# CHEM-E4109 MODERN METHODS IN **BIOCATALYSIS**

chapter #1: basic concepts of enzyme catalysis

Jan Deska Bioorganic Chemistry

www.deskalab.com

#### Aim of the Course

FOSTERING THE UNDERSTANDING OF ...

- the basic biosynthetic principles
- ideas &benefits of catalysis regarding efficiency & selectivity
- the molecular mechanistic basis of enzymatic activation
- the relevance of biocatalysis in organic chemistry

material taken from:

- original literature (indicated on the bottom of the slides)
- K. Faber, *Biotransformations in Organic Chemistry*, 6th ed, 2011, Springer

#### Grading of the Course

pass/fail course

## Grading of the Course

pass/fail course

Requirements to pass

- Submission of learning diaries
  - ✓ Weekly inbox on MyCourses
  - brief summary of the sessions
  - ✓ What was of particular relevance/interest
  - Thoughts/comments/concerns...

# Grading of the Course

pass/fail course

Requirements to pass

- Submission of learning diaries
  - Weekly inbox on MyCourses
  - brief summary of the sessions
  - ✓ What was of particular relevance/interest
  - Thoughts/comments/concerns...
- Seminar presentation
  - 15 min (12+3, talk + discussion)
  - Topic: current literature

# **Preliminary Schedule**

- 1.3. Introduction & basic principles
- 4.3. Oxidoreductases I (reduction catalysis)
- 8.3. Oxidoreductases II (oxygenation catalysis)
- 11.3. Transferases (transaminases)
- 15.3. Lyases I (decarboxylases and transketolases)
- 18.3. Lyases II (aldolases)
- 22.3. Hydrolases (lipases, esterases, epoxide hydrolases)
- 25.3. Directed evolution
- 29.3. Muta- and semisynthesis
- 1.4. Enzymes in non-natural reactions

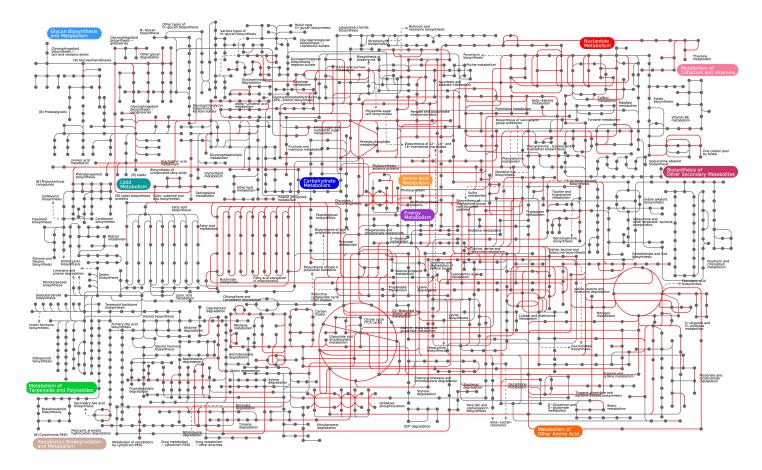
12./13.4. Seminar presentations

# **Preliminary Schedule**

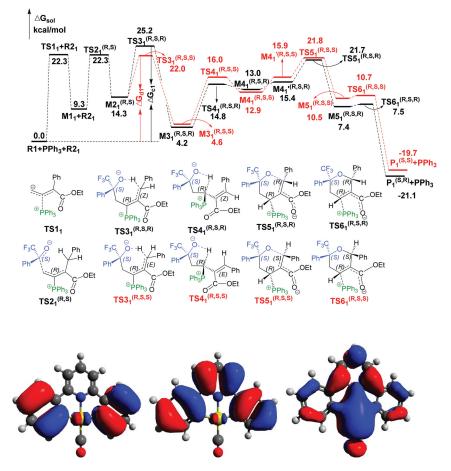
- 1.3. Introduction & basic principles
- 4.3. Oxidoreductases I (reduction catalysis)
- 8.3. Oxidoreductases II (oxygenation catalysis)
- 11.3. Transferases (transaminases)
- 15.3. Lyases I (decarboxylases and transketolases)
- 18.3. Lyases II (aldolases)
- 22.3. Hydrolases (lipases, esterases, epoxide hydrolases)
- 25.3. Directed evolution
- 29.3. Muta- and semisynthesis
- 1.4. Enzymes in non-natural reactions

