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I. TRANSMISSION LINES

– Electromagnetic waves can propagate in free space (Review this! Based on Maxwell’s

equations!). But also they can be guided by conducting or dielectric boundaries.

– Transmission line behavior: occurs when λ� length of transmission line.

– Transmission lines = guiding devices for the electromagnetic field.

– The electromagnetic fields are TEM (transverse electromagnetic mode) if the conduc-

tors are ideal (zero-resistance); otherwise there will be a small axial component of the

electromagnetic field.

= Stripline

= Parallel-plate waveguide 

= Microstripline = Waveguide 
(coplanar) 

= Two-wire 
transmission line 

Types of 
Transmission 

Lines

= Coaxial cable 
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EXAMPLE: The coaxial line

* How to calculate the ~E, ~H fields inside?

Electric Field: ~E =
V0

ln b
a

~̂r

r
(1)

Proof:

~∇ · ~D = ρ =⇒
´
d~S · ~E =

´
ρ
2
dV =⇒ 2πr · (∆z) · E = 1

ε
(∆z) · ρ · πa2 ∴ E = 1

r
· ρa2

2ε

Also V0 =
´ b
a
dr · E =

´ b
a
dr
r
· ρa2

2ε
ln b

a
→ ρa

2

2ε
= V0

ln b
a

, so ~E = V0
ln b
a

~̂r
r
.

Magnetic Field: ~H =
I0

2πr
· ~̂eθ (2)

Proof:

~∇× ~H = ~J + ∂ ~D
∂t

=⇒
´
C
~H · d~̀=

´
~J · d~S = I0, or 2πr ·H = I0 =⇒ ~H = I0

2πr
· ~̂eθ.
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II. TOWARDS A DISTRIBUTED MODEL OF INDUCTORS, CAPACITANCES,

RESISTANCES, CONDUCTANCES

Problem: How to connect the electric and magnetic fields to circuit elements.

Answer: Via stored or dissipated energy.

1. Inductance per unit length

Magnetic energy = µ
4

´
ds · (∆z) ~H2 =

(L′∆t)I20
4

=⇒ L′ = µ
I20

´
ds ~H2

L′ = µ
I20

´
dsH2 = µ

I20
· I2

0

´ 2π

0
dθ
´ b
a
dr · r · 1

(2πr)2
= µ

2π
ln b

a
.

Therefore,

L′ =
µ

2π
ln
b

a
(measured in units of H/m) . (3)

2. Capacitance per unit length

Electrostatic energy= ε
4

´
ds · (∆z) · E2 =

(C′∆z)V 2
0

4
=⇒ C ′ = ε

V 2
0
·
´
ds · E2

C ′ = ε
V 2
0

´
dsE2 = ε

V 2
0
· V 2

0 · 1
ln2 b

a

´ 2π

0
dθ
´ b

0
dr · r · 1

r2

=⇒ C ′ =
2πε

ln b
a

(measured in units of F/m) . (4)

3. Resistance per unit length

Power dissipated in the lossy conductors = Rs
2

´
Ca+Cb

d`·∆z·J 2
s = Rs

2
∆z·
´
Ca+Cb

d`·H2 =

R′∆z
2
I2

0 . Here Rs = surface resistance, ~Js = ~̂n× ~H = surface current, ~̂n = vector unit
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pointing outwards (normal to the conducting surface), and R′ = Rs
I20

´
Ca+Cb

d` · ~H2.

R′ = Rs
I20

´
Ca+Cb

d` ·H2 = Rs
(2π)2

[ ´ 2π

0
dθ · a · 1

a2
+
´ 2π

0
dθ · b · 1

b2

]
= Rs

2π

(
1
a

+ 1
b

)
R
′
=
Rs

2π

(1

a
+

1

b

)
(measured in units of Ω/m) . (5)

4. Conductance (radial) per unit length

ε = ε
′ − iε′′ = ε0εr(1− i tan δ)

ε′ = ε0εr

ε
′′

= ε tan δ→ dissipation in the dielectric between the core metal and the outside shield.

