Lecture 2

Lecturer: G. S. Paraoanu
Department of Applied Physics, School of Science, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland

I. INTRODUCTION

The electromagnetic spectrum as seen by a quantum engineer:

FIG. 1.

- Why don't lumped circuit models work at high frequencies?

The speed of light c is large but finite.

FIG. 2.

The delay time $t_{d}=\frac{\ell}{c}$ becomes non-negligible if $\lambda \sim \ell \sim \mathrm{cm}$, as frequency $\sim \mathrm{GHz}$.

II. SOME BASIC CONCEPTS - ELECTRICAL CIRCUITS

- Electric current

$$
I=\frac{d Q}{d t}, \quad Q=\int_{0}^{t} I d t
$$

By convention, the direction of current is the direction of the motion of positive charges.

- Work done by an electric field
$W_{b a}=q \int_{a}^{b} \vec{E} \cdot d \vec{\ell}$

- Voltage
$V=V_{b a}=V_{b}-V_{a}=-\frac{d W_{b a}}{d q}=-\int_{a}^{b} \vec{E} \cdot d \vec{\ell}$

$W_{b a}=$ work done to transport the charge q against the field.
$W=-W_{b a}=$ work done by the field.
e.g. Capacitor

- Magnetic flux

Node flux: $\phi(t)=\int_{-\infty}^{t} d \tau V(\tau), \quad \therefore V(t)=\frac{d}{d t} \phi(t)$.

- Power
$W(t)=\int_{0}^{t} P(\tau) d \tau$
$P(t)=\frac{d W(t)}{d t}=\frac{d W(t)}{d q(t)} \cdot \frac{d q(t)}{d t}=V(t) \cdot I(t)$
Therefore, $W(t)=\int_{0}^{t} V(\tau) \cdot I(\tau) d \tau$.
- Phasors

Useful concept if:

- The circuit is linear
- all independent sources are sinusoidal
- only steady-state response is desired.
$X(t)=A \cos (\omega t+\phi)=\operatorname{Re}\left(A e^{i \phi} e^{i \omega t}\right)$
$X=A e^{i \phi} \equiv$ phasor $=$ transformation of a sine waveform from time-domain to frequency domain.

Why is it useful? Simple rules:

variable	phasor
$X(t)$	$A e^{i \phi}$
$\frac{d X(t)}{d t}$	$i \omega \cdot A e^{i \phi}$
$\int d t X(t)$	$\frac{A e^{i \phi}}{i \omega}$

- Impedance and admittance
$Z=V / I$ with V and I phasors.

$$
Z=R+i X\left\{\begin{array}{l}
Z=\text { impedance } \tag{1}\\
R=\text { resistance } \quad \text { units: } \Omega(\mathrm{Ohm}) \\
X=\text { reactance }
\end{array}\right.
$$

$$
Y=\frac{1}{Z}=G+i B\left\{\begin{array}{l}
Y=\text { admittance } \tag{2}\\
G=\text { conductance } \quad \text { units: } S \text { (Siemens) } \\
B=\text { susceptance }
\end{array}\right.
$$

- AC power and decibels

Suppose $V(t)=V_{0} \cos \left(\omega t+\phi_{V}\right)=\operatorname{Re}\left[V_{0} e^{i \phi_{V}} e^{i \omega t}\right] \quad$ phasor: $V_{0} e^{i} \phi_{V} \equiv V$
$I(t)=I_{0} \cos \left(\omega t+\phi_{I}\right)=\operatorname{Re}\left[I_{0} e^{i \phi I} e^{i \omega t}\right] \quad$ phasor: $I_{0} e^{i \phi_{I}} \equiv I$.
Instantaneous power: $P(t)=V(t) \cdot I(t)=\frac{1}{2} I_{0} V_{0} \cos \left(\phi_{V}-\phi I\right)+\frac{1}{2} I_{0} V_{0} \cos \left(2 \omega t+\phi_{V}+\phi_{I}\right)$
Average power: $\bar{P}=\frac{1}{T} \int_{0}^{T} P(t) d t=\frac{1}{2} I_{0} V_{0} \cos \left(\phi_{V}-\phi_{I}\right)$
$\bar{P}=\frac{1}{2} \operatorname{Re}\left[V \cdot I^{*}\right]$
Root mean square of a periodic signal:
$I(t)=I_{0} \cos \omega t \longrightarrow I_{r m s}^{2} \equiv \frac{1}{T} \int_{0}^{T} I^{2}(t) d t=\frac{I_{0}^{2}}{2}$, where we have used $\cos ^{2} \omega t=\frac{1+\cos 2 \omega t}{2}$.

