Introduction to Econometrics

Hannu Kahra hannu.kahra@oulu.fi

February 2013

Preamble

Two of the cornerstones of econometrics are the so-called linear regression model and the ordinary least squares (OLS) estimation method.

1 An Introduction to Linear Regression

1.1 Ordinary Least Squares as an Algebraic Tool

1.1.1 Ordinary least squares

Suppose we have a sample with N observations on individual wages and some background characteristics. Our main interest lies in the question as to how in this sample wages are related to the other observations. In this example, wages are functions of the underlying characteristics. Similarly, equity returns are functions of companany characteristics, e.g. the size of the company, the book to market ratio, dividend yield, price-earnings ratio, etc.

Let's denote wages by y and the $K-1$ characteristics by x_{2}, \ldots, x_{K}. Now, we may ask the question: which linear combination of x_{2}, \ldots, x_{K} and a constant gives a good approximation (fit) of y ? To answer the question, first consider an arbitrary linear combination, including a constant, which can be written as

$$
\tilde{\beta}_{1}+\tilde{\beta}_{2} x_{2}+\ldots+\tilde{\beta}_{K} x_{K}
$$

where $\tilde{\beta}_{1}, \ldots, \tilde{\beta}_{K}$ are constants (parameters) to be choosen. Let's index the observations by i such that $i=1, \ldots, N$. Now, the difference between an observed value y_{i} and its linear approximation (fit) is

$$
\begin{equation*}
y_{i}-\left[\tilde{\beta}_{1}+\tilde{\beta}_{2} x_{i 2}+\ldots+\tilde{\beta}_{K} x_{i K}\right] \tag{1}
\end{equation*}
$$

We simplify using vector notation. First, we collect the x-values for individual i in a vector x_{i}, which includes the constant. That is

$$
x_{i}=\left(\begin{array}{lll}
1 & x_{i 2} & x_{i 3} \ldots x_{i K}
\end{array}\right)^{\prime}
$$

Collecting the $\tilde{\beta}$ coefficients in a K-dimensional vector $\tilde{\beta}=\left(\tilde{\beta}_{1}, \ldots, \tilde{\beta}_{K}\right)^{\prime}$ we can briefly write (1) as

$$
y_{i}-x_{i}^{\prime} \tilde{\beta}
$$

Clearly, we would like to choose values for $\tilde{\beta}_{1}, \ldots, \tilde{\beta}_{K}$ such that these differences are small. Although different measures can be used to define what we mean by 'small', the most common approach is to choose $\tilde{\beta}$ such that the sum of squared differences is as small as possible. In this case we determine $\tilde{\beta}$ to minimize the objective function $S(\tilde{\beta})$:

$$
\begin{equation*}
\min _{\tilde{\beta}} S(\tilde{\beta})=\sum_{i=1}^{N}\left(y_{i}-x_{i}^{\prime} \tilde{\beta}\right)^{2} \tag{2}
\end{equation*}
$$

That is, we minimize the sum of squared approximation errors. This approach is referred to as the ordinary least squares or OLS approach. Taking squares makes sure that positive and negative deviations do not cancel out when taking the summation.

To solve the minimization problem, we consider the first-order conditions, obtained by differentiating $S(\tilde{\beta})$ with respect to the vector $\tilde{\beta}$. This gives the following system of K conditions:

$$
-2 \sum_{i=1}^{N} x_{i}\left(y_{i}-x_{i}^{\prime} \tilde{\beta}\right)=0
$$

or

$$
\left(\sum_{i=1}^{N} x_{i} x_{i}^{\prime}\right) \tilde{\beta}=\sum_{i=1}^{N} x_{i} y_{i}
$$

These equations are sometimes referred to as normal equations. As this system has K unknows, one can obtain a unique solution to $\tilde{\beta}$ provided that the symmetrix matrix $\sum_{i=1}^{N} x_{i} x_{i}^{\prime}$ which contains the sum of squares and cross products of the regressors x_{i}, can be inverted. For the moment, we shall assume that this is the case. The solution to the minimazation problem, which we shall denote by b (or usually by $\hat{\beta}$), is then given by

$$
\begin{equation*}
b=\left(\sum_{i=1}^{N} x_{i} x_{i}^{\prime}\right)^{-1} \sum_{i=1}^{N} x_{i} y_{i} \tag{3}
\end{equation*}
$$

By checking the second-order conditions, it is easily verified that b indeed corresponds to a minimum of (2).

The resulting linear combination of x_{i} is thus given by

$$
\hat{y}_{i}=x_{i}^{\prime} b,
$$

which is the best linear approximation of y from x_{2}, \ldots, x_{K} and a constant. The phrase 'best' refers to the fact that the sum of squared differences between the observed values y_{i} and fitted values \hat{y}_{i} is minimal for the least squares solution b.

In deriving the linear approximation, we have not used any economic or statistical theory. It is simply an algebraic tool and it holds irrespective of the way the data are generated. That is, given a set of variables we can always determine the best linear approximation of one variable using the other variables.

Defining a residual e_{i} as the difference between the observed and the approximated value, $e_{i}=y_{i}-\hat{y}_{i}=$ $y_{i}-x_{i}^{\prime} b$, we can decompose the observed y_{i} as

$$
y_{i}=\hat{y}_{i}+e_{i}=x_{i}^{\prime} b+e_{i} .
$$

This allows us to write the minimum value for the objective function as

$$
S(b)=\sum_{i}^{N} e_{i}^{2}
$$

which is referred to as the residual sum of squares.

1.1.2 Simple linear regression

In the case where $K=2$ we only have one regressor and a constant. In this case, the observations (y_{i}, x_{i}) can be drawn in a two-dimensional graph with x-values on the horizontal axis and y-values on the vertical one. This is done for the US National Longitudial Survey (NLS) that relates to 1987, and we have a sample of 3294 young working individuals, of which 1569 are female. ${ }^{1}$

```
> my.data <- read.table("H:/721364P/Rdata/wages1.dat", header=T)
> head(my.data)
```

