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I. INTRODUCTION

The electromagnetic spectrum as seen by a quantum engineer:

FIG. 1.

• Why don’t lumped circuit models work at high frequencies?

The speed of light c is large but finite.
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FIG. 2.

The delay time td = `
c

becomes non-negligible if λ ∼ ` ∼ cm, as frequency ∼ GHz.

II. SOME BASIC CONCEPTS – ELECTRICAL CIRCUITS

• Electric current

I = dQ
dt

, Q =
´ t

0
Idt
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Q

By convention, the direction of current is the direction of the motion of positive charges.

• Work done by an electric field

Wba = q
´ b
a
~E · d~̀

a

b

• Voltage

V = Vba = Vb − Va = −dWba

dq
= −
´ b
a
~E · d~̀

+

-

a

b

Wba = work done to transport the charge q against the field.

W = −Wba = work done by the field.

e.g. Capacitor

_
+

+ +

_ _

Plate with higher electric potential 

q

3



• Magnetic flux

Node flux: φ(t) =
´ t
−∞ dτV (τ), ∴ V (t) = d

dt
φ(t).

• Power

W (t) =
´ t

0
P (τ)dτ

P (t) = dW (t)
dt

= dW (t)
dq(t)

· dq(t)
dt

= V (t) · I(t)

Therefore, W (t) =
´ t

0
V (τ) · I(τ)dτ .

• Phasors

Useful concept if:

– The circuit is linear

– all independent sources are sinusoidal

– only steady-state response is desired.

X(t) = A cos (ωt+ φ) = Re(Aeiφeiωt)

X = Aeiφ ≡ phasor = transformation of a sine waveform from time-domain to fre-

quency domain.

Why is it useful? Simple rules:

variable phasor

X(t) Aeiφ

dX(t)
dt iω ·Aeiφ

´
dtX(t) Aeiφ

iω

• Impedance and admittance

Z = V/I with V and I phasors.

Z = R + iX


Z = impedance

R = resistance units: Ω (Ohm)

X = reactance

(1)

4



Y =
1

Z
= G+ iB


Y = admittance

G = conductance units: S (Siemens)

B = susceptance

(2)

• AC power and decibels

Suppose V (t) = V0 cos (ωt+ φV ) = Re[V0e
iφV eiωt] phasor: V0e

iφV ≡ V

I(t) = I0 cos (ωt+ φI) = Re[I0e
iφIeiωt] phasor: I0e

iφI ≡ I.

Instantaneous power: P (t) = V (t)·I(t) = 1
2
I0V0 cos (φV − φI)+1

2
I0V0 cos (2ωt+ φV + φI)

Average power: P = 1
T

´ T
0
P (t)dt = 1

2
I0V0 cos (φV − φI)

P = 1
2
Re[V · I∗]

Root mean square of a periodic signal:

I(t) = I0 cosωt −→ I2
rms ≡ 1

T

´ T
0
I2(t)dt =

I20
2

, where we have used cos2 ωt = 1+cos 2ωt
2

.

Therefore,

Irms =
I0√

2
. (3)

The decibel:

Power in decibels: N(dB) = 10 log10
P
Pref

, where P = power and Pref = a reference

power, usually 1 mW.

If Pref = 1 mW, then N(dBm) = 10 log10
P

1 mW
. Note that the units are “dBm”.

Since P ∝ V 2, we have 20 log10
V
Vref

(in dBV), as another way to express this.

Examples:

30 dB is an increase in power by 1000

20 dB is an increase in power by 100

10 dB is an increase in power by 10

3 dB is an increase in power by 2

0 dB is an increase in power by 1

-3 dB is a decrease in power by 2

-10 dB is a decrease in power by 10

· · · etc.
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III. CIRCUIT ELEMENTS

Note: An rf-circuit can be constructed from discrete (lumped) elements if the size of each

component � wavelength of the rf field.

• Resistor

Typically a film of conductive material evaporated on a chip.

V ≡ Va − Vb = −
´ a
b
~E · d~̀ =

´ b
a

~J
σ
d~̀, where we have used ~E = −~∇V and ~J = ~σ · ~E

(Ohm’s law), where ~σ = conductivity.

If the frequency is not too high, then ~J is uniform over the cross-section S of the

resistor, i.e. ~J = ~I/S.