12./13.4. Seminar presentations

#### <u>Seminar</u>


- you choose one day (12th or 13th)
- you choose a topic (from my list or your own suggestion)
- you prepare & present
  your talk (on that one day, no
  need to attend both days)
- you listen to the other talks& ask good questions

#### Today's Menu


After today's session you will be able to...

- recognize basic protein structures
- explain catalysis on a general level
- ...and how different kinds of selectivity can be achieved
- name typical vitamins cofactors and their general role in biocatalytic transformations

#### **Biochemistry from a Chemist's perspective**



#### Chemical catalysis from a Biologist's perspective





#### What is Biocatalysis?

catalysis in general

- acceleration of a certain reaction by lowering its activation energy
- more accurate: in many cases catalysis makes reactions happen that are not happening at all under uncatalyzed conditions
- probably the crucial element for any industrial (chemical) development

#### What is Biocatalysis?

catalysis in general

- acceleration of a certain reaction by lowering its activation energy
- more accurate: in many cases catalysis makes reactions happen that are not happening at all under uncatalyzed conditions
- probably the crucial element for any industrial (chemical) development

biocatalysis

- proteins evolved by Nature to conduct a certain transformation are used to facilitate chemical processes
- these enzymes can be obtained from various natural sources, mainly of bacterial, & fungal origin
- size of the enzymes can range from a few to very very many amino acids
  4-oxalocrotonate tautomerase 62 amino acids vs fatty acid synthases over 2500 aa

#### What is Biocatalysis?

catalysis in general

- acceleration of a certain reaction by lowering its activation energy
- more accurate: in many cases catalysis makes reactions happen that are not happening at all under uncatalyzed conditions
- probably the crucial element for any industrial (chemical) development

biocatalysis

- proteins evolved by Nature to conduct a certain transformation are used to facilitate chemical processes
- these enzymes can be obtained from various natural sources, mainly of bacterial, & fungal origin
- size of the enzymes can range from a few to very very many amino acids
  4-oxalocrotonate tautomerase 62 amino acids vs fatty acid synthases over 2500 aa

major advantages over chemical catalysis

- very high selectivities (chemo-, regio, and stereoselectivity)
- particularly mild conditions (important pillar of the Green Chemistry idea)

#### **Reaction Systems**

isolated enzymes



#### pros

- highly controlled conditions
- simple reaction equipments
- high catalyst concentrations
- nonaqueous environment possible

#### cons

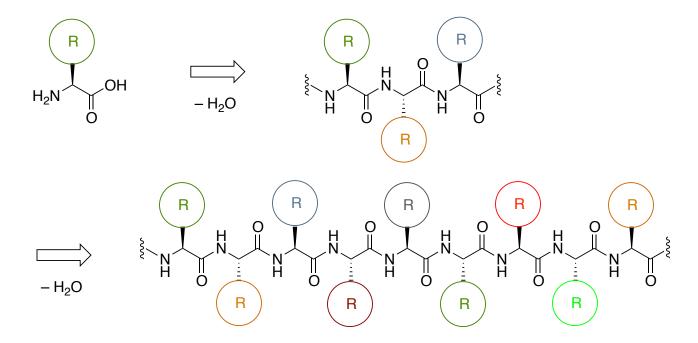
- protein stability
- issues related to cofactors/cosubstrates

#### whole cell biocatalysis



#### pros

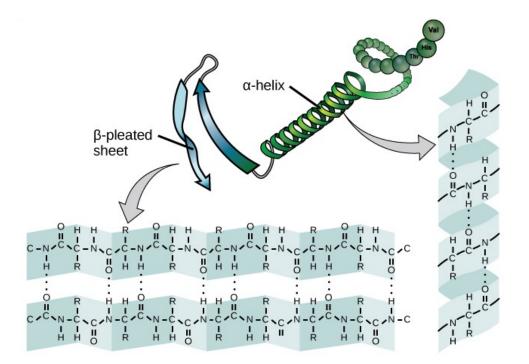
- optimal conditions
- low enzyme degradation
- cofactor recyclic obsolete
- metabolic engineering possible


