as we move through the
quantiles from left (Q(0.1)) to right (Q(0.9))

– The loading on large growth monotonically falls from 0.31 at
Q(0.1) to 0.01 at Q(0.9) while the loadings on large value and
small growth substantially increase

– The loading on small value falls from 0.31 at Q(0.1) to -0.51
at Q(0.9)

– It is obvious that the intercept (coefficient on the constant)
estimates should be monotonically increasing from left to right
since the quantile regression effectively sorts on average
performance

– The intercept can be interpreted as the performance expected
if the fund had zero exposure to all of the styles.
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Quantile Regression Example – Table of Results

OLS and quantile regression results for the Magellan fund
OLS Q(0.1) Q(0.3) Q(0.5) Q(0.7) Q(0.9)

Large growth 0.14 0.35 0.19 0.01 0.12 0.01
(0.15) (0.31) (0.22) (0.16) (0.20) (0.22)

Large value 0.69 0.31 0.75 0.83 0.85 0.82
(0.20) (0.38) (0.30) (0.25) (0.30) (0.36)

Small Growth 0.21 −0.01 0.10 0.14 0.27 0.53
(0.11) (0.15) (0.16) (0.17) (0.17) (0.15)

Small Value −0.03 0.31 0.08 0.07 −0.31 −0.51
(0.20) (0.31) (0.27) (0.29) (0.32) (0.35)

Constant −0.05 −1.90 −1.11 −0.30 0.89 2.31
(0.25) (0.39) (0.27) (0.38) (0.40) (0.57)

Notes: Standard errors in parentheses. Source: Bassett and Chen (2001).
Reprinted with the permission of Springer-Verlag.
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Factor Models and Principal Components Analysis

• Factor models are employed as dimensionality reduction
techniques in situations where we have a large number of
closely related variables

• They decompose the structure of a set of series into factors
that are common and a proportion that is specific to each
series (idiosyncratic)

• There are two types of such models: economic and
mathematical factor models

• The key distinction between the two is that the factors are
observable for the former but are latent (unobservable) for the
latter
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Factor Models and Principal Components Analysis
(Cont’d)

• Observable factor models include the APT model of Ross
(1976)

• The most common mathematical model is principal
components analysis

• PCA may be useful where explanatory variables are closely
related – for example, in the context of near multicollinearity.
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How PCA Works

• If there are k explanatory variables in the regression model,
PCA will transform them into k uncorrelated new variables

• Suppose that the original explanatory variables are denoted x1,
x2,...,xk , and denote the principal components by p1, p2,..., pk

• These principal components are independent linear
combinations of the original data:

p1 = α11x1 + α12x2 + · · ·+ α1kxk

p2 = α21x1 + α22x2 + · · ·+ α2kxk

. . . . . . . . . . . .

pk = αk1x1 + αk2x2 + · · · + αkkxk

where αij are coefficients to be calculated, representing the
coefficient on the j th explanatory variable in the i th principal
component.

• These coefficients are factor loadings.
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PCA – More Details

• The sum of the squares of the coefficients for each component
will be one

• Constructing the components is a purely mathematical
exercise in constrained optimisation, and thus no assumption
is made concerning the structure, distribution, or other
properties of the variables

• The principal components are derived in such a way that they
are in descending order of importance.

• Although there are k principal components, if there is some
collinearity between the original explanatory variables, it is
likely that some of the principal components will account for
so little of the variation that they can be discarded.
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Principal Components as Eigenvalues

• The principal components can also be understood as the
eigenvalues of (X’X), where X is the matrix of observations on
the original variables

• If the ordered eigenvalues are denoted λi(i =1,..., k), the ratio:

φi =
λi

k
∑

i=1

λi

gives the proportion of the total variation in the original data
explained by the principal component i

• If only the first r(0 < r < k) principal components are useful
in explaining the variation of (X’X) and are retained, the
remaining k-r components would be discarded.
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Principal Components as Eigenvalues