Power dissipated = ωε
′′

2

´
ds ·∆z · E2 =

G′V 2
0

2
→ G′′ = ωε

′′

V 2
0

´
ds · E2

=⇒ G′ = ωε
′′

V 2
0

´
ds · E2 = ωε

′′

V 2
0
·
´ 2π

0
dθ
´ b
a
dr · r · V 2

0

r2 ln b
a

=⇒ G′ =
2πωε

′′

ln b
a

(measured in units of S/m) . (6)

– Examples of materials used in coaxes:

Conductor Copper Cu Aluminum Al Silver Ag Gold Au

Resistivity ρ[nΩ ·m] 16.9 26.7 16.3 22.0

Dielectric Dry Air Polyethylene PTFE PVC

εr 1.0006 2.2 2.1 3.2

tan δ low 0.0002 0.0002 0.001

Resistivity (Ω ·m) high 1015 1015 1015

Breakdown voltage (mV/m) 3 47 59 34

5



Other transmission lines:

L′ =
µd

w
(7)

C ′ =
ε′w

d
(8)

R′ =
2Rs

w
(9)

G′ =
ωε
′′
w

d
(10)

L′ =
µ

π
cosh−1 D

2a
(11)

C ′ =
πε
′

cosh−1 D
2a

(12)

R′ =
Rs

πa
(13)

G′ =
πωε

′′

cosh−1 D
2a

(14)
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III. TRANSMISSION LINES: GENERAL MODELS

– If the length of a circuit is & λ we have to use either a simulator of Maxwell’s equations

or a distributed model of lumped elements.

– Transmission lines: Two parallel conductors that guide the electromagnetic field. Ex-

amples: two-wire lines, striplines, microstrip lines.

R′, L′, G′, C ′ = resistance, inductance, conductance, capacitance per unit length.

Kirchoff says:V (x, t) = I(x, t)R′∆x+ L′∆x · ∂I(x,t)
∂t

+ V (x+ ∆x, t)

I(x, t) = V (x+ ∆x, t)G′∆x+ C ′∆x∂V (x+∆x,t)
∂t

+ I(x+ ∆x, t)
(15)

∆x −→ 0

−
∂V (x,t)
∂x

= R′I(x, t) + L′ dI(x,t)
dt

−∂I(x,t)
∂x

= G′V (x, t) + C ′ ∂V (x,t)
∂t

(16)

Therefore,−
∂2V (x,t)
∂x2

= −R′(G′V (x, t) + C ′ ∂V (x,t)
∂t

)− L′(G′ ∂V (x,t)
∂t

+ C ′ ∂
2V (x,t)
∂t2

)

−∂2I(x,t)
∂x2

= −G′(R′I(x, t) + L′ ∂I(x,t)
∂t

)− C ′(R′ ∂I(x,t)
∂t

+ L′ ∂
2I(x,t)
∂t2

)
(17)

or 
∂2V (x,t)
∂x2

= L′C ′ ∂
2V (x,t)
∂t2

+ (R′C ′ + L′G′)∂V (x,t)
∂t

+R′G′V (x, t)

∂2I(x,t)
∂x2

= L′C ′ ∂
2I(x,t)
∂t2

+ (R′C ′ + L′G′)∂I(x,t)
∂t

+R′G′I(x, t) .
(18)
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Harmonic signals:

V (x, t) = V (x)eiωt , V (x), I(x) = phasors, I(x, t) = I(x)eiωt

=⇒


d2V (x)
dx2
− γ2V (x) = 0, where γ = α + iβ =

√
(R′ + iωL′)(G′ + iωC ′)

d2I(x)
dx2
− γ2I(x) = 0, γ = propagation constant, α = attenuation constant, β = phase constant

General Solution: V (x) = V †e−γx + V −eγx . (19)

From −∂V (x,t)
∂x

= RI(x, t) + L∂I(x,t)
∂t

, we get I(x) = − 1
R+iωL

dV (x)
dx

or

I(x) = 1
Z0
V †eγx − 1

Z0
V −eγx = I+e−γx + I−eγx, where

Z0 =
√

R′+iωL′

G′+iωC′
= characteristic impedance of the transmission line,

and where I± = ±V ±

Z0
.

Lossless transmission case: R′ = G′ = 0

γ = iβ = iω
√
L′C ′

Z0 = 1
Y0

=
√

L′

C′
−→ now independent of frequency!