Therefore,

$$
\begin{equation*}
I_{r m s}=\frac{I_{0}}{\sqrt{2}} . \tag{3}
\end{equation*}
$$

The decibel:
Power in decibels: $N(\mathrm{~dB})=10 \log _{10} \frac{P}{P_{\text {ref }}}$, where $P=$ power and $P_{r e f}=$ a reference power, usually 1 mW .
If $P_{\text {ref }}=1 \mathrm{~mW}$, then $N(\mathrm{dBm})=10 \log _{10} \frac{P}{1 \mathrm{~mW}}$. Note that the units are " dBm ".
Since $P \propto V^{2}$, we have $20 \log _{10} \frac{V}{V_{\text {ref }}}$ (in dBV), as another way to express this.

Examples:
30 dB is an increase in power by 1000
20 dB is an increase in power by 100
10 dB is an increase in power by 10
3 dB is an increase in power by 2
0 dB is an increase in power by 1
-3 dB is a decrease in power by 2
-10 dB is a decrease in power by 10
... etc.

III. CIRCUIT ELEMENTS

Note: An rf-circuit can be constructed from discrete (lumped) elements if the size of each component \ll wavelength of the rf field.

- Resistor

Typically a film of conductive material evaporated on a chip.
$V \equiv V_{a}-V_{b}=-\int_{b}^{a} \vec{E} \cdot d \vec{\ell}=\int_{a}^{b} \frac{\overrightarrow{\mathcal{J}}}{\sigma} d \vec{\ell}$, where we have used $\vec{E}=-\vec{\nabla} V$ and $\overrightarrow{\mathcal{J}}=\vec{\sigma} \cdot \vec{E}$ (Ohm's law), where $\vec{\sigma}=$ conductivity.
If the frequency is not too high, then $\overrightarrow{\mathcal{J}}$ is uniform over the cross-section S of the resistor, i.e. $\overrightarrow{\mathcal{J}}=\vec{I} / S$.

Therefore, $V=I \int_{a}^{b} \frac{1}{\sigma S} d \ell=I R$, where $R=\frac{1}{\sigma S} \int_{a}^{b} d \ell, \quad \int_{a}^{b} d \ell=\ell=$ length of device. $R=\frac{1}{\sigma S} \int_{a}^{b} d \ell \Longrightarrow R=\rho \frac{\ell}{S}$, where $\rho=\frac{1}{\sigma}=$ resistivity,
$\& \underline{V}=I R$.
$G=\frac{1}{R}=$ conductance, where $R=$ resistance, $\& Z(\omega)=R$ - real and frequencyindependent.

- Instantaneous dissipated power:
$P(t)=V(t) \cdot I(t)=R \cdot I^{2}(t)=G \cdot V^{2}(t)$.
- Average dissipated power (for harmonic excitations: $V(t)=V_{0} \cos \omega t$):
$\bar{P}=\frac{1}{2} R\left|I_{0}\right|^{2}=\frac{1}{2} G\left|V_{0}\right|^{2}$.
- Inductor
$V=V_{a b}=V_{a}-V_{b}=-\int_{b}^{a} \vec{E} \cdot d \vec{\ell}=\iint \frac{d \vec{B}(t)}{d t} d \vec{S}=L \frac{d I}{d t}$,
where we have used the Maxwell-Faraday equation $\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}+$ Stoke's theorem.