#### cons

- massiv amount of organic biomass as waste
- degradative side reactions

# Structure & Catalysis

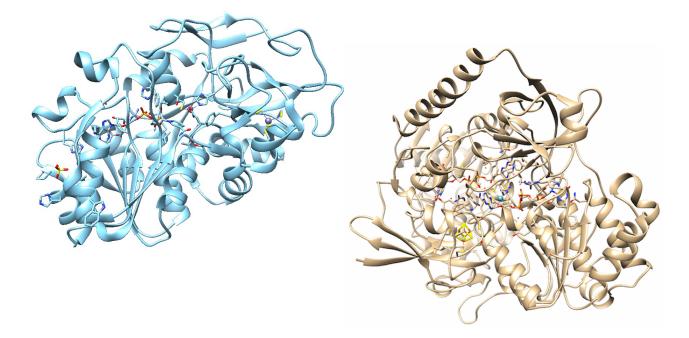
#### **Structure of Proteins**


primary, secondary and tertiary structures

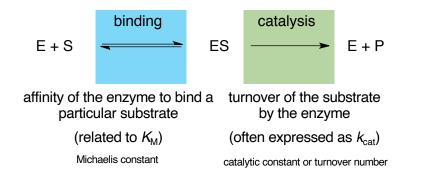


- primary structure depicts a virtual linear alignment
- various R's can provide various chemical functions (acidic, basic, aromatic,...)