[^0]```
\begin{tabular}{lrrrr}
& EXPER & MALE & SCHOOL & WAGE \\
1 & 9 & 0 & 13 & 6.315296 \\
2 & 12 & 0 & 12 & 5.479770 \\
3 & 11 & 0 & 11 & 3.642170 \\
4 & 9 & 0 & 14 & 4.593337 \\
5 & 8 & 0 & 14 & 2.418157 \\
6 & 9 & 0 & 14 & 2.094058
\end{tabular}
> tail(my.data)
\begin{tabular}{lrrrr}
& EXPER & MALE & SCHOOL & WAGE \\
3289 & 5 & 1 & 8 & 5.512004 \\
3290 & 6 & 1 & 9 & 4.287114 \\
3291 & 5 & 1 & 9 & 7.145190 \\
3292 & 6 & 1 & 9 & 4.538784 \\
3293 & 10 & 1 & 8 & 2.909113 \\
3294 & 7 & 1 & 7 & 4.153974
\end{tabular}
> attach(my.data)
> summary(my.data)
\begin{tabular}{|c|c|c|c|}
\hline EXPER & MALE & SCHOOL & WAGE \\
\hline Min. : 1.000 & Min. 0.0000 & Min. \(\quad 3.00\) & Min. : 0.07656 \\
\hline 1st Qu.: 7.000 & 1st Qu.:0.0000 & 1st Qu.:11.00 & 1st Qu.: 3.62157 \\
\hline Median : 8.000 & Median :1.0000 & Median :12.00 & Median : 5.20578 \\
\hline Mean : 8.043 & Mean :0.5237 & Mean : 11.63 & Mean : 5.75759 \\
\hline 3rd Qu.: 9.000 & 3rd Qu.:1.0000 & 3rd Qu.: 12.00 & 3rd Qu.: 7.30451 \\
\hline Max. \(: 18.000\) & Max. \(: 1.0000\) & Max. \(: 16.00\) & Max. \(: 39.80892\) \\
\hline \multicolumn{4}{|l|}{> \(m 1<-\operatorname{lm}\left(W A G E^{\sim} M A L E\right)\)} \\
\hline > summary (m1) & & & \\
\hline
\end{tabular}
Call:
lm(formula = WAGE ~ MALE)
Residuals:
\begin{tabular}{rrrrr}
Min & 1Q Median & 3Q & Max \\
-6.160 & -2.102 & -0.554 & 1.487 & 33.496
\end{tabular}
Coefficients:
 Estimate Std. Error t value Pr (>|t|)
\begin{tabular}{lllll}
(Intercept) & 5.14692 & 0.08122 & 63.37 & \(<2 e-16 * * *\) \\
MALE & 1.16610 & 0.11224 & 10.39 & \(<2 e-16 * * *\)
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.''0.1 ' ' 1
Residual standard error: 3.217 on 3292 degrees of freedom
Multiple R-squared: 0.03175, Adjusted R-squared: 0.03145
F-statistic: 107.9 on 1 and 3292 DF, p-value: < 2.2e-16
```

The best linear approximation of $y$ (salary) from $x$ (gender) and a constant is obtained by minimizing the sum of squared residuals, which - in the two-dimensional case - equal the vertical distances between an observation and the fitted value. All fitted values are on a straight line, the regression line.

Because a $2 \times 2$ matrix can be inverted analytically, we can derive solutions for $b_{1}$ and $b_{2}$ in this special case from the general expression for $b$ above. Equivalently, we can minimize the residual sum of squares

Figure 1: Simple linear regression: fitted line and observation points

with respect to the unkowns directly. Thus we have

$$
S\left(\tilde{\beta}_{1}, \tilde{\beta}_{2}\right)=\sum_{i=1}^{N}\left(y_{i}-\tilde{\beta}_{i}-\tilde{\beta}_{2} x_{i}\right)^{2}
$$

The basic elements in the derivation of the OLS solutions are the first-order conditions

$$
\begin{gather*}
\frac{\partial S\left(\tilde{\beta}_{1}, \tilde{\beta}_{2}\right)}{\partial \tilde{\beta}_{1}}=-2 \sum_{i=1}^{N}\left(y_{i}-\tilde{\beta}_{i}-\tilde{\beta}_{2} x_{i}\right)=0  \tag{4}\\
\frac{\partial S\left(\tilde{\beta}_{1}, \tilde{\beta}_{2}\right)}{\partial \tilde{\beta}_{2}}=-2 \sum_{i=1}^{N} x_{i}\left(y_{i}-\tilde{\beta}_{i}-\tilde{\beta}_{2} x_{i}\right)=0 \tag{5}
\end{gather*}
$$

From (4) we can write

$$
\begin{equation*}
b_{1}=\frac{1}{N} \sum_{i=1}^{N} y_{i}-b_{2} \frac{1}{N} \sum_{i=1}^{N} x_{i}=\bar{y}-b_{2} \bar{x}, \tag{6}
\end{equation*}
$$

where $b_{2}$ is solved from (5) and (6). First, from (5) we write

$$
\sum_{i=1}^{N} x_{i} y_{i}-b_{1} \sum_{i=1}^{N} x_{i}-\left(\sum_{i=1}^{N} x_{i}^{2}\right) b_{2}=0
$$

and then substitute (6) to obtain

$$
\sum_{i=1}^{N} x_{i} y_{i}-N \bar{x} \bar{y}-\left(\sum_{i=1}^{N} x_{i}^{2}-N \bar{x}^{2}\right) b_{2}=0
$$

such that we can solve for the slope coefficient $b_{2}$ as

$$
b_{2}=\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}
$$

By dividing both numerator and denominator by $N-1$ it appears that the OLS solution $b_{2}$ is the ratio of the sample covariance between $x$ and $y$ and the sample variance of $x$. From (6), the intercept is determined so as to make the average approximation error (residual) equal to zero.

### 1.1.3 Example: Individual wages

The following examples are based on a sample of individual wages with background characteristics, like gender, race and years of schooling. The average hourly wage rate in this sample equals $\$ 6.31$ for males and $\$ 5.15$ for females. Now suppose we try to approximate wages by a linear combination of a constant and a (binary) $0-1$ variable denoting whether the individual is male or not. That is, $x_{i}=1$ if individual $i$ is male and zero otherwise. Such a variable, which can only take on the values of zero and one, is called a dummy variable. Using the OLS approach the result is

$$
\hat{y}_{i}=5.15+1.17 x_{i} .
$$

This means that for females our best approximation is $\$ 5.15$ and for males it is $\$ 5.15+\$ 1.17=\$ 6.31$. It is not a coincidence that these numbers are exactly equal to the sample means in the two subsamples. It is easily verified from the results above that

$$
\begin{aligned}
b_{1} & =\bar{y}_{i} \\
b_{2} & =\bar{y}_{m}-\bar{y}_{f}
\end{aligned}
$$

where $\bar{y}_{m}$ is the sample average of the wage for males, and $\bar{y}_{f}$ is the average for females.

### 1.1.4 Matrix notation

Using matrices, deriving the least squares solution is fasterm but it requires some knowledge of matrix differential calculus. We introduce the following notation:

$$
X=\left(\begin{array}{cccc}
1 & x_{12} & \cdots & x_{1 K} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{N 2} & \cdots & x_{N K}
\end{array}\right)=\left(\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x_{N}^{\prime}
\end{array}\right), y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right)
$$

So, in the $N \times K$ matrix $X$ the $i$ th row refers to observation $i$, and the $k$ th column refers to the $k$ th explanatory variable (regressor).

The criterion to be minimized can be rewritten in matrix notation using the fact that the inner product of a given vector $a$ with itself $\left(a^{\prime} a\right)$ is the sum of its squared elements. That is,

$$
S(\tilde{\beta})=(y-X \tilde{\beta})^{\prime}(y-X \tilde{\beta})=y^{\prime} y-2 y^{\prime} X \tilde{\beta}+\tilde{\beta}^{\prime} X^{\prime} X \tilde{\beta}
$$

from which the least squares solution follows from differentiating with respect to $\tilde{\beta}$ and setting the result to zero:

$$
\begin{equation*}
\frac{\partial S(\tilde{\beta})}{\partial \tilde{\beta}}=-2\left(X^{\prime} y-X^{\prime} X \tilde{\beta}\right)=0 \tag{7}
\end{equation*}
$$

Solving (7) gives the OLS solution

$$
b=\left(X^{\prime} X\right)^{-1} X^{\prime} y
$$

which is exactly the same as the one derived in (3). Here we assume that $X^{\prime} X$ is invertible, i.e. that there is no exact (or perfect) multicollinearity.

As before, we can decompose $y$ as

$$
y=X b+e
$$

where $e$ is an $N$-dimensional vector of residuals.

### 1.2 The Linear Regression Model

Usually, economists want more than just finding the best linear approximation of one variable given a set of others. They want economic relationships that are more generally valid than the sample they happen to have. They want to draw conclusions about what happens if one of the variables actually changes. That is: they want to say something about things that are not observed (yet). In this case, we want the relationship that is found to be more than just a historical coincidence; it should reflect a fundamental relationship. To do this it is assumed that there is a general relationship that is valid for all possible observations from a well-defined population. Restricting attention to linear relationships, we specify a statistical model as

$$
y_{i}=\beta_{1}+\beta_{2} x_{i 2}+\ldots \beta_{K} x_{i K}+\varepsilon_{i}
$$

or

$$
\begin{equation*}
y_{i}=x_{i}^{\prime} \beta+\varepsilon_{i} \tag{8}
\end{equation*}
$$

where $y_{i}$ and $x_{i}$ are observable variables and $\varepsilon_{i}$ is unobserved and referred to as an error term or disturbance term. The elements of $\beta$ are unknown population parameters. The equality in (8) is supposed to hold for any possible observation, while we only observe a sample on $N$ observations.

We shall consider this sample as one realization of all possible samples of size $N$ that could have been drawn from the same population. In this way we can view $y_{i}$ and $\varepsilon_{i}$ (and often $x_{i}$ ) as random variables. Each observation corresponds to a realization of these random variables. Again we can use matrix notation and stack all observations to write

$$
\begin{equation*}
y=X \beta+\varepsilon, \tag{9}
\end{equation*}
$$

where $y$ and $\varepsilon$ are $N$-dimensional vectors and $X$, as before, is of dimension $N \times K$. Equations (8) and (9) are population relationships, where $\beta$ is a vector of unknown parameters characterizing the population.

We need to impose some assumptions to give the model a meaning. A common assumption is the expected value of $\varepsilon_{i}$ given all the explanatory variables in $x_{i}$ is zero, that is $E\left\{\varepsilon_{i} \mid x_{i}\right\}=0$. Usually, people refer to this assumption by saying that the $x$ variable is exogenous. Under this assumption it holds that

$$
E\left\{y_{i} \mid x_{i}\right\}=x_{i}^{\prime} \beta
$$

so that the regression line $x_{i}^{\prime} \beta$ describes the conditional expectation of $y_{i}$ given the values for $x_{i}$. The coefficients $\beta_{k}$ measure how the expected value of $y_{i}$ is affected if the value of $x_{k}$ is changed, keeping the other elements in $x_{i}$ constant. This is referred to as the ceteris paribus condition.

Now that our $\beta$ coefficients have a meaning, we can try to use the sample ( $y_{i}, x_{i}$ ) $i=1, \ldots N$, to say something about them. The rule that says how a given sample is translated into an approximate value for $\beta$ is referred to as an estimator. The result for a given sample is called an estimate (usually denoted as $\hat{\beta}$ or $b$ ). The estimator is a vector of random variables, because the sample changes, while the estimate is a vector of numbers. The most widely used estimator in econometrics is the ordinary least squares (OLS) estimator. The OLS estimator is given by

$$
b=\left(\sum_{i=1}^{N} x_{i} x_{i}^{\prime}\right)^{-1} \sum_{i=1}^{N} x_{i} y_{i}
$$

### 1.3 Small Sample Properties of the OLS Estimator

### 1.3.1 The Gauss-Markov assumptions

Whether or not the OLS estimator $b$ provides a good approximation to the unknown parameter vector $\beta$ depends crucially upon the assumptions that are made about the distribution of $\varepsilon_{i}$ and its relation to $x_{i}$. A standard case in which the OLS estimator has good properties is characterized by the Gauss-Markov conditions. They constitute a simple case in which the small sample properties of $b$ are easily derived.

For the linear regression model, given by

$$
y_{i}=x_{i}^{\prime} \beta+\varepsilon_{i}
$$

the Gauss-Markov conditions are

$$
\begin{gather*}
E\left\{\varepsilon_{i}\right\}=0, \text { for } i=1, \ldots, N  \tag{10}\\
\left\{\varepsilon_{1}, \ldots, \varepsilon_{N}\right\} \text { and }\left\{x_{1}, \ldots, x_{N}\right\} \text { are independent }  \tag{11}\\
V\left\{\varepsilon_{i}\right\}=\sigma^{2}, \text { for } i=1, \ldots, N  \tag{12}\\
\operatorname{cov}\left\{\varepsilon_{i}, \varepsilon_{j}\right\}=0, \text { for } i, j=1, \ldots, N, i \neq j . \tag{13}
\end{gather*}
$$

Assumption (10) says that the expected value of the error term is zero, which means that, on average, the regression line should be correct. Assumption (12) states that all error terms have the same variance, which is referred to as homoskedasticity, while assumption (13) imposes zero correlation between different error terms. This excludes any form of autocorrelation. Taken together, (10), (12) and (13) imply that the error terms are uncorrelated drawings from the distribution with expectation zero and constant variance $\sigma^{2}$.

### 1.3.2 Properties of the OLS estimator

Under assumptions (10)-(13), the OLS estimator $b$ for $\beta$ has several desirable properties. First of all, it is unbiased. This means that, in repeated sampling, we can expect that the OLS estimator is on average equal to the true (and unknown) value $\beta$. We formulate this as $E\{b\}=\beta$. It is instructive to see the proof:

$$
\begin{aligned}
E\{b\} & =E\left\{\left(X^{\prime} X\right)^{-1} X^{\prime} y\right\}=E\left\{\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon\right\} \\
& =\beta+E\left\{\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon\right\}=\beta
\end{aligned}
$$

The latter step here is essential and it follows from

$$
E\left\{\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon\right\}=E\left\{\left(X^{\prime} X\right)^{-1} X^{\prime}\right\} E\{\varepsilon\}=0
$$

because, from assumption (11), $X$ and $\varepsilon$ are independent and, from (10), $E\{\varepsilon\}=0$.
In addition to knowing that we are, on average, correct, we would also like to make statements about how (un)likely it is to be far off in a given sample. This means we would like to know the distribution of $b$. First of all, the variance of $b$ (conditional upon $X$ ) is given by

$$
\begin{equation*}
V\{b \mid X\}=\sigma^{2}\left(X^{\prime} X\right)^{-1}=\sigma^{2}\left(\sum_{i=1}^{N} x_{i} x_{i}^{\prime}\right)^{-1} \tag{14}
\end{equation*}
$$

which, for simplicity, we shall denote by $V\{b\}$. The $K \times K$ matrix $V\{b\}$ is a variance-covariance matrix, containing the variances of $b_{1}, b_{2}, \ldots, b_{K}$ on the diagonal and their covariances as off-diagonal elements. The poof is fairly easy and goes as follows:

$$
\begin{aligned}
V\{b\} & =E\left\{(b-\beta)(b-\beta)^{\prime}\right\}=E\left\{\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon \varepsilon^{\prime} X\left(X^{\prime} X\right)^{-1}\right\} \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime}\left(\sigma^{2} I_{N}\right) X\left(X^{\prime} X\right)^{-1}=\sigma^{2}\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

where $I_{N}$ is the $N \times N$ identity matrix. To estimate the variance of $b, V\{b\}$, we have to replace the unknown error variance $\sigma^{2}$ with an estimate. An obvious candidate is the sample variance of the residuals $e_{i}=y_{i}-x_{i}^{\prime} b$, that is

$$
\tilde{s}^{2}=\frac{1}{N-1} \sum_{i=1}^{N} e_{i}^{2}
$$

(recalling the average residual is zero). However, because $e_{i}$ different from $\varepsilon_{i}$, this estimator is biased for $\sigma^{2}$.An unbiased estimator is given by

$$
\begin{equation*}
s^{2}=\frac{1}{N-K} \sum_{i=1}^{N} e_{i}^{2} \tag{15}
\end{equation*}
$$

The estimator has a degrees of freedom correction as it divides by the number of observations minus the number of regressors (including the intercept). The variance of $b$ can thus be estimated by

$$
\hat{V}\{b\}=s^{2}\left(X^{\prime} X\right)^{-1}=s^{2}\left(\sum_{i=1}^{N} x_{i} x_{i}^{\prime}\right)^{-1}
$$

The estimated variance of an element $b_{k}$ is given by $s^{2} c_{k k}$, where $c_{k k}$ is the $(k, k)$ element in $\left(\sum_{i} x_{i} x_{i}^{\prime}\right)^{-1}$. The square root of this estimated variance is usually referred to as the standard error of $b_{k}$. We denote it by $s e\left(b_{k}\right)$. It is the estimated standard deviation of $b_{k}$ and is a measure for the accuracy of the estimator. When the error terms are not homoskedastic and/or exhibit autocorrelation, the standard error of the OLS estimator $b_{k}$ will have to be computed in a different way (to be discussed later).

Assumptions (10)-(13) state that the error term $\varepsilon_{i}$ are mutually uncorrelated, are independent of $X$, have zero mean and have constant variance, but do not specify the shape of the distribution. For exact statistical inference from a given sample of $N$ observations, explicit distributional assumptions have to be made. The most common assumption is that the errors are jointly normally distributed. In this case the uncorrelatednes of (13) is equivalent to independence of all error terms. The precise assumption is as follows:

$$
\begin{equation*}
\varepsilon \sim N\left(0, \sigma^{2} I_{N}\right) \tag{16}
\end{equation*}
$$

saying that the vector of error terms $\varepsilon$ has a $N$-variate normal disribution with mean vector 0 and covariance matrix $\sigma^{2} I_{N}$. An alternative way of formulating (16) is

$$
\begin{equation*}
\varepsilon \sim N I D\left(0, \sigma^{2}\right) \tag{17}
\end{equation*}
$$

which is a shorthand way of saying that the error terms $\varepsilon_{i}$ are independent drawings from a normal distribution (n.i.d.) with mean zero and variance $\sigma^{2}$.