Here we assumed \vec{B} is uniform over the surface area S.
$B=\frac{\mu_{0} \mu_{r} N I}{\ell} \rightarrow$ and there are N surfaces of area S, where $N=$ no. of turns of the solenoid, $\mu_{0}=$ free-space magnetic permeability, $\mu_{r}=$ relative permeability.

$$
\begin{equation*}
L=\frac{\mu_{0} \mu_{r} N^{2} S}{\ell} \tag{4}
\end{equation*}
$$

so

$$
\begin{equation*}
V=L \frac{d I}{d t} \tag{5}
\end{equation*}
$$

therefore

$$
\begin{equation*}
Z_{L}(\omega)=i L \omega ; \tag{6}
\end{equation*}
$$

because $Z_{L}(\omega)=\frac{V(\omega)}{I(\omega)}$.

- Instantaneous energy stored:

$$
\begin{equation*}
W_{L}(t)=\frac{1}{2} L I^{2}(t) . \tag{7}
\end{equation*}
$$

- Average energy stored in AC-harmonic fields:

$$
\begin{equation*}
\overline{W_{L}}=\frac{1}{4} L I_{0}^{2} . \tag{8}
\end{equation*}
$$

Note: The flux variable $\phi=\iint \vec{B} \cdot d \vec{S}$ can be used to define a flux at a mode with potential V,

$$
\begin{equation*}
\int_{-\infty}^{t} V(\tau) d \tau=\phi(t) \tag{9}
\end{equation*}
$$

since $V(t)=\frac{d \phi(t)}{d t}$.

- Capacitor

$$
\begin{equation*}
V=-\int_{b}^{a} \vec{E} \cdot d \vec{\ell}=\frac{Q}{C}, \tag{10}
\end{equation*}
$$

where $C=$ capacitance and $C=\frac{\epsilon_{0} \epsilon_{r} S}{\ell}$.
$\epsilon_{0}=$ free-space electric permittivity and $\epsilon_{r}=$ relative permittivity.

$\underline{\text { Proof: }} E=\frac{Q}{S \epsilon_{0} \epsilon_{r}}=\frac{V}{\ell} \Longrightarrow V=\frac{Q}{\frac{\epsilon_{0} e_{r} S}{\ell}}$.

Also, $I(t)=\frac{d Q(t)}{d t}$ implies

$$
\begin{equation*}
I(t)=C \cdot \frac{d V(t)}{d t} \tag{11}
\end{equation*}
$$

so

$$
\begin{equation*}
I=C \frac{d V}{d t} \tag{12}
\end{equation*}
$$

therefore

$$
\begin{equation*}
Z_{C}(\omega)=\frac{1}{i \omega C} \tag{13}
\end{equation*}
$$

Again from $Z_{C}(\omega)=\frac{V(\omega)}{I(\omega)}$ and using the properties of phasors.

- Instantaneous energy stored:

$$
\begin{equation*}
W_{C}(t)=\frac{1}{2} C V^{2}(t) . \tag{14}
\end{equation*}
$$

- Average energy stored in AC-harmonic fields:

$$
\begin{equation*}
\overline{W_{C}}=\frac{1}{4} C V_{0}^{2} . \tag{15}
\end{equation*}
$$

IV. MORE COMPLEX NETWORKS OF INDUCTORS, CAPACITORS, RESISTORS ...

Kirchoff's voltage and current laws:

- Kirchoff's voltage law

For any closed loop of a circuit, the algebraic sum of voltages of the individual branches is zero, i.e.,

$$
\begin{equation*}
\sum V_{k}=0 \tag{16}
\end{equation*}
$$

How it works:

or

$$
\begin{equation*}
V_{s}-R I(t)-L \frac{d I(t)}{d t}-\frac{1}{C} \int_{-\infty}^{t} d \tau I(\tau)=0 \tag{18}
\end{equation*}
$$

- Kirchoff's current law

The algebraic sum of all branch currents confluent in the same node is zero.

$$
\begin{equation*}
\sum I_{k}=0 \tag{19}
\end{equation*}
$$

How it works:

$$
\begin{equation*}
I_{1}+I_{2}+I_{3}=0 \tag{20}
\end{equation*}
$$

i.e., no charge accumulates in the node!