Note: Free-space impedance = 377 Ω

vp = ω
β

= 1√
L′C′

= phase velocity.

Exercise: Show that for the loss-less case R � ωL, G � ωC, we have β ' ω
√
L′C ′

and α ' 1
2

√
L′C ′(R

′

L′
+ G′

C′
).

• Standardized values:

Z0 Application

50 Ω Instrumentation, communication

75 Ω TV, VHF radio

300 Ω RF

600 Ω Audio

• Incident and Reflected Waves Along a Loaded Transmission Line

V (x) = V +e−γx + V −eγx

I(x) = I+e−γx + I−eγx, I± = ±V ±

Z0
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V (0) = Vs − ZsI0 — Kirchoff’s law

V (`) = Z`I(`) ,
(20)

or

V
+ + V − = Vs − Zs

Z0
(V + + V −)

V +e−γ` + V −eγ` = Z`
Z0

(V +e−γ` − V −eγ`)
(21)

• Define a reflection coefficient of the load at x = `: ΓV = V −eγ`

V +e−γ`
.

→ 1 + ΓV = Z`
Z0

(1− ΓV ).

=⇒ ΓV =
Z` − Z0

Z` + Z0

(22)

We can also define a current reflection coefficient at the load

ΓI =
I−eγ`

I+e−γ`
= −ΓV (23)

• Define the transmission coefficient at the load x = `: TV = V +e+`+V −eγ`

V +e−γ`
.

∴ TV = 1 + ΓV , (24)

and for the current

TI =
I+e−γ` + I−eγ`

I+e−γ`
= 1 + ΓI . (25)
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• Average power delivered to the load

P` = 1
2
Re[V (`)I∗(`)], where the 1/2 comes from the fact that the field is harmonic.

Now, 1− ΓV = I−eγ`+I+e−γ`

I+e−γ`
= I(`)

I+e−γ`

1 + ΓV = V +e−γ`+V −e−γ`

V +eγ`
= V (`)

V +e−γ`
.

(26)

∴ (1 + Γ∗V )(1 + ΓV ) = V (`)I∗(`)
I+∗V +e−γ`(e−γ`)∗

, but I+ = V +

Z0

V (`)I∗(`) = 1
Z0
|V +e−γ`|2 · (1− Γ∗V )(1 + ΓV ) ≡ 1− Γ∗V + ΓV − |ΓV |2 , where Γ∗V + ΓV =

Imaginary!.

P` =
1

2Z0

· |V +e−γ`|2(1− |ΓV |2) . (27)

• VSWR (Voltage standing-wave ratio)

V (x) = V +e−γx +V −eγx = V +e−γx[1 + ΓV e
−2γ(`−x)] (Remember that ΓV ≡ V −eγ`

V +e−γ`
.)

x
/2

|V+|(1 + 
V
|)

|V+|(1 - 
V
|)

Let’s consider a lossless line α = 0, γ = iβ = 2πi
λ

|V (x)| = |V +| · |1 + ΓV e
−2iβ(`−x)| — oscillates, min. and max. separated by π

β
= λ

2
.

V SWR = 1+|ΓV |
1−|ΓV |

= ratio between the max. line voltage and min. line voltage.
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• Impedance along the line

Z(x) = V (x)
I(x)

= Z0
V +e−γx+V −eγx

V +e−γx−V −eγx = 1+ΓV e
−2γ(`−x)

1−ΓV e−2γ(`−x) .

Take x = 0 → we get Z(0) ≡ Zin = input impedance of the line, i.e., the impedance

seen when looking toward the load.

Zin = Z0 ·
Z` + Z0 tanh γ`

Z0 + Z` tanh γ`
(28)

Note that this can be verified immediately by recalling that ΓV = Z`−Z0

Z`+Z0
, and that in

general, Zin 6= Z0, so the termination matters! Also, Zin is frequency-dependent.

IV. EXAMPLES OF LOADS (TERMINATIONS)

1. Matched Load

Z` = Z0 =⇒ ΓV ≡ Z`−Z0

Z`+Z0
= 0 No reflection!

VSWR = 1, Zin = Z0, P` = 1
2Z0
|V +|2e−2α` — power delivered is maximum.

This is only obtained if α 6= 0.