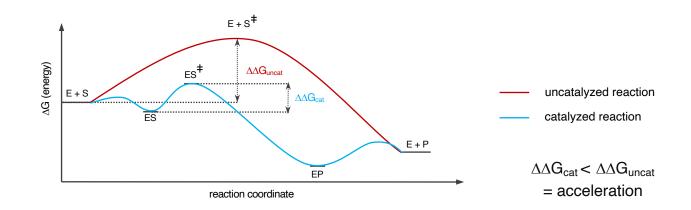
#### **Structure of Proteins**

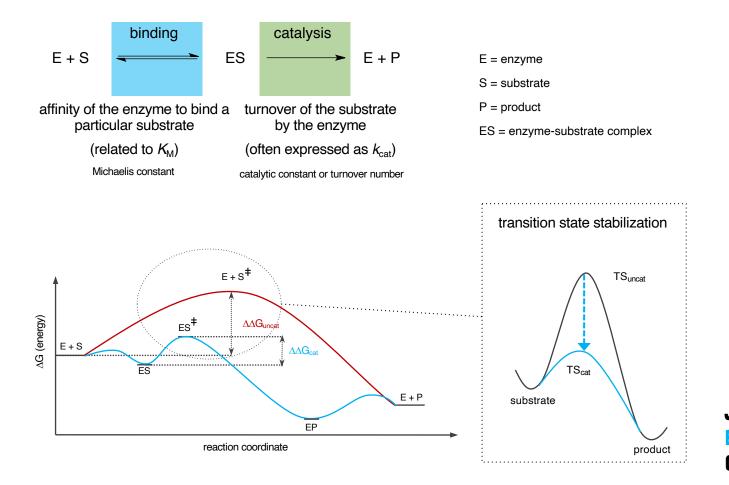

primary, secondary and tertiary structures

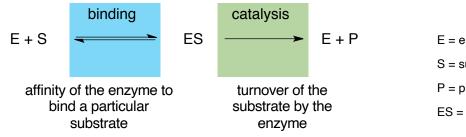



secondary structure describes 3D-objects formed through H-bonding interactions

#### **Structure of Proteins**


primary, secondary and tertiary structures

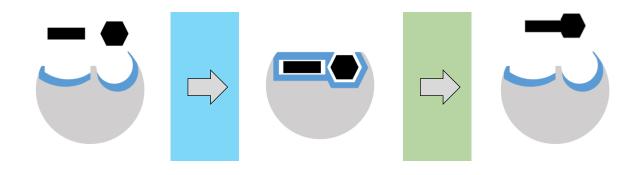


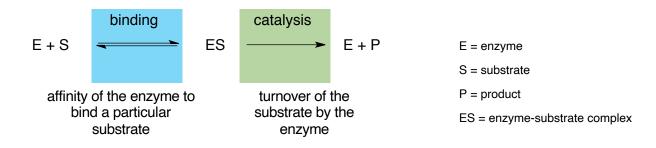


- tertiary structure shows arrangement of subunits to form a complex bulk structure
- well-defined 3D structure provides active site to bind and transform the substrate



- E = enzyme S = substrate
- P = product
- ES = enzyme-substrate complex

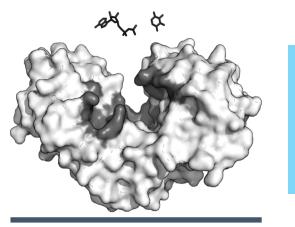


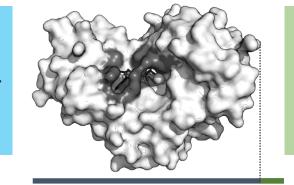



E = enzyme S = substrate P = product ES = enzyme-substrate complex

lock-key model (H. E. Fischer, 1894)


 comprehensible model, explains selectivity of enzymes but fails to explain transition state stabilization






induced fit model (D. E. Koshland, 1958)

flexibility of the protein allows to adapt and reshape during protein-substrate binding (like a hand fits into a glove)



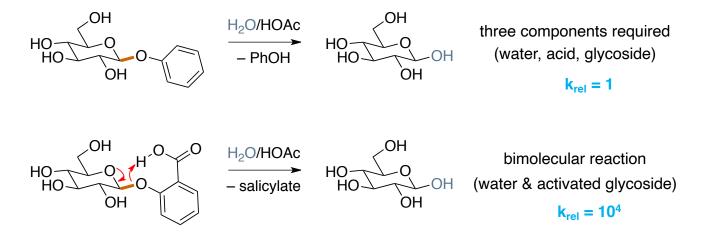


squeezed by 9% upon substrate binding

hexokinase + ATP + xylose

#### Enzyme-substrate complexes: pseudo-intramolecularity

intramolecular reactions faster than their intermolecular counterparts

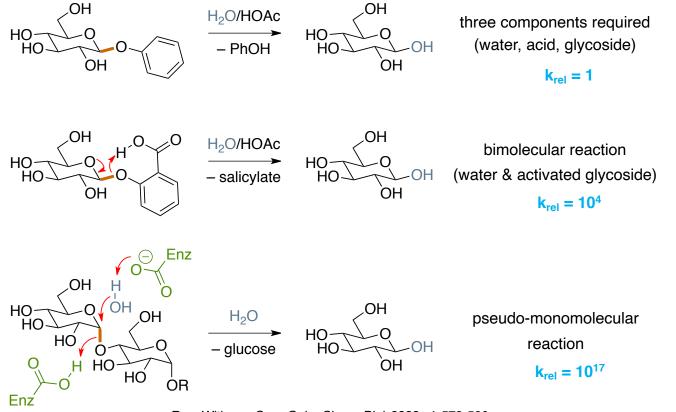



Jan Deska Bioorganic Chemistry

Rye, Withers, Curr. Opin. Chem. Biol. 2000, 4, 573-580.