To make things simpler, let's consider the $X$ matrix as fixed and deterministic or, alternatively, let's work conditionally upon the outcomes of $X$. Then the following result holds. Under assumptions (11) and (17) the OLS estimator $b$ is normally distributed with mean vector $\beta$ and covariance matrix $\sigma^{2}\left(X^{\prime} X\right)^{-1}$, i.e.

$$
\begin{equation*}
b \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right) \tag{18}
\end{equation*}
$$

The result in (18) implies that each element in $b$ is normally distributed, for example

$$
\begin{equation*}
b_{k} \sim N\left(\beta_{k}, \sigma^{2} c_{k k}\right) \tag{19}
\end{equation*}
$$

where, as before, $c_{k k}$ is the $(k, k)$ element in $\left(X^{\prime} X\right)^{-1}$.These results provide the basis for statistical tests based upon the OLS estimator $b$.

### 1.3.3 Example: Individual wages (continued)

Let's now turn back to our wage example. We can formulate a (fairly trivial) statistical model as

$$
\text { wage }_{i}=\beta_{1}+\beta_{2} \text { male }_{i}+\varepsilon_{i}
$$

where wage $_{i}$ denotes hourly wage rate for individual $i$ and male $_{i}=1$ if $i$ is male and 0 otherwise. Imposing that $E\left\{\varepsilon_{i}\right\}=0$ and $E\left\{\varepsilon_{i} \mid\right.$ male $\}=0$ gives $\beta_{1}$ the interpretation of the expected wage rate for females, while $E\left\{\right.$ wage $_{i} \mid$ male $\left.=1\right\}=\beta_{1}+\beta_{2}$ is the expected wage rate for males. Thus $\beta_{2}$ is the expected wage differential between an arbitrary male and female. We can now say that our estimate of the expected wage differential $\beta_{2}$ between males and females is $\$ 1.17$ with a standard error of $\$ 0.11$. Combined with the normal distribution, this allows us to make statements about $\beta_{2}$. For example, we can test the hypothesis that $\beta_{2}=0$. If this hypothesis is true, the wage differential between males and females in our sample is nonzero only by chance. We'll discuss hypotheses testing shortly.

### 1.4 Goodness-of-fit

Having estimated a particular linear model, a natural question that comes up is: how well does the estimated regression line fit the observations? A popular measure for the goodness-of-fit is the proportion of the (sample) variance of $y$ that is explained by the model. This variable is called the $R^{2}$ (R squared) and is defined as

$$
\begin{equation*}
R^{2}=\frac{\hat{V}\left(\hat{y}_{i}\right)}{\hat{V}\left(y_{i}\right)}=\frac{1(N-1) \sum_{i=1}^{N}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{1(N-1) \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}} \tag{20}
\end{equation*}
$$

where $\hat{y}_{i}=x_{i}^{\prime} b$ and $\bar{y}_{i}=\frac{1}{N} \sum_{i} y_{i}$ denotes the sample mean of $y_{i}$. Note that $\bar{y}$ also corresponds to the sample mean of $\hat{y}_{i}$, because for the average observation $\bar{y}=\bar{x}^{\prime} b$.
$R^{2}$ can be rewritten as

$$
\begin{equation*}
R^{2}=1-\frac{\hat{V}\left\{e_{i}\right\}}{\hat{V}\left\{y_{i}\right\}}=1-\frac{\frac{1}{N-1} \sum_{i=1}^{N} e_{i}^{2}}{\frac{1}{N-1} \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}} \tag{21}
\end{equation*}
$$

In the exceptional cases where the model does not contain an intercapt term, the two expressions for $R^{2}$ are not equivalent. If there is no intercept, we apply the uncentered $R^{2}$ which is defines as

$$
\begin{equation*}
\text { uncentered } R^{2}=\frac{\sum_{i}^{N} \hat{y}_{i}^{2}}{\sum_{i=1}^{N} y_{i}^{2}}=1-\frac{\sum_{i}^{N} e_{i}^{2}}{\sum_{i=1}^{N} y_{i}^{2}} . \tag{22}
\end{equation*}
$$

Generally, the uncentered $R^{2}$ is higher than the standard $R^{2}$.

### 1.4.1 R2

Sometimes $R^{2}$ is interpreted as a measure of quality of the statistical model, while in fact it measures nothing more than the quality of the linear approximation. For later use, we'll present an alternative definition for $R^{2}$, which for OLS is equivalent to (20) and (21), and for any other estimator is guaranteed to be between zero and and one. It is given by

$$
\begin{equation*}
R^{2}=\operatorname{corr}^{2}\left\{y_{i}, \hat{y}_{i}\right\}=\frac{\left(\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)\left(\hat{y}_{i}-\bar{y}\right)\right)^{2}}{\left(\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}\right)\left(\sum_{i=1}^{N}\left(\hat{y}_{i}-\bar{y}\right)^{2}\right)} \tag{23}
\end{equation*}
$$

which denotes the squared (sample) correlation coefficient between the actual and fitted values. Written this way, the $R^{2}$ can be interpreted to measure how well the variation in $\hat{y}_{i}$ reflects the quality of the linear approximation and not necessarily that of the statistical model in which we are interested. As a result, the $R^{2}$ is typically not the most important aspect of our estimation result.

Another drawback of the $R^{2}$ is that it will never decrease if the number of regressors is increased, even if the additional variables have no real explanatory power. A common way to solve this is to correct the variance estimates in (21). This gives the so-called adjusted $R^{2}$, or $\bar{R}^{2}$, defined as

$$
\begin{equation*}
\bar{R}^{2}=1-\frac{1 /(N-K) \sum_{i=1}^{N} e_{i}^{2}}{1 /(N-1) \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}} \tag{24}
\end{equation*}
$$

The goodness-of-fit measure has some punishment for the inclusion of additional explanatory variables in the model and therefore does not automatically increase when regressors are added to the model. In fact, it may decline when a variable is added to the set of regressors. Note that, in extreme cases, the $\bar{R}^{2}$ is strictly smaller than $R^{2}$ unless $K=1$ and the model only includes an intercept.

### 1.5 Hypothesis Testing

Under the Gauss-Markov assumptions (10)-(13) and normality of the error term (17), we saw that the OLS estimator $b$ has a normal distribution with mean $\beta$ and covariance matrix $\sigma^{2}\left(X^{\prime} X\right)^{-1}$. We can use this result to develop tests for hypotheses regarding the unknown population parameter $\beta$. Starting from (19), it follows that the variable

$$
z=\frac{b_{k}-\beta_{k}}{\sigma \sqrt{c_{k k}}}=\frac{b_{k}-\beta_{k}}{s . e .\left(b_{k}\right)}
$$

has a standard normal distribution (i.e., a normal distribution with mean 0 and variance $1, z \sim N(0,1)$ ). If we replace the unknown $\sigma$ by its estimate $s$, this is no longer exactly true. It can be shown that the unbiased estimator $s^{2}$ defined in (15) is independent of $b$ and has a Chi-squared distribution with $N-K$ degrees of freedom. In particular,

$$
(N-K) s^{2} / \sigma^{2} \sim \chi_{N-K}^{2}
$$

Consequently, the random variable

$$
t_{k}=\frac{b_{k}-\beta_{k}}{s \sqrt{c_{k k}}}=\frac{b_{k}-\beta_{k}}{s . \widehat{e .\left(b_{k}\right)}}
$$

is the ratio of a standard normal variable and the square root of an independent Chi-squared variable and therefore follows Student's $t$-distribution with $N-K$ degrees of freedom. The $t$-distribution is close to the standard normal distribution except that it has fatter tails, particularly when the number of degrees of freedom $N-K$ is 'small'. The larger the $N-K$, the more closely the $t$-distribution resembles the standard normal, and for sufficiently large $N-K$ the two distributions are identical.

### 1.5.1 A simple $\boldsymbol{t}$-test

The result above can be used to construct test statistics and confidence intervals. The general idea of hypothesis testing is as follows. Starting from a given hypothesis, the null hypothesis, a test statistic is computed that has a known distribution under the assumption that the null hypothesis is valid. Next, it is
decided whether the computed value of the test statistic is unlikely to come from this distribution, which indicates that the null hypothesis is unlikely to hold. Let's illustrate this with an example.

Suppose we have a null hypothesis that specifies the value of $\beta_{k}$, say $H_{0}: \beta_{k}=\beta_{k}^{0}$, where $\beta_{k}^{0}$ is a specific value chosen by the researcher. If this hypothesis is true, we know that the statistic

$$
\begin{equation*}
t_{k}=\frac{b_{k}-\beta_{k}^{0}}{s . e .\left(b_{k}\right)} \tag{25}
\end{equation*}
$$

has a $t$-distribution with $N-K$ degrees of freedom. If the null hypothesis is not true, the alternative hypothesis $H_{1}: \beta_{k} \neq \beta_{k}^{0}$ holds. The quantity in (25) is a test statistic and it is computed from the estimate $b_{k}$, its standard error s.e. $\left(b_{k}\right)$, and the hypothesized value $\beta_{k}^{0}$ under the null hypothesis. If the test statistic realizes a value that is very unlikely under the null distribution, we reject the null hypothesis. In this case this means very large absolute values for $t_{k}$. To be precise, one rejects the null hypothesis if the probability of observing a value of $\left|t_{k}\right|$ or larger is smaller than a given significance level $\alpha$, often $5 \%$. From this, one can define the critical values $t_{N-K: \alpha / 2}$ using

$$
P\left\{\left|t_{k}\right|>t_{N-K: \alpha / 2}\right\}=\alpha
$$

For $N-K$ not too small, these critical values are only slightly larger than those of the standard normal distribution, for which the two-tailed critical value for $\alpha=0.05$ is 1.96 . Consequently, at the $5 \%$ level the null hypothesis will be rejected if

$$
\left|t_{k}\right|>1.96
$$

The above test is referred to as a two-sided test since the alternative hypothesis allows for values of $\beta_{k}$ on both sides of $\beta_{k}^{0}$. Occasionally, the alternative hypothesis is one-sided, for example: the expected wage for a man is larger than for a woman. Formally, we define the null hypothesis as $H_{0}: \beta_{k} \leq \beta_{k}^{0}$ with alternative $H_{1}: \beta_{k}>\beta$. Next, we consider the distribution of the test statistic $t_{k}$ at the boundary of the null hypothesis (i.e., under $\beta_{k}=\beta_{k}^{0}$, as before) and we reject the null hypothesis if $t_{k}$ is too large (note that large values for $b_{k}$ lead to large values of $t_{k}$ ). Large negative values for $t_{k}$ are compatible with the null hypothesis and do not lead to its rejection. Thus for this one-sided test the critical value is determined by

$$
P\left\{t_{k}>t_{N-K: \alpha}\right\}=\alpha
$$

Using the standard normal approximation again, we reject the null hypothesis at the $5 \%$ level if

$$
t_{k}>1.64
$$

Regression packages ( R , too) typically report the following $t$-value:

$$
t_{k}=\frac{b_{k}}{\text { s.e. }\left(b_{k}\right)}
$$

sometimes referred to as the $t$-ratio, which is the point estimate divided by its standard error. The $t$-ratio is the $t$-statistics one would compute to test the null hypothesis that $\beta_{k}=0$, which may be a hypothesis that is of economic interest as well. If it is rejected, it is said that ' $b_{k}$ differs significantly from zero', or the corresponding variable ' $x_{i k}$ has statistically significant impact on $y_{i}^{\prime}$. Often we simply say that (the effect of) ' $x_{i k}$ is statistically significant'. Note that, if an economic variable is statistically significant, this does not necessarily imply that its impact is economically meaningful. Therefore, it is good practice to pay attention to the magnitude of the coefficients as well as to their statistical significance.

A confidence interval can be defined as the interval of all values for $\beta_{k}^{0}$ for which the null hypothesis $\beta_{k}=\beta_{k}^{0}$ is not rejected by the $t$-test. Loosely speaking, given the estimate $b_{k}$ and its associated standard error, a confidence interval gives a range of values which are likely to contain the true value $\beta_{k}$. It is derived from the fact that the following inequalities hold with probability $1-\alpha$ :

$$
-t_{K-N: \alpha / 2}<\frac{b_{k}-\beta_{k}}{\text { s.e. }\left(b_{k}\right)}<t_{N-K: \alpha / 2}
$$

or

$$
b_{k}-t_{N-K: \alpha / 2} \text { s.e. }\left(b_{k}\right)<\beta_{k}<b_{k}+t_{N-K: \alpha / 2} \text { s.e. }\left(b_{k}\right) .
$$

Consequently, using the standard normal approximation, a $95 \%$ condidence interval (setting $\alpha=0.05$ ) for $\beta_{k}$ is given by the interval

$$
b_{k}-1.96 \times \text { s.e. }\left(b_{k}\right), b_{k}+1.96 \times \text { s.e. }\left(b_{k}\right) .
$$

In repeated sampling, $95 \%$ of those intervals will contain the true value $\beta_{k}$ which is a fixed but unknown number.

### 1.5.2 Example: Individual wages (continued)

From the results of the previous example we can compute $t$-ratios and perform simple tests. For example, if we want to test whether $\beta_{2}=0$, we construct the $t$-statistics as the estimate divided by its standard error to get $t_{2}=1.16610 / 0.11224=10.39$. Given the large number of observations, the appropriate $t$-distribution is virtually identical to the standard normal one, so that the $5 \%$ two-tailed critical value is 1.96. This means that we clearly reject the null hypothesis that $\beta_{2}=0$. That is, we reject that in the US population the expected wage differential between males and females is zero. We can also compute a confidence interval, which has bounds $1.17 \pm 1.96 \times 0.11$. This means that with $95 \%$ confidence we can say that over the entire US population the expected wage differential between males and females is between $\$ 0.95$ and $\$ 1.39$ per hour.

### 1.5.3 A joint test of significance of regression coefficients

A standard test that is typically automatically suplied by a regression package (also suplied by R) is a test for the joint hypothesis that all coefficients, except the intercept $\beta_{1}$, are equal to zero. Without loss of generality, assume that these are the last $J$ coefficients in the model

$$
H_{0}: \beta_{K-J+1}=\cdots=\beta_{K}=0
$$

The alternative hypothesis in this case is that $H_{0}$ is not true, i.e., at least one of these $J$ coefficients in not equal to zero.

We can define the following test statistic:

$$
\begin{equation*}
F=\frac{\left(S_{0}-S_{1}\right) / J}{S_{1} /(N-K)} \tag{26}
\end{equation*}
$$

where $S_{1}$ is the residual sum of squares of the full model and $S_{0}$ is the residual sum of squares of the restricted model. Under the null hypothesis, $F$ has and $F$-distribution with $J$ and $N-K$ degrees of freedom. denoted $F_{N-K}^{J}$. If we use the definition of the $R^{2}$ from (2.42), we can also write this $F$-statistic as

$$
\begin{equation*}
F=\frac{\left(R_{1}^{2}-R_{0}^{2}\right) / J}{\left(1-R_{1}^{2}\right) /(N-K)} \tag{27}
\end{equation*}
$$

where $R_{1}^{2}$ and $R_{0}^{2}$ are the usual goodness-of-fit measures for the unrestricted and the restricted model, respectively. This shows that the test can be interpreted as testing whether the increase in $R^{2}$ moving from the restricted model to the more general model is significant.

It is clear that in this case only very large values for the test statistic imply rejection of the null hypothesis. Despite the two-sided alternative hypothesis, the critical values $F_{N-K: \alpha}^{J}$ for this test are one-sided and defined by the following equality:

$$
P\left\{F>F_{N-K: \alpha}^{J}\right\}=\alpha
$$

where $\alpha$ is the significance level of the test. For example, if $N-K=60$ and $J=3$ the critical value at the $5 \%$ level is 2.76 . The resulting test is referred to a the $\boldsymbol{F}$-test.

The $F$-statistic is routinely provided by the majority of all regression packages. Note that it is a simple function of the $R^{2}$ of the model (see, (27)).

### 1.5.4 Example: Individual wages (continued)

The fact that we concluded above that there was a significant difference between expected wage rates for males and females does not necessarily point to discrimination. It is possible that working males and females differ in terms of their characteristics, for example their years of schooling. To analyze this, we can extend the regression model with additional explanatory variables, for example school ${ }_{i}$, which denotes the years of schooling, and expr $r_{i}$, which denotes experience in years. The model is now interpreted to describe the conditional expected wage of an individual given his or her gender, years of schooling and experience and can be written a

$$
\text { wage }_{i}=\beta_{1}+\beta_{2} \text { male }_{i}+\beta_{3} \text { school }_{i}+\beta_{4} \text { exper }_{i}+\varepsilon_{i}
$$

The coefficient $\beta_{2}$ for male $e_{i}$ now measures the difference in expected wage between a male and a female with the same schooling and experience. Similarly, the coefficient $\beta_{3}$ for school ${ }_{i}$ gives the expected wage difference between two individual with the same experience and gender where one has one additional year of schooling. In general, the coefficients in a multiple regression model can only be interpreted under a ceteris paribus condition, which says that that the other variables that are included in the model are constant.