• The regression finally estimated, after the principal
components have been formed, would be one of y on the first
r principal components:

yt = γ0 + γ1p1t + ...+ γrprt + ut

• In this way, the principal components are argued to keep most
of the important information contained in the original
explanatory variables, but are orthogonal

• The principal component estimates from this regression will
be biased, although they will be more efficient than the OLS
ones since redundant information has been removed

• The principal component coefficient estimates will simply be
linear combinations of the original OLS estimates.
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PCA Example: An Application to Interest Rates
• Researchers may wish to include interest rates on a large
number of different assets in order to reflect the variety of
investment opportunities open to investors

• However, market interest rates are likely to be highly
correlated

• One approach would be to use PCA on several related interest
rate series to determine whether they are actually closely
related or not

• Fase (1973) conducted a study of monthly Dutch market
interest rates from January 1962 until December 1970 (108
months)

• The money market instruments investigated were:

– Call money, 3-month Treasury paper, 1-year T-paper, 2-year
T-paper, 3-year T-paper, 5-year T-paper, 3-month loans to
local authorities, 1-year loans to local authorities, Eurodollar
deposits, Netherlands Bank official discount rate.
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PCA Example: The Principal Components

• Prior to analysis, each series was standardised to have zero
mean and unit variance

• The three largest of the ten eigenvalues are given in the
following table

• The first principal component is sufficient to describe the
common variation in these Dutch interest rates

• The 1st component is able to explain over 90% of the
variation for all samples

Monthly data Quarterly data

Jan 62–Dec 70 Jan 62–Jun 66 Jul 66–Dec 70 Jan 62–Dec 70
λ1 9.57 9.31 9.32 9.67
λ2 0.20 0.31 0.40 0.16
λ3 0.09 0.20 0.17 0.07
φ1 95.7% 93.1% 93.2% 96.7%

Source: Fase (1973). Reprinted with the permission of Elsevier.
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PCA Example: The Factor Loadings

• The factor loadings (coefficient estimates) for the first two
ordered components are given in the table below

• The loadings on each factor making up the first principal
component are all positive

• Since each series has been standardised, the coefficients αj1

and αj2 can be interpreted as the correlations between the
interest rate j and the first and second principal components,
respectively

• The factor loadings for each interest rate series on the first
component are all very close to one

• Fase (1973) therefore argues that the first component can be
interpreted simply as an equally weighted combination of all
of the market interest rates.
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PCA Example: The Factor Loadings 2

• The second component, which explains much less of the
variability of the rates, shows a factor loading pattern of
positive coefficients for the Treasury paper series and negative
or almost zero values for the other series

• Fase (1973) argues that this is owing to the characteristics of
the Dutch Treasury instruments that they rarely change hands
and have low transactions costs, and therefore have less
sensitivity to general interest rate movements

• Also, they are not subject to default risks in the same way as,
for example, Eurodollar deposits

• Therefore, the second principal component is broadly
interpreted as relating to default risk and transactions costs.
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PCA Example: The Factor Loadings Presented

j Debt instrument αj1 αj2

1 Call money 0.95 −0.22
2 3-month Treasury paper 0.98 0.12
3 1-year Treasury paper 0.99 0.15
4 2-year Treasury paper 0.99 0.13
5 3-year Treasury paper 0.99 0.11
6 5-year Treasury paper 0.99 0.09
7 Loans to local authorities: 3-month 0.99 −0.08
8 Loans to local authorities: 1-year 0.99 −0.04
9 Eurodollar deposits 0.96 −0.26
10 Netherlands Bank official discount rate 0.96 −0.03

Eigenvalue, λi 9.57 0.20
Proportion of variability explained by 95.7 2.0

eigenvalue i , φi(%)

Source: Fase (1973). Reprinted with the permission of Elsevier.
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Limitations of PCA

• A change in the units of measurement of x will change the
principal components

• It is thus usual to transform all of the variables to have zero
mean and unit variance prior to applying PCA

• The principal components usually have no theoretical
motivation or interpretation whatsoever

• The r principal components retained from the original k are
the ones that explain most of the variation in x, but these
components might not be the most useful as explanations for
y.
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