S

a

b

V

Therefore, V = I
´ b
a

1
σS
d` = IR, where R = 1

σS

´ b
a
d`,

´ b
a
d` = ` = length of device.

R = 1
σS

´ b
a
d` =⇒ R = ρ `

S
, where ρ = 1

σ
= resistivity,

& V = IR.

G = 1
R

= conductance, where R = resistance, & Z(ω) = R — real and frequency-

independent.

- Instantaneous dissipated power:

P (t) = V (t) · I(t) = R · I2(t) = G · V 2(t).

- Average dissipated power (for harmonic excitations: V (t) = V0 cosωt):

P = 1
2
R|I0|2 = 1

2
G|V0|2.

• Inductor

V = Vab = Va − Vb = −
´ a
b
~E · d~̀=

˜ d ~B(t)
dt

d~S = LdI
dt

,

where we have used the Maxwell-Faraday equation ~∇× ~E = −∂ ~B
∂t

+ Stoke’s theorem.
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S

a

b

V

Here we assumed ~B is uniform over the surface area S.

B = µ0µrNI
`
→ and there are N surfaces of area S, where N = no. of turns of the

solenoid, µ0 = free-space magnetic permeability, µr = relative permeability.

L =
µ0µrN

2S

`
, (4)

so

V = L
dI

dt
, (5)

therefore

ZL(ω) = iLω; , (6)

because ZL(ω) = V (ω)
I(ω)

.

- Instantaneous energy stored:

WL(t) =
1

2
LI2(t) . (7)

- Average energy stored in AC-harmonic fields:

WL =
1

4
LI2

0 . (8)

Note: The flux variable φ =
˜

~B · d~S can be used to define a flux at a mode with

potential V ,

ˆ t

−∞
V (τ)dτ = φ(t) , (9)

since V (t) = dφ(t)
dt

.

• Capacitor
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V = −
ˆ a

b

~E · d~̀=
Q

C
, (10)

where C = capacitance and C = ε0εrS
`

.

ε0 = free-space electric permittivity and εr = relative permittivity.

V

S

a

b

Proof: E = Q
Sε0εr

= V
`

=⇒ V = Q
ε0εrS
`

.

Also, I(t) = dQ(t)
dt

implies

I(t) = C · dV (t)

dt
. (11)

so

I = C
dV

dt
, (12)

therefore

ZC(ω) =
1

iωC
, (13)

Again from ZC(ω) = V (ω)
I(ω)

and using the properties of phasors.

- Instantaneous energy stored:

WC(t) =
1

2
CV 2(t) . (14)

- Average energy stored in AC-harmonic fields:

WC =
1

4
CV 2

0 . (15)

IV. MORE COMPLEX NETWORKS OF INDUCTORS, CAPACITORS, RESIS-

TORS · · ·

Kirchoff’s voltage and current laws:
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• Kirchoff’s voltage law

For any closed loop of a circuit, the algebraic sum of voltages of the individual branches

is zero, i.e., ∑
Vk = 0 . (16)

How it works:

               _      

       R    

         V               S      
         +

         L      

         C      

a

b c d

−
ˆ b

a

~E · d~̀−
ˆ c

b

~E · d~̀−
ˆ d

c

~E · d~̀−
ˆ a

d

~E · d~̀= 0 , (17)

or

Vs −RI(t)− LdI(t)

dt
− 1

C

ˆ t

−∞
dτI(τ) = 0 . (18)

• Kirchoff’s current law

The algebraic sum of all branch currents confluent in the same node is zero.∑
Ik = 0 . (19)

How it works:

I1
I2

I3

I1 + I2 + I3 = 0 , (20)
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i.e., no charge accumulates in the node!

• Example: A series-shunt circuit

RS

ZP

Iin

Vin Vout

Simple equations for phasors: Vout = ZpIin Vin = (Rs + Zp)Iin
Vout
Vin

= Zp
Rs+Zp

= gain or attenuation

It is convenient to express this in dB:
∣∣∣VoutVin

∣∣∣ (dB) = 20 log10

∣∣∣VoutVin

∣∣∣.
A few interesting cases:

a) Zp is a capacitor

         C      

RS

0

3 dB

1/RC

slope = 6 dB/octave

Zp = 1
iωC

=⇒ Vout
Vin

= 1
1+iωCRs

.