```
> #my.data <- read.table("H:/721364P/Rdata/wages1.dat", header=T)
> m2 <- lm(WAGE~MALE+SCHOOL+EXPER)
> summary(m2)
Call:
lm(formula = WAGE ~ MALE + SCHOOL + EXPER)
Residuals:
 Min
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.38002 0.46498 -7.269 4.50e-13 ***
MALE 1.34437 0.10768 12.485 < 2e-16 ***
SCHOOL 0.63880 0.03280 19.478 < 2e-16 ***
EXPER 0.12483 0.02376 5.253 1.59e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.046 on 3290 degrees of freedom
Multiple R-squared: 0.1326, Adjusted R-squared: 0.1318
F-statistic: 167.6 on 3 and 3290 DF, p-value: < 2.2e-16
> # males
> males <- subset(my.data,MALE==1)
> m.males <- lm(WAGE~SCHOOL+EXPER,data=males)
> summary(m.males)
Call:
lm(formula = WAGE ~ SCHOOL + EXPER, data = males)
Residuals:
 Min 1Q Median 3Q Max
-7.850-2.120-0.539 1.553 34.203
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
```

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline (Intercept) & -2.62390 & 0.68924 & -3.807 & 0.000146 & *** \\
\hline SCHOOL & 0.69349 & 0.04760 & 14.569 & < 2e-16 & \\
\hline EXPER & 0.12032 & 0.03505 & 3.433 & 0.000612 & *** \\
\hline
\end{tabular}
Residual standard error: 3.303 on 1722 degrees of freedom
Multiple R-squared: 0.1099, Adjusted R-squared: 0.1089
F-statistic: 106.3 on 2 and 1722 DF, p-value: < 2.2e-16
> # females
> females <- subset(my.data,MALE==0)
> m.females <- lm(WAGE~SCHOOL+EXPER,data=females)
> summary(m.females)
Call:
lm(formula = WAGE ~ SCHOOL + EXPER, data = females)
Residuals:
 Min 1Q Median 3Q Max
-5.9093-1.7883-0.4244 1.3091 27.0794
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.59337 0.60235 -4.305 1.77e-05 ***
SCHOOL 0.56123 0.04491 12.496 < 2e-16 ***
EXPER 0.14184 0.03184 4.455 8.98e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.733 on 1566 degrees of freedom
Multiple R-squared: 0.09805, Adjusted R-squared: 0.0969
F-statistic: 85.12 on 2 and 1566 DF, p-value: < 2.2e-16
> # test the schooling parameters are equal:
> t.school <- (0.69349-0.56123)/0.04760 # test statistic
> t.school
[1] 2.778571
```

```
> pval <- 2*(1-pnorm(t.school)) # p-value
```