#### Enzyme-substrate complexes: pseudo-intramolecularity

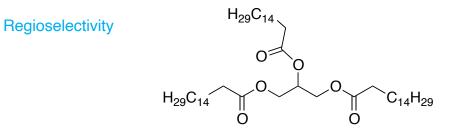
intramolecular reactions faster than their intermolecular counterparts




Jan Deska Bioorganic Chemistry

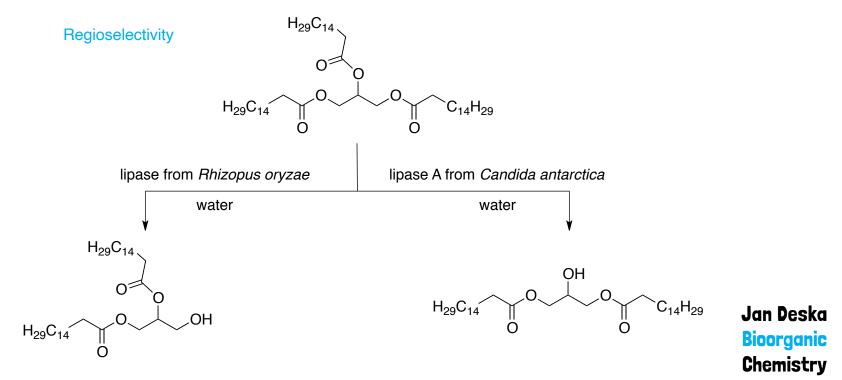
Rye, Withers, Curr. Opin. Chem. Biol. 2000, 4, 573-580.

#### Enzyme-substrate complexes: pseudo-intramolecularity


intramolecular reactions faster than their intermolecular counterparts



Rye, Withers, Curr. Opin. Chem. Biol. 2000, 4, 573-580.

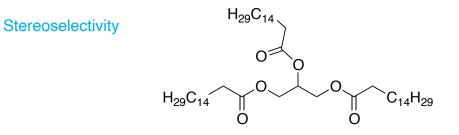

in addition to rate enhancement, flexible binding of a three-dimensional amino acid based reaction vessel results in **selectivity** 

i.e. in fat degradation



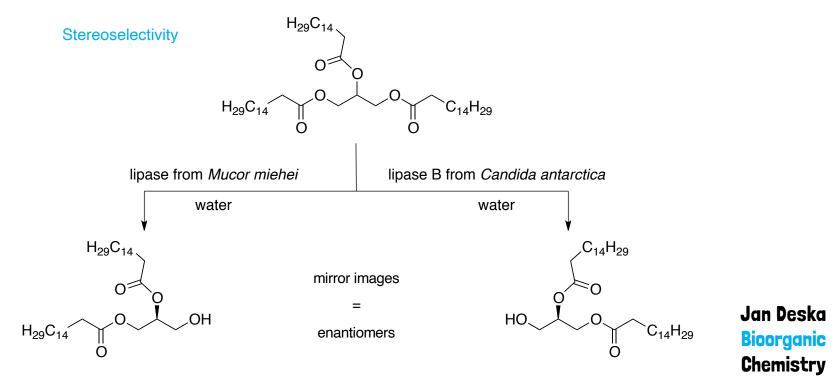
in addition to rate enhancement, flexible binding of a three-dimensional amino acid based reaction vessel results in **selectivity** 

i.e. in fat degradation

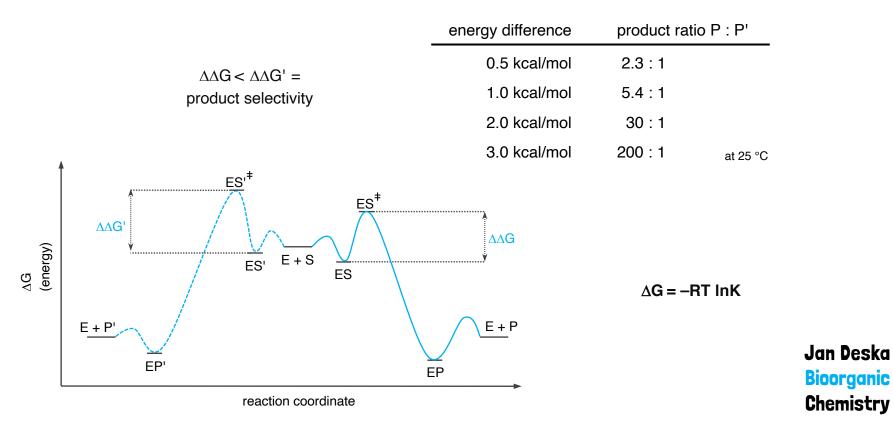



in addition to rate enhancement, flexible binding of a three-dimensional amino acid based reaction vessel results in **selectivity** 