- Example: A series-shunt circuit

Simple equations for phasors: $V_{\text {out }}=Z_{p} I_{i n} \quad V_{\text {in }}=\left(R_{s}+Z_{p}\right) I_{\text {in }}$ $\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{Z_{p}}{R_{s}+Z_{p}}=$ gain or attenuation
It is convenient to express this in $d B:\left|\frac{V_{\text {out }}}{V_{\text {in }}}\right|(d B)=20 \log _{10}\left|\frac{V_{\text {out }}}{V_{\text {in }}}\right|$.
A few interesting cases:
a) Z_{p} is a capacitor

$Z_{p}=\frac{1}{i \omega C} \Longrightarrow \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{1+i \omega C R_{s}}$.
$\left|\frac{V_{\text {out }}}{V_{\text {in }}}\right|=\frac{1}{\sqrt{1+\omega^{2} C^{2} R_{s}^{2}}} \Longrightarrow\left|\frac{V_{\text {out }}}{V_{\text {in }}}\right|(\mathrm{dB})=-10 \log _{10}\left[1+\omega^{2} C^{2} R_{s}^{2}\right]$.

Works like a low-pass filter with cutoff $\sim 1 / R_{s} C$.
b) Z_{p} is an inductor
$Z_{p}=i \omega L \quad \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{1-\frac{i R_{s}}{\omega L}}$.
$\left|\frac{V_{\text {out }}}{V_{\text {in }}}\right|=\frac{1}{\sqrt{1+\left(\frac{R_{s}}{\omega L}\right)^{2}}} \Longrightarrow\left|\frac{V_{\text {out }}}{V_{\text {in }}}\right|(\mathrm{dB})=-10 \log _{10}\left[1+\left(\frac{R_{s}}{\omega L}\right)^{2}\right]$.

V. RESONATORS BASED ON LUMPED CIRCUIT ELEMENTS

RLC components can be used to realize resonators.
a) $V_{s}=Z(\omega) \cdot I(\omega)$
$Z(\omega)=R+i L \omega+\frac{1}{i C \omega}=R+\frac{i L}{\omega}\left(\omega^{2}-\omega_{0}^{2}\right)$,
where $\omega_{0}=\frac{1}{\sqrt{L C}}$, and at resonance $\omega=\omega_{0}$.
$Z\left(\omega_{0} \equiv R \Longrightarrow\right.$ The impedance is real (resistive). The reactive part is zero, meaning that the inductor and capacitor reactances cancel each other. Due to this, the energy oscillates between the capacitor and the inductor and the source has to provide only

what is lost through R.

Indeed

$$
\left\{\begin{array}{l}
\overline{W_{L}}=\frac{1}{4} L|I|^{2} \tag{21}\\
\overline{W_{C}}=\frac{1}{4} C\left|V_{C}\right|^{2}=\frac{1}{4} \frac{|I|^{2}}{C \omega^{2}}, \text { but }\left|V_{C}\right|=\frac{|I|}{C \omega},
\end{array}\right.
$$

so at resonance: $\omega=\omega_{0} \Longrightarrow \overline{W_{L}}=\overline{W_{C}}$.