> pval <- 2*(1-pnorm(t.school)) \# p-value
> pval \# reject the null
[1] 0.005459851

```
```

> \# test the experience parameters are equal:

```
> # test the experience parameters are equal:
> t.exper <- (0.12032-0.14184)/0.03505 # test statistic
> t.exper <- (0.12032-0.14184)/0.03505 # test statistic
> t.exper
> t.exper
[1] -0.61398
> pval <- 2*pnorm(t.exper) # p-value
> pval # no not reject the null
[1] 0.5392285
```

The coefficient for male $_{i}$ now suggests that, if we compare an arbitrary male and female with the same years of schooling and experience, the expected wage differential is $\$ 1.34$ compared with $\$ 1.17$ before. With a standard error of $\$ 0.11$, this difference is still statistically highly significant. The null hypothesis that schooling has no effect on a person's wage, given gender and experience, can be tested using the $t$-test described above, with a test statistic of 19.48. Clearly the null hypothesis has to be rejected. The estimated wage increase from one additional year of schooling, keeping years of experience fixed, is $\$ 0.64$.

It should not be surprising, given these results, that the joint hypothesis that all three partial slope coefficients $\left(\beta_{2}, \beta_{3}, \beta_{4}\right)$ are zero, that is, wages are not affected by gender, schooling or experience, has to be rejected as well. The $F$-statistic takes the value of 167.6 , while the appropriate $5 \%$ critical value is 2.60 .

Finally, we can use the above results to compare this model with the simpler one, the first model. The $R^{2}$ has increased from 0.0317 to 0.1326 , which means that the current model is able to explain $13.3 \%$ of the within-sample variation in wages. We can perform a joint test on the hypothesis that the two additional variables, schooling and experience, both have zero coefficients, by performing the $F$-test described above. The test statistic in (27) can be computed from the $R^{2}$ s reported in the OLS outputs as

$$
F=\frac{(0.1326-0.0317 / 2)}{(1-0.1326) /(3294-4)}=191.35
$$

With $5 \%$ critical value of 3.00 , the null hypothesis is obviously rejected. We can thus conclude that the model that included gender, schooling and experience performs significantly better than the model that only includes gender.