in addition to rate enhancement, flexible binding of a three-dimensional amino acid based reaction vessel results in **selectivity** 

i.e. in fat degradation

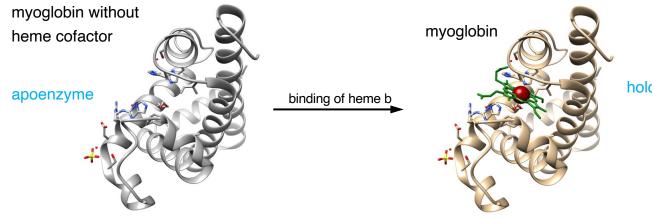



in addition to rate enhancement, flexible binding of a three-dimensional amino acid based reaction vessel results in **selectivity** 

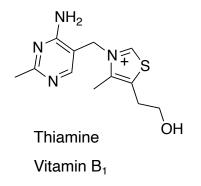
i.e. in fat degradation



in addition to rate enhancement, flexible binding of a three-dimensional amino acid-based reaction vessel results in **selectivity** 




transition state stabilization can be achieved by many factors such as


- lipophilic attractive forces
- acid/base chemistry
- electrostatic interactions
- covalent bonding

multiple weak interactions sum up to a strong stabilizing effect

often, catalytically active enzymes and transport proteins contain – in addition to the polyamino acid bulk structure – small organic molecules or metal ions to act as **cofactor** 

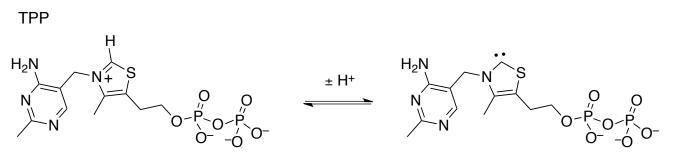


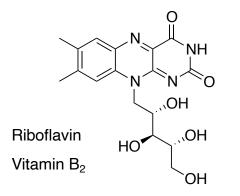
holoenzyme



#### function

 source of nucleophilic *N*-heterocyclic carbenes


mode of action


carbene catalysis

found in

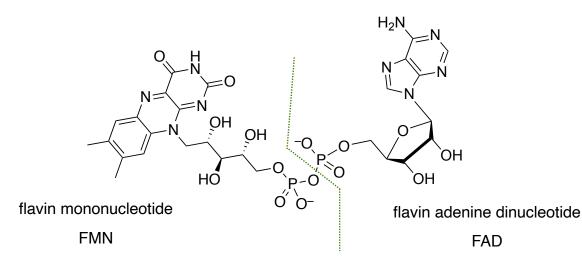
decarboxylases, aldehyde lyases

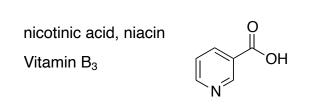
Thiamine pyrophosphate





function


redox cofactor


mode of action

hydride transfer or hydroperoxide formation

found in

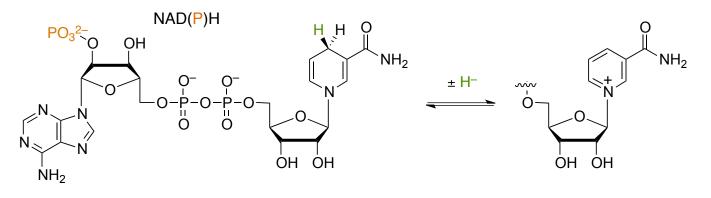
reductases, monooxygenases, oxidases,...