- Quality Factor:

Suppose we put some energy $W(0)$ in the resonator. Due to the resistance R, this will be dissipated.
$W(t)=W(0) e^{-\omega_{0} t / Q}$
$Q=$ quality factor - it measures how well the resonator stores energy.
Now $-\frac{d W}{d t}=\frac{\omega_{0} W}{Q}$.
$\bar{P}=$ average loss in a period, $\bar{P}=-\frac{1}{T} \int_{0}^{T} \frac{d W}{d t} d t$, where $\frac{2 \pi}{\omega_{0}}=T=$ period, or $\bar{P}=\frac{\omega_{0}}{Q} \frac{1}{T} \int_{0}^{T} W(t) d t \equiv W_{T}$, Total energy averaged over a period.

Since $\frac{2 \pi}{\omega_{0}}=T=$ period, $Q \equiv \frac{\omega_{0} \bar{W}}{\bar{P}}$.
But

$$
\left\{\begin{array}{l}
\bar{W}=\overline{W_{C}}+\overline{W_{L}}=2 \cdot \overline{W_{L}}=\frac{L|I|^{2}}{2} \tag{22}\\
\bar{P}=R \cdot \frac{|I|^{2}}{2}
\end{array}\right.
$$

$$
\therefore Q=\frac{\omega_{0} L}{R}=\frac{1}{R} \sqrt{\frac{L}{C}} .
$$

- Loading of a Resonant Circuit:

In this case, $Q_{L}=\left(\frac{1}{R}+\frac{1}{R_{L}} \sqrt{\frac{L}{C}}\right)=$ loaded Q.
or $Q_{L}^{-1}=Q_{e x t}^{-1}+Q^{-1}$, simply because now $Q_{L}^{-1}=\frac{\Phi}{\omega_{0} \bar{W}}=\frac{\left(R+R_{L}\right) \frac{|I|^{2}}{2}}{\frac{\left.\omega_{0} L I I\right|^{2}}{2}}=\frac{R}{\omega_{0} L}+\frac{R_{L}}{\omega_{0} L}$.
Also, $Q_{\text {ext }}=\frac{1}{R_{L}} \sqrt{\frac{L}{C}}=$ external $Q \& Q=\frac{1}{R} \sqrt{\frac{L}{C}}=$ internal Q.

$$
\begin{equation*}
Z(\omega)=\frac{1}{G+i \frac{c}{\omega}\left(\omega^{2}-\omega_{0}^{2}\right)}=\frac{1}{Y(\omega)} \tag{23}
\end{equation*}
$$

where $G=1 / R$.
A similar idea: $\bar{W}=\overline{W_{C}}+\overline{W_{L}}=\frac{1}{4}|V|^{2} \cdot C+\frac{1}{4} L\left|I_{L}\right|^{2}$, where $I_{L}=\frac{V}{i \omega L}$.
Furthermore, at resonance $\left(\omega=\omega_{0}=\frac{1}{L C}\right)$, we have $\bar{W}=\frac{1}{2} C V^{2}$.
$P_{T}=\frac{1}{2} G|V|^{2} \Longrightarrow Q=\frac{\omega_{0} \bar{W}}{\bar{P}}=\frac{\omega_{0} C}{G}=\omega_{0} R C=\frac{R}{\omega_{0} L}=R \sqrt{\frac{C}{L}}$.

b) Loading of the Parallel RLC Resonator:

$$
\begin{array}{r}
Q_{L}=\left(\frac{1}{R}+\frac{1}{R_{L}}\right) \sqrt{\frac{C}{L}}=\text { loaded } \mathrm{Q} \\
Q_{\mathrm{ext}}=\frac{1}{R_{L}} \sqrt{\frac{C}{L}}=\text { external } \mathrm{Q} \\
Q=\frac{1}{R} \sqrt{\frac{C}{L}}=\text { internal } \mathrm{Q} \tag{26}
\end{array}
$$

or $Q_{L}^{-1}=Q_{\text {ext }}^{-1}+Q^{-1} \rightarrow$ This relation is the same as for the series RLC resonator.
[1]