### 1.5.5 More testing examples:

```
> # F-test
> # Estimating the restricted (restricting some (or all) of slope coefficients to be zero)
> # and the unrestricted model (allowing non-zero as well as zero coefficients). You can use
> # anova() (analysis of variance) to test the joint hypotheses defined as in the restricted model.
> mod.restricted <- lm(WAGE~MALE) # restricted model
> # summary(mod.restricted) # output suppressed
> mod.unrestricted <- lm(WAGE~MALE+SCHOOL+EXPER) # unrestricted model
> # summary(mod.unrestricted) # output suppressed
> anova(mod.restricted,mod.unrestricted)
Analysis of Variance Table
Model 1: WAGE ~ MALE
Model 2: WAGE ~ MALE + SCHOOL + EXPER
 Res.Df RSS Df Sum of Sq F Fr Pr(>F)
1 3292 34077
2 3290 30528 2 3549 191.24< 2.2e-16 ***
Signif. codes: 0 '***'0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' ' 1
> library(lmtest)
> # t-test for coefficients
> mod <- lm(WAGE~MALE+SCHOOL+EXPER)
> # summary(mod) # output suppressed coeftest(mod)
> # Wald test
> mod1 <- lm(WAGE~MALE+SCHOOL+EXPER,data=my.data)
> #summary(mod1)
> mod2 <- lm(WAGE~SCHOOL+EXPER,data=my.data)
> #summary(mf)
> waldtest(mod1,mod2)
```

Wald test

```
Model 1: WAGE ~ MALE + SCHOOL + EXPER
Model 2: WAGE ~ SCHOOL + EXPER
 Res.Df Df \(\quad \mathrm{F} \quad \operatorname{Pr}(>F)\)
13290
\(23291-1155.88<2.2 \mathrm{e}-16\) ***

Signif. codes: \(0{ }^{\prime} * * * ' 0.001{ }^{\prime * * '} 0.01 '^{\prime} 0.05{ }^{\prime} .{ }^{\prime} 0.1\) ' 1
```


### 1.6 Illustration: The Capital Asset Pricing Model (Verbeek: pp. 38-42)

```
> capm.data <- read.table("H:/721364P/Rdata/capm.dat", header=T)
> head(capm.data)
```



| month | constrrf | durblrf | foodrf |
| :---: | :---: | :---: | :---: |
| Min. :196001 | Min. : -29.8100 | Min. : -25.9000 | Min. : -18.800 |
| 1st Qu.:197209 | 1st Qu.: -3.1800 | 1st Qu.: -2.8500 | 1st Qu.: -1.603 |
| Median :198506 | Median : 0.4200 | Median : 0.4250 | Median : 0.715 |
| Mean :198498 | Mean : 0.4379 | Mean : 0.3275 | Mean : 0.653 |
| 3rd Qu.:199802 | 3rd Qu.: 3.7475 | 3rd Qu.: 4.0000 | 3rd Qu.: 3.223 |
| $\begin{gathered} \text { Max. } \quad: 201010 \\ \mathrm{hml} \end{gathered}$ | Max. : 25.5200 jan | $\text { Max. } \underset{\text { rf }}{\text { : } 29.4500}$ | $\begin{aligned} & \text { Max. }: 19.520 \\ & \text { rmrf } \end{aligned}$ |
| Min. : -12.7800 | Min. 00.00000 | Min. 00.000 | Min. : -23.140 |
| 1st Qu.: -1.1500 | 1st Qu.:0.00000 | 1st Qu.:0.280 | 1st Qu.: -2.205 |
| Median : 0.4350 | Median :0.00000 | Median :0.410 | Median : 0.840 |
| Mean : 0.4022 | Mean :0.08361 | Mean :0.427 | Mean : 0.437 |
| 3rd Qu.: 1.7975 | 3rd Qu.:0.00000 | 3rd Qu.:0.530 | 3rd Qu.: 3.462 |
| $\begin{gathered} \text { Max. } \begin{array}{c} : \\ \text { smb } \end{array} \end{gathered}$ | Max. 1.00000 | Max. : 1.350 | Max. : 16.050 |
| Min. :-16.670 |  |  |  |
| 1st Qu.: -1.460 |  |  |  |
| Median : 0.070 |  |  |  |
| Mean : 0.230 |  |  |  |
| 3rd Qu.: 2.038 |  |  |  |
| Max. : 22.190 |  |  |  |

```
> # Table 2.3 in Verbeek
> # CAPM regressions without intercept
> m1 <- lm(foodrf~rmrf-1) # Food
> summary(m1)
Call:
lm(formula = foodrf ~ rmrf - 1)
Residuals:
\begin{tabular}{rrrrr}
Min & \(1 Q\) & Median & 3Q & Max \\
-13.539 & -1.026 & 0.141 & 1.745 & 15.924
\end{tabular}
Coefficients:
 Estimate Std. Error t value Pr (>|t|)
rmrf 0.75774 0.02579 29.39 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.884 on 609 degrees of freedom
Multiple R-squared: 0.5864, Adjusted R-squared: 0.5857
F-statistic: 863.5 on 1 and 609 DF, p-value: < 2.2e-16
> m2 <- lm(durblrf~rmrf-1) # Durables
> summary(m2)
Call:
lm(formula = durblrf ~ rmrf - 1)
Residuals:
 Min 1Q Median 3Q Max
-9.6504 -1.9420 -0.3069 1.7332 17.8871
Coefficients:
 Estimate Std. Error t value Pr (>|t|)
rmrf 1.04736 0.02775 37.74 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.105 on 609 degrees of freedom
Multiple R-squared: 0.7005, Adjusted R-squared: 0.7
F-statistic: }1424\mathrm{ on 1 and 609 DF, p-value: < 2.2e-16
> m3 <- lm(constrrf~rmrf-1) # Construction
> summary(m3)
Call:
lm(formula = constrrf ~ rmrf - 1)
Residuals:
\begin{tabular}{rrrrr}
Min & 1Q & Median & 3Q & Max \\
-12.9414 & -1.7193 & -0.1866 & 1.4458 & 11.6551
\end{tabular}
Coefficients:
 Estimate Std. Error t value Pr (>|t|)
rmrf 1.16662 0.02535 46.01 <2e-16 ***
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.836 on 609 degrees of freedom
Multiple R-squared: 0.7766, Adjusted R-squared: 0.7763
F-statistic: }2117\mathrm{ on 1 and 609 DF, p-value: < 2.2e-16
> # Table 2.4 in Verbeek
> # CAPM regressions with intercept
> m4 <- lm(foodrf~rmrf) # Food
> summary(m4)
Call:
lm(formula = foodrf ~ rmrf)
Residuals:
\begin{tabular}{rrrrr}
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-13.8088 & -1.3498 & -0.1708 & 1.4423 & 15.5687
\end{tabular}
Coefficients:
 Estimate Std. Error t value Pr (>|t|)
\begin{tabular}{lrrrr}
(Intercept) & 0.32486 & 0.11669 & 2.784 & \(0.00554 * *\) \\
rmrf & 0.75082 & 0.02576 & 29.142 & \(<2 e^{*}-16 * * *\)
\end{tabular}

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.869 on 608 degrees of freedom
Multiple R-squared: 0.5828, Adjusted R-squared: 0.5821
F-statistic: 849.2 on 1 and 608 DF, p-value: < 2.2e-16
> m5 <- lm(durblrf~rmrf) # Durables
> summary(m5)
Call:
lm(formula = durblrf ~ rmrf)
Residuals:
\begin{tabular}{rrrrr}
Min & 1Q & Median & 3Q & Max \\
-9.5355 & -1.8116 & -0.1857 & 1.8485 & 17.9876
\end{tabular}
```


## Coefficients:

```
 Estimate Std. Error t value Pr (>|t|)
(Intercept) -0.13141 0.12628 -1.041 0.298
rmrf 1.05016 0.02788 37.664 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.104 on 608 degrees of freedom
Multiple R-squared: 0.7, Adjusted R-squared: 0.6995
F-statistic: }1419\mathrm{ on 1 and 608 DF, p-value: < 2.2e-16
> m6 <- lm(constrrf~rmrf) # Construction
> summary(m6)
Call:
lm(formula = constrrf ~ rmrf)
```

Residuals:

| Min | $1 Q$ | Median | 3Q | Max |
| ---: | ---: | ---: | ---: | ---: |
| -12.879 | -1.641 | -0.115 | 1.520 | 11.725 |

Coefficients:


Residual standard error: 2.837 on 608 degrees of freedom
Multiple R-squared: 0.7756, Adjusted R-squared: 0.7752
F-statistic: 2101 on 1 and 608 DF, p-value: < $2.2 \mathrm{e}-16$

```
> # Table 2.5 in Verbeek
> # CAPM regressions with intercept and January dummy
>m7 <- lm(foodrf~jan+rmrf) # Food
> summary(m7)
Call:
lm(formula = foodrf ~ jan + rmrf)
```

Residuals:

| Min | 1Q | Median | 3Q | Max |
| ---: | ---: | ---: | ---: | ---: |
| -13.8969 | -1.3599 | -0.1552 | 1.4408 | 15.5047 |

Coefficients:

|  | Estimate | Std. Error t value $\operatorname{Pr}(>\|t\|)$ |  |  |
| :--- | ---: | ---: | ---: | ---: | :--- |
| (Intercept) | 0.39745 | 0.12140 | 3.274 | $0.00112 * *$ |
| jan | -0.87849 | 0.41870 | -2.098 | $0.03631 *$ |
| rmrf | 0.75277 | 0.02571 | 29.280 | $<2 e-16 * * *$ |

Signif. codes: $0{ }^{\prime * * * '} 0.001^{\prime * * '} 0.01 '^{\prime \prime} 0.05 '^{\prime} 0.1^{\prime} 1$
Residual standard error: 2.861 on 607 degrees of freedom
Multiple R-squared: 0.5858, Adjusted R-squared: 0.5844
F-statistic: 429.2 on 2 and 607 DF, p-value: < $2.2 \mathrm{e}-16$
> m8 <- lm(durblrf $\left.{ }^{\sim} j a n+r m r f\right)$ \# Durables
> summary (m8)
Call:
$\operatorname{lm}(f o r m u l a=$ durblrf $\sim j a n+r m r f)$
Residuals:

| Min | $1 Q$ | Median | 3Q | Max |
| ---: | ---: | ---: | ---: | ---: |
| -9.5223 | -1.8001 | -0.1801 | 1.8415 | 18.0025 |

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
$\begin{array}{lllll}\text { (Intercept) }-0.14287 & 0.13184 & -1.084 & 0.279\end{array}$

| jan | 0.13872 | 0.45473 | 0.305 | 0.760 |
| :--- | ---: | ---: | ---: | ---: |
| rmrf | 1.04985 | 0.02792 | 37.600 | $<2 e-16 * * *$ |