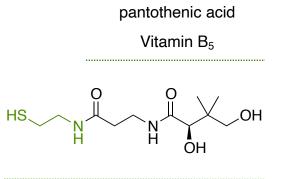




### function

redox cofactor


mode of action


hydride transfer

found in

reductases, monooxygenases,...

nicotinamide adenine dinucleotide (phosphate)





pantetheine (part of coenzyme A)

function

conjugation and activation of carboxylates

mode of action

thioester formation

found in

• fatty acid synthases, polyketide synthases

pyridoxal 5'-phosphate

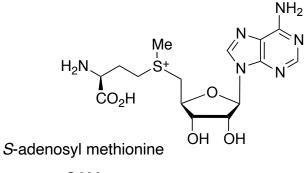
Vitamin B<sub>6</sub>

PLP or P5P

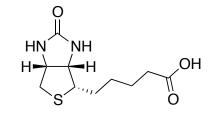
OH

function

"ammonia" shuttle, CH-acidification


mode of action

imine formation


found in

Jan Deska Bioorganic Chemistry

decarboxylases, transaminases







biotin

Vitamin H

### function

methyl transfer

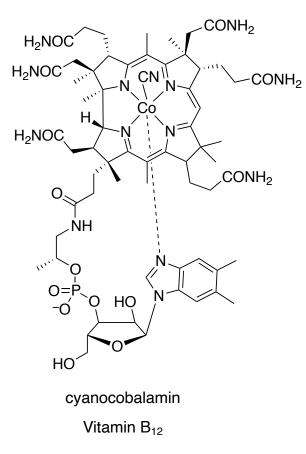
mode of action

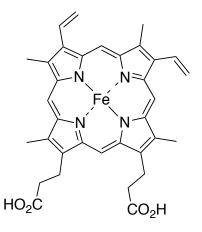
electrophilic or radical methylation

found in

methyltransferases

function


CO<sub>2</sub> activation


mode of action

carboxamide formation

found in

carboxylases





heme B

### function

oxygenations, radical initiation

mode of action

• e.g. Fe=O formation

found in

monooxygenases, peroxidases

## Relevance

# Classifications

all enzymes are systematically arranged in **6 classes** and classified according to their **enzyme commission number** (EC number)

| EC 1.a.b.c | Oxidoreductases | oxidation & reduction reactions<br>e.g. dehydrogenases, oxidases, oxygenases                                                                   |
|------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| EC 2.a.b.c | Transferases    | transfer of functional groups from one substrate to<br>another (methyl-, acyl-, amino-,)<br>e.g. kinases, transaminases, glycosyl transferases |
| EC 3.a.b.c | Hydrolases      | hydrolytic cleavage (but also reverse reaction)<br>e.g. lipases, proteases, amylases                                                           |
| EC 4.a.b.c | Lyases          | non-hydrolytic cleavage or bond formation (C-C or C-X)<br>e.g. decarboxylases, aldolases                                                       |
| EC 5.a.b.c | Isomerases      | intramolecular rearrangement reactions<br>(isomerizations, racemizations, epimerizations)<br>e.g. isomerases, mutases                          |
| EC 6.a.b.c | Ligases         | synthesis of C-C or C-X bonds with simultaneous<br>breakdown of ATP<br>e.g. synthetases, DNA-ligases                                           |

# Classifications

all enzymes are systematically arranged in **6 classes** and classified according to their **enzyme commission number** (EC number)

| EC 1.a.b.c | Oxidoreductases | oxidation & reduction reactions                                  |
|------------|-----------------|------------------------------------------------------------------|
|            |                 | e.g. dehydrogenases, oxidases, oxygenases                        |
| EC 2.a.b.c | Transferases    | transfer of functional groups from one substrate to              |
|            |                 | another (methyl-, acyl-, amino-,)                                |
|            |                 | e.g. kinases, <mark>transaminases</mark> , glycosyl transferases |
| EC 3.a.b.c | Hydrolases      | hydrolytic cleavage (but also reverse reaction)                  |
|            |                 | e.g. <mark>lipases, proteases</mark> , amylases                  |
| EC 4.a.b.c | Lyases          | non-hydrolytic cleavage or bond formation (C-C or C-X)           |
|            |                 | e.g. decarboxylases, aldolases                                   |
| EC 5.a.b.c | Isomerases      | intramolecular rearrangement reactions                           |
|            |                 | (isomerizations, racemizations, epimerizations)                  |
|            |                 | e.g. isomerases, mutases                                         |
| EC 6.a.b.c | Ligases         | synthesis of C-C or C-X bonds with simultaneous                  |
|            |                 | breakdown of ATP                                                 |
|            |                 | e.g. synthetases, DNA-ligases                                    |