2. Open-Circuit Z` =∞ =⇒ ΓV = Z`−Z0

Z`+Z0
= 1

VSWR = ∞, Zin = Z0 coth γ`, P` = 0 — Compare this with the DC-case

where all the input power is delivered!

For α = 0 (lossless), Zin = −iZ0 cot 2π`
λ

if ` = λ
4
, Zin = 0, so the open line will look as

a shortcut!
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3. Short-circuit Z` = 0 =⇒ ΓV = Z`−Z0

Z`+Z0
= −1,

VSWR = ∞, Zin = Z0 tanh γ`, P` = 0.

For α = 0 (lossless), β = 2π
λ

quad Zin = iZ0 tan 2π`
λ

— If ` = λ
4
, Zin =∞, so the

shorted line looks like an infinite impedance to a source! (even if the resistance of the

wire is zero!)
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V. RESONATORS FROM TRANSMISSION LINES

– It is possible to make resonators from transmission lines, 3D cavities, etc.

– The most usual case is the short-circuited transmission-line resonator.

Z` = 0, Zin = Z0 tanh(α`− iβ`) = Z0
tanhα`+i tanβ`
1+i tanβ` tanα`

.

If losses are not too large, α`� 1, we have tanα` ≈ α`, so

Zin = Z0
α`+ i tan β`

1 + iα` tan β`
. (29)

Now, recall that β = ω/vp = ω
√
L′C ′, vp = 1/

√
L′C ′, Z0 =

√
L′/C ′,

α = R′

2

√
C ′/L′.

We will consider β0` = π, or ` = λ0/2 as the resonance condition, leading to a

resonance frequency ω0.

ω0

vp
` = ω0

√
L′C ′` = π, so ω = π

`
√
L′C′

.

We can expand this around this point: tan β` ' tan(π+π ω−ω0

ω0
) = tan π ω−ω0

ω0
' π ω−ω0

ω0
,

if |ω − ω0| � ω0.

So, Zin = Z0

α`+iπ
ω−ω0
ω0

1+α`π
ω−ω0
ω0

' Z0(α`+ iπ ω−ω0

ω0
)

=
√
L′/C ′( `

2
R′
√
C ′/L′ + i`

√
L′C ′(ω − ω0)) = 1

2
R′`+ iL′`(ω − ω0).

• Suppose now that we look back at the series RLC circuit

Z = R + iL
ω

(ω2 − ω2
0) ' R + 2iL(ω − ω0) near resonance, ω ' ω0.
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Therefore, we can identify R = 1
2
R′` and L = 1

2
L′`.

Quality Factor Q =
ω0L

R
=
ω0L

′

R′
=
β0

2α
. (30)

– Interesting question to think about: Why do we get the factor 1/2 in the RLC equiv-

alent above?

–Answer: Because the current in the short-circuited line is half a sinusoid , therefore

we obtain only half of the total resistance and inductance of the full length `.

To see this explicitly, let us write the solution

V (x) ' V +e−iβx + V −eiβx — here we neglect α.

I(x) ' − β
ωL

(−V +e−iβx + V −eiβx)
(31)

Since I(0) = 0 =⇒ V + ≡ V − at this point (also you can see that ΓV ≡ V −

V + e
2iβ0` = −1

and β0` = π).

So V (x) = 2V + cos β0x

I(x) = −2iβ
ωL
V + sin β0x = I+ sin β0x .

(32)

Therefore the magnetic-field energy:

WL′ =

ˆ λ0/2

0

dx · 1

4
L
′ |I(x)|2 =

1

4
|I+|2L′

ˆ λ0/2

0

sin2 β0xdx =
λ0

16
· |I+|2L′. (33)
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At resonance: WC′ = WL′ , so

W = WC′ +WL′ =
λ0

8
L′|I+|2 . (34)

P = 1
2

´ λ0
0
dx ·R′|I(x)|2 = R′

2
|I+|2

´ λ0
0

sin2 β0xdx,

so

P =
λ0

8
R′|I+|2 . (35)

Therefore,

Q =
ω0W

P
=
ωL

′

R′
, (36)

or: Q = π
`R′

√
L′

C′
= πZ0

`R′
= π

2`α
, where we used α ' R

2Z0
, ω0 = π

`
√
L′C′

.
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