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.107 on 607 degrees of freedom
Multiple R-squared: 0.7, Adjusted R-squared: 0.699
F-statistic: 708.3 on 2 and 607 DF, p-value: < 2.2e-16
> m9 <- lm(constrrf~ jan+rmrf) # Construction
> summary(m9)
Call:
lm(formula = constrrf ~ jan + rmrf)
Residuals:
\begin{tabular}{rrrrr}
Min & \(1 Q\) & Median & 3Q & Max \\
-12.8203 & -1.6622 & -0.0673 & 1.5535 & 11.7772
\end{tabular}
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.12246 0.12031 -1.018 0.309
jan 0.60354 0.41494 1.455 0.146
rmrf 1.16683 0.02548 45.797 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.835 on 607 degrees of freedom
Multiple R-squared: 0.7763, Adjusted R-squared: 0.7756
F-statistic: }1054\mathrm{ on 2 and 607 DF, p-value: < 2.2e-16
```


### 1.6.1 The World's largest hedge fund (Verbeek, pp. 42-43)

```
> madoff.data <- read.table("H:/721364P/Rdata/madoff.dat", header=T)
> head(madoff.data)
 month fsl fslrf hml rf rmrf smb
1 01dec1990 2.77 2.17 -1.50 0.60 2.35 0.77
2 01jan1991 3.01 2.49 -1.73 0.52 4.39 3.85
3 01feb1991 1.40 0.92 -0.59 0.48
4 01mar1991 0.52 0.08 -1.19 0.44 2.45 3.92
5 O1apr1991 1.32 0.79 1.43 0.53 -0.20 0.52
6 01may1991 1.82 1.35 -0.56 0.47 3.60-0.33
> tail(madoff.data)
 month fsl fslrf hml rf rmrf smb
210 01may2008 0.81 0.64 -0.31 0.17 2.22 2.87
211 01jun2008 -0.06 -0.23 -1.05 0.17 -8.03 1.08
212 01jul2008 0.72 0.57 3.61 0.15
213 01aug2008
214 01sep2008 0.50
215 01oct2008 -0.06 -0.14 -3.13 0.08 -18.54 -2.12
> attach(madoff.data)
The following object(s) are masked from 'capm.data':
 hml, month, rf, rmrf, smb
```

```
> summary(madoff.data)
```

| month | fsl | fslrf | hml |
| :---: | :---: | :---: | :---: |
| 01apr1991: | Min. : -0.6400 | Min. : -1.0100 | Min. : -12.7800 |
| 01apr1992: | 1st Qu.: 0.2950 | 1st Qu.:-0.0400 | 1st Qu.: -1.3450 |
| 01apr1993: | Median : 0.7300 | Median : 0.3900 | Median : 0.3100 |
| 01apr1994: | Mean : 0.8422 | Mean : 0.5246 | Mean : 0.4164 |
| 01apr1995: | 3rd Qu.: 1.2700 | 3rd Qu.: 0.9400 | 3rd Qu.: 1.9550 |
| 01apr1996: | Max. : 3.2900 | Max. : 3.1400 | Max. : 13.8400 |
| (Other) :209 |  |  |  |
| rf | rf | smb |  |
| Min. $\quad 0.0600$ | Min. :-18.5400 | Min. :-16.670 |  |
| 1st Qu.:0.2200 | 1st Qu.: -2.0800 | 1st Qu.: -1.635 |  |
| Median :0.3500 | Median : 1.0300 | Median : 0.050 |  |
| Mean :0.3177 | Mean : 0.4795 | Mean : 0.254 |  |
| 3rd Qu.:0.4200 | 3rd Qu.: 3.3600 | 3rd Qu.: 2.185 |  |
| Max. 00.6000 | Max. : 10.3000 | Max. : 22.190 |  |
| ```> # Table 2.6 CAPM regression (with intercept) Madoff's returns > madoff.capm <-lm(fslrf nrmrf) > summary(madoff.capm)``` |  |  |  |

Call:
lm(formula $=$ fslrf ~ rmrf)
Residuals:

| Min | 1Q | Median | 3Q | Max |
| ---: | ---: | ---: | ---: | ---: |
| -1.34773 | -0.48005 | -0.08337 | 0.38865 | 2.97276 |

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $0.504950 .04570 \quad 11.049<2 e-16 * * *$
$\begin{array}{lllll}\text { rmrf } & 0.04089 & 0.01072 & 3.813 & 0.00018 * * *\end{array}$
Signif. codes: $0{ }^{\prime * * * ' ~} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6658 on 213 degrees of freedom
Multiple R-squared: 0.06388, Adjusted R-squared: 0.05949
F-statistic: 14.54 on 1 and 213 DF, p-value: 0.0001801

### 1.7 Asymptotic Properties of the OLS Estimator

This section lists briefly the asymptotic properties of the OLS estimator

### 1.7.1 Consistency

Let us start with the linear model under the Gauss-Markov assumptions. In this case we know that the OLS estimator $b$ has the following first two moment:

$$
\begin{gathered}
E\{b\}=\beta \\
V\{b\}=\sigma^{2}\left(\sum_{i=1}^{N} x_{i} x_{i}^{\prime}\right)^{-1}=\sigma^{2}\left(X^{\prime} X\right)^{-1}
\end{gathered}
$$

What happens when the sample size $N$ grows to infinity? It is clear that $\sum_{i=1}^{N} x_{i} x_{i}^{\prime}$ increases as the number of terms grows, so that the variance of $b$ decreases as the sample size increases. If we assume that

$$
\begin{equation*}
\frac{1}{N} \sum_{i=1}^{N} x_{i} x_{i}^{\prime} \text { converges to a finite nonsingular matrix } \Sigma_{x x} \tag{28}
\end{equation*}
$$

if the sample size $N$ becomes infinitely large. It follows directly that 'the probability limit of $b$ is $\beta$ ', or ' $b$ converges in probability to $\beta^{\prime}$, or just

$$
\operatorname{plim} b=\beta
$$

When an estimator for $\beta$ converges to the true value, we say that it is a consistent estimator.

### 1.7.2 Asymptotic normality

If the small sample distribution of an estimator is unknown, the best we can do is try to find some approximation. In most cases, one uses an asymptotic approximation (for $N$ growing to infinity) based on the asymptotic distribution. Most estimators in econometrics can be shown to be asymptotically normally distributed.

For the OLS estimator it can be shown that under the Gauss-Markov conditions (10)-(13) combined with (28) we have

$$
\sqrt{N}(b-\beta) \rightarrow N\left(0, \sigma^{2} \Sigma_{x x}^{-1}\right)
$$

where $\rightarrow$ means 'is asymptotically distributed as' and $\sqrt{N}$ is referred to as the rate of convergence. Thus, the OLS estimator $b$ is asymptotically normally distributed with variance-covariance matrix $\sigma^{2} \Sigma_{x x}^{-1}$.

## 2 Interpreting and Comparing Regression Models

### 2.1 Interpreting the Linear Model

As already stressed the linear model

$$
\begin{equation*}
y_{i}=x_{i}^{\prime} \beta+\varepsilon_{i} \tag{29}
\end{equation*}
$$

has little meaning unless we complement it with additional assumption on $\varepsilon_{i}$. It is common to state that $\varepsilon_{i}$ has expectation zero and that the $x_{i}$ s are taken as given. A formal way of stating this is that it is assumed that the expected value of $\varepsilon_{i}$ given $X$, or expected value of $\varepsilon_{i}$ given $x_{i}$ is zero; that is

$$
\begin{equation*}
E\left\{\varepsilon_{i} \mid X\right\}=0 \text { or } E\left\{\varepsilon_{i} \mid x_{i}\right\}=0 \tag{30}
\end{equation*}
$$

respectively, where the latter condition is implied by the first. Under $E\left\{\varepsilon_{i} \mid x_{i}\right\}=0$, we can interpret the regression model as describing the conditional expected value of $y_{i}$ given values for the explanatory variables $x_{i}$.

For example, what is the expected wage for an arbitrary woman of age 40, with a university education and 14 years of experience? Or, what is the expected unemployment rate given wage rates, inflation and total output in the economy? Or, what is the expected return on a stock, if the expected return on the market is $12 \%$, the risk-free rate is $5 \%$ and the asset's beta is 0.8 ?

The first consequence of (30) is the interpretation of the individual $\beta$ coefficient. For example, $\beta_{k}$ measures the expected change in $y_{i}$ if $x_{i k}$ changes with one unit but all the other variables in $x_{i}$ do not change. This is,

$$
\frac{\partial E\left\{y_{i} \mid x_{i}\right\}}{\partial x_{i k}}=\beta_{k}
$$

It is important to realize that we had to state explicitly that the other variables in $x_{i}$ did not change. This is the so-called ceteris paribus condition. An important consequence of this condition is that it is impossible to interpret a single coefficient in a regression model without knowing what the other variables in the equation are. If interest is focused on the relationship between $y_{i}$ and $x_{i k}$, the other variables in $x_{i}$ act as control variables.

### 2.2 Selecting the Set of Regressors

### 2.2.1 Misspecifying the set of regressors

If one is (implicitely) assuming that the conditioning set of the model contains more variables than the ones that are included, it is possible that the set of explanatory variables is 'misspecified'. This means that one or more of the omitted variables are relevant, i.e. have nonzero coefficients.

### 2.2.2 Selecting regressors

Again, it should be stressed that, if we interpret the regression model as describing the conditional expectation of $y_{i}$ given the included variables $x_{i}$, there is no issue of misspecified set of regressors, although there might be a problem of functional form. This implies that statistically there is nothing to test here. The set of $x_{i}$ variables will be chosen on the basis of what we find interesting, and often economic theory or common sense guides us in our choice. Interpreting the model in a broader sense implies that there may be relevant regressors that are excluded or irrelevant ones that are included. To find potentially relevant variables, we can use economic thery again.

It is a good practice to select the set of potentially relevant variables on the basis of economic arguments rather that statistical ones. Although it is sometimes suggested otherwise, statistical arguments are never certainty arguments. That is, there is always a small (but not ignorable non-zero) probability of drawing the wrong conclusion. For example, there is always a probability of rejecting the null hypothesis that a coefficient is zero, while the null is is actually true. Such type I errors ${ }^{2}$ are rather likely to happen if we use a sequence of many tests to select the regressors to include in the model. This process is referred to as data snooping or data mining and in economics it is not a compliment if someone accuses you of doing it. In general, data snooping refers to the fact that a given set of data is used more than once to choose a model specification and to test hypotheses. You can imagine, for example, that, if you have a set of 20 potential regressors and you try each one of them, it is quite likely to conclude that one of them is significant, even though there is no true relationship between any of these regressors and the variable you are explaining. ${ }^{3}$ The probability of making incorrect choises is high, and it is not unlikely that your 'model' captures some peculiarities (e.g. 'calendar anomalies') in the data that have no real meaning outside the sample. In practice, however, it is hard to prevent some amount of data snooping from entering your work. ${ }^{4}$

Besides formal statistical tests there are other criteria that are sometimes used to select a set of regressors. First of all, the $R^{2}$, discussed earlier, measures the proportion of the sample variation in $y_{i}$ that is explained by variation in $x_{i}$. However, using $R^{2}$ as the criterion would not be optimal, since with too many variables we will not be able to say very much about the model's coefficients, as they may be estimated rather inaccurately. Because the $R^{2}$ does not 'punish' the inclusion of many variables, it would be better to use a measure that incorporates a trade-off between goodness-of-fit and the number of regressors. The adjusted $\bar{R}^{2}(24)$ is such a measure.

There exist a number of alternative criteria that provide such trade-off, the most common ones being Akaike's Information Criterion (AIC)

$$
\begin{equation*}
A I C=\ln \frac{1}{N} \sum_{i=1}^{N} e_{i}^{2}+\frac{2 K}{N} \tag{31}
\end{equation*}
$$

and the Rissanen-Schwartz Bayesian Information Criterion (BIC)

$$
\begin{equation*}
B I C=\ln \frac{1}{N} \sum_{i=1}^{N} e_{i}^{2}+\frac{K}{N} \ln N . \tag{32}
\end{equation*}
$$

[^1]Models with lower $A I C$ or $B I C$ are typically preferred. Note that both criteria add a penaty that increases with the number of regressors. Because the penaly is larger for $B I C$, the latter criterion tend to favour more parsimomious ('less parameters') than AIC.

Alternatively, it is possible to test whether the increase in $R^{2}$ is statistically significant using the $F$-test (27).

### 2.3 Illustration: Explaining House Prices (Verbeek, pp. 72-76)