# Classifications

all enzymes are systematically arranged in 6 classes and classified according to their **enzyme commission number** (EC number)

| EC 1.a.b.c | Oxidoreductases | oxidation & reduction reactions                                                                                                             |                                                   |
|------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|            |                 | e.g. dehydrogenases, oxidases, oxygenases                                                                                                   |                                                   |
| EC 2.a.b.c | Transferases    | transfer of functional groups from one substrate to another (methyl-, acyl-, amino-,)<br>e.g. kinases, transaminases, glycosyl transferases | recently added:<br>EC 7.a.b.c<br>Translocases     |
| EC 3.a.b.c | Hydrolases      | hydrolytic cleavage (but also reverse reaction)<br>e.g. <mark>lipases, proteases</mark> , amylases                                          |                                                   |
| EC 4.a.b.c | Lyases          | non-hydrolytic cleavage or bond formation (C-C or C-X)<br>e.g. decarboxylases, aldolases                                                    |                                                   |
| EC 5.a.b.c | Isomerases      | intramolecular rearrangement reactions<br>(isomerizations, racemizations, epimerizations)<br>e.g. isomerases, mutases                       |                                                   |
| EC 6.a.b.c | Ligases         | synthesis of C-C or C-X bonds with simultaneous<br>breakdown of ATP<br>e.g. synthetases, DNA-ligases                                        | Jan Deska<br><mark>Bioorganic</mark><br>Chemistry |

# **Biocatalysis on an Industrial Scale**

t/a

| >1.000.000 | high-fructose corn sirup    | glucose isomerase  |
|------------|-----------------------------|--------------------|
| > 100.000  | lactose-free dairy products | lactase            |
| > 10.000   | acrylamide                  | nitrilase          |
| > 1.000    | nicotinamide                | nitrilase          |
|            | D-pantothenic acid          | aldonolactonase    |
|            | 6-aminopenicillanic acid    | penicillin amidase |
|            | aspartame                   | thermolysin        |
|            | L-aspartate                 | aspartase          |
|            | D-phenylglycine             | hydantoinase       |
| > 100      | ampicillin                  | penicillin amidase |
|            | L-methionine, L-valine      | aminoacylase       |
|            | L-DOPA                      | beta-tyrosinase    |
|            | S-methoxyisopropylamine     | lipase             |
|            |                             |                    |

additionally widespread in brewing, laundry additives, paper & pulp, biofuels,...

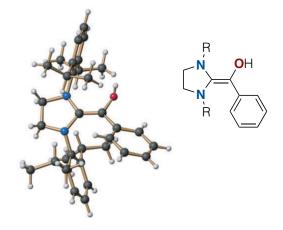
# **Nature as Inspiration**



**Ronald Breslow** 

"In Biomimetic Chemistry, we take what we have observed in Nature and apply its principles to the invention of novel synthetic compounds that can achieve the same goals... As an analogy, we did not simply make larger versions of birds when we invented airplanes, but we did take the idea of the wing from Nature, and then used the aerodynamic principles in our own way to build a jumbo jet."

Synthetic compounds that mimic biological materials' functions or properties:


- bioactivity (medicinal chemistry)
- light-activated (photovoltaics & photocatalysis)
- natural binding modes (organocatalysis)

# **Nature as Inspiration**

- biomimetic catalysis
- = imitation of the catalytic principles of enzyme catalysts



thiamine-dependent decarboxylases/transketolases



Breslow intermediate as motif in a<sup>1</sup>-d<sup>1</sup> umpolung reactions



a) Breslow, *J. Am. Chem. Soc.* **1957**, *79*, 1762-1763; b) Breslow, *J. Am. Chem. Soc.* **1958**, *80*, 3719-3726; c) Berkessel, Yatham, Elfert, Neudörfl, *Angew. Chem. Int. Ed.* **2013**, *52*, 11158-11162.

Wishes? Suggestions? Questions?