∣∣∣VoutVin

∣∣∣ = 1√
1+ω2C2R2

s

=⇒
∣∣∣VoutVin

∣∣∣(dB) = −10 log10[1 + ω2C2R2
s].

Works like a low-pass filter with cutoff ∼ 1/RsC.

b) Zp is an inductor

Zp = iωL Vout
Vin

= 1

1− iRs
ωL

.

∣∣∣VoutVin

∣∣∣ = 1√
1+

(
Rs
ωL

)2 =⇒
∣∣∣VoutVin

∣∣∣(dB) = −10 log10

[
1 +

(
Rs
ωL

)2]
.
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         L      

RS
slope = 6 dB/octave

0 dB

3 dB

R
s
/L

c) Zp is an LC-circuit

         L      

RS

         C      

Zp =
iωL· 1

iωC

iωL+ 1
iωC

= iωL
1−ω2LC

Vout
Vin

= iωL
Rs(1−ω2LC+iωL)

.

∣∣∣VoutVin

∣∣∣(dB) = 20 log10
ωL√

Rs(1−ω2LC)2+(ωL)2
.

V. RESONATORS BASED ON LUMPED CIRCUIT ELEMENTS

RLC components can be used to realize resonators.

a) Vs = Z(ω) · I(ω)

Z(ω) = R + iLω + 1
iCω

= R + iL
ω

(ω2 − ω2
0),

where ω0 = 1√
LC

, and at resonance ω = ω0.

Z(ω0 ≡ R =⇒ The impedance is real (resistive). The reactive part is zero, meaning

that the inductor and capacitor reactances cancel each other. Due to this, the energy

oscillates between the capacitor and the inductor and the source has to provide only
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       R    

         V               S      

         L               C      

~
         I               V               C      

what is lost through R.

Indeed WL = 1
4
L|I|2

WC = 1
4
C|VC |2 = 1

4
|I|2
Cω2 , but |VC | = |I|

Cω
,

(21)

so at resonance: ω = ω0 =⇒ WL = WC .

• Quality Factor:

Suppose we put some energy W (0) in the resonator. Due to the resistance R,

this will be dissipated.

W (t) = W (0)e−ω0t/Q

Q = quality factor – it measures how well the resonator stores energy.

Now −dW
dt

= ω0W
Q

.

P = average loss in a period, P = − 1
T

´ T
0

dW
dt
dt, where 2π

ω0
= T = period, or

P = ω0

Q
1
T

´ T
0
W (t)dt ≡ WT , Total energy averaged over a period.

Since 2π
ω0

= T = period, Q ≡ ω0W
P

.

But W = WC +WL = 2 ·WL = L|I|2
2

P = R · |I|
2

2
,

(22)
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∴ Q = ω0L
R

= 1
R

√
L
C

.

• Loading of a Resonant Circuit:

      

       R    

         V               S      

         L               C      

~
         V               C      

       RL    

Load 
resistor

In this case, QL =
(

1
R

+ 1
RL

√
L
C

)
= loaded Q.

or Q−1
L = Q−1

ext +Q−1, simply because now Q−1
L = Φ

ω0W
=

(R+RL)
|I|2
2

ω0L|I|2
2

= R
ω0L

+ RL
ω0L

.

Also, Qext = 1
RL

√
L
C

= external Q & Q = 1
R

√
L
C

= internal Q.

             R    IS
         L               C      

IL

Z(ω) =
1

G+ i c
ω

(ω2 − ω2
0)

=
1

Y (ω)
, (23)

where G = 1/R.

A similar idea: W = WC +WL = 1
4
|V |2 · C + 1

4
L|IL|2, where IL = V

iωL
.

Furthermore, at resonance (ω = ω0 = 1
LC

), we have W = 1
2
CV 2.

PT = 1
2
G|V |2 =⇒ Q = ω0W

P
= ω0C

G
= ω0RC = R

ω0L
= R

√
C
L

.
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             R    IS
         L               C      

IL

RL

b) • Loading of the Parallel RLC Resonator:

QL =
( 1

R
+

1

RL

)√C

L
= loaded Q (24)

Qext =
1

RL

√
C

L
= external Q (25)

Q =
1

R

√
C

L
= internal Q (26)

or Q−1
L = Q−1

ext +Q−1 → This relation is the same as for the series RLC resonator.

[1]
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