```
> house <- read.table("H:/721364P/Rdata/HOUSING.dat", header=T)
> attach(house)
> names(house)
```

```
[1] "price" "lotsize" "bedrooms" "bathrms" "stories" "driveway"
```

[1] "price" "lotsize" "bedrooms" "bathrms" "stories" "driveway"
[7] "recroom" "fullbase" "gashw" "airco" "garagepl" "prefarea"
[7] "recroom" "fullbase" "gashw" "airco" "garagepl" "prefarea"
> head(house)

```
> head(house)
```



```
> # Table 3.1 page 73
> house1 <- lm(log(price)~log(lotsize)+bedrooms+bathrms+airco)
> summary(house1)
Call:
lm(formula = log(price) ~ log(lotsize) + bedrooms + bathrms +
 airco)
Residuals:
\begin{tabular}{rrrrr}
Min & 1Q & Median & 3Q & Max \\
-0.81782 & -0.15562 & 0.00778 & 0.16468 & 0.84143
\end{tabular}
Coefficients:
\begin{tabular}{lrrrrr}
& Estimate & Std. Error t value \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
(Intercept) & 7.09378 & 0.23155 & 30.636 & \(<2 \mathrm{e}-16 * * *\) \\
log(lotsize) & 0.40042 & 0.02781 & 14.397 & \(<2 \mathrm{e}-16 * * *\) \\
bedrooms & 0.07770 & 0.01549 & 5.017 & \(7.11 \mathrm{e}-07 * * *\) \\
bathrms & 0.21583 & 0.02300 & 9.386 & \(<2 \mathrm{e}-16 * * *\) \\
airco & 0.21167 & 0.02372 & 8.923 & \(<2 \mathrm{e}-16 * * *\)
\end{tabular}

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2456 on 541 degrees of freedom
Multiple R-squared: 0.5674, Adjusted R-squared: 0.5642
F-statistic: 177.4 on 4 and 541 DF, p-value: < 2.2e-16
```

```
> AIC(house1)
```

[1] 23.05703

```
> BIC(house1)
```

[1] 48.87274

```
> # Table 3.2 page 74
> house2 <- lm(log(price)~log(lotsize)+bedrooms+bathrms+airco+driveway+recroom+
+ fullbase+gashw+garagepl+prefarea+stories)
> summary(house2)
Call:
lm(formula = log(price) ~ log(lotsize) + bedrooms + bathrms +
 airco + driveway + recroom + fullbase + gashw + garagepl +
 prefarea + stories)
Residuals:
\begin{tabular}{rrrrr}
Min & \(1 Q\) & Median & 3Q & Max \\
-0.68355 & -0.12247 & 0.00802 & 0.12780 & 0.67564
\end{tabular}
Coefficients:
```



```
Residual standard error: 0.2104 on 534 degrees of freedom
Multiple R-squared: 0.6865, Adjusted R-squared: 0.6801
F-statistic: 106.3 on 11 and 534 DF, p-value: < 2.2e-16
> AIC(house2)
```

[1] -138.8234
> BIC(house2)
[1] -82.88931

```
> # Table 3.3 page 75
> house3 <- lm(price~lotsize+bedrooms+bathrms+airco+driveway+recroom+
+ fullbase+gashw+garagepl+prefarea+stories)
> summary(house3)
```

Call:
lm(formula = price ~ lotsize + bedrooms + bathrms + airco + driveway + recroom + fullbase + gashw + garagepl + prefarea + stories)

Residuals:

| Min | 1Q Median | $3 Q$ | Max |  |
| ---: | ---: | ---: | ---: | ---: |
| -41389 | -9307 | -591 | 7353 | 74875 |

Coefficients:

$$
\text { Estimate Std. Error } t \text { value } \operatorname{Pr}(>|t|)
$$

(Intercept) -4038.3504 3409.4713 $\mathbf{- 1 . 1 8 4} 0.236762$
lotsize $3.5463 \quad 0.350310 .124<2 \mathrm{e}-16$ ***
bedrooms $1832.00351047 .0002 \quad 1.7500 .080733$.
bathrms $14335.55851489 .9209 \quad 9.622<2 e^{2}-16 * * *$
airco $12632.89041555 .0211 \quad 8.124 \quad 3.15 \mathrm{e}-15$ ***
driveway $6687.7789 \quad 2045.2458 \quad 3.270 \quad 0.001145$ **
recroom 4511.2838 1899.9577 2.3740 .017929 *
fullbase $\quad 5452.3855 \quad 1588.0239 \quad 3.4330 .000642$ ***
gashw $12831.4063 \quad 3217.5971 \quad 3.9887 .60 \mathrm{e}-05 * * *$
garagepl $4244.8290 \quad 840.5442 \quad 5.0506 .07 \mathrm{e}-07$ ***
prefarea $9369.51321669 .0907 \quad 5.614$ 3.19e-08 ***
stories $6556.9457 \quad 925.2899 \quad 7.0864 .37 e-12$ ***
---
Signif. codes: $0{ }^{\prime} * * * ' 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15420 on 534 degrees of freedom Multiple R-squared: 0.6731, Adjusted R-squared: 0.6664 F-statistic: 99.97 on 11 and 534 DF, p-value: < 2.2e-16

```
> AIC(house3)
```

[1] 12094.19

```
> BIC(house3)
```

[1] 12150.12

### 2.4 Illustration: Predicting Stock Index Returns (Verbeek, pp. 76-78)

```
> stocks <- read.table("H:/721364P/Rdata/PREDICTSP.dat", header=T)
> attach(stocks)
> names(stocks)
```

| [1] | "OBS" | "CS_1" | "DY_1" | "EXRET" | "I12_1" | "I12_2" |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| [9] | "INF_2" | "IP_2" | "MB_2" | "PE_1" | "TS_1" | "WINTER" |

> head(stocks)

|  | OBS | CS_1 | DY_1 | EXRET | I12_1 | I12_2 | I3_1 | I3_2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1966M01 | 0.027130 | 0.246132 | 0.3556919 | 0.3978448 | 0.3850723 | 0.3747 | 0.3579 |
| 2 | 1966M02 | 0.025523 | 0.246734 | -1.8896210 | 0.4026298 | 0.3978448 | 0.3795 | 0.3747 |
| 3 | 1966MO3 | 0.027106 | 0.253051 | -2.3094014 | 0.4050214 | 0.4026298 | 0.3747 | 0.3795 |
| 4 | 1966M04 | 0.031842 | 0.260563 | 1.9798476 | 0.3994401 | 0.4050214 | 0.3771 | 0.3747 |
| 5 | 1966M05 | 0.035802 | 0.257156 | -5.5604503 | 0.4018325 | 0.3994401 | 0.3787 | 0.3771 |
| 6 | 1966M06 | 0.039764 | 0.273811 | -1.7151910 | 0.4050214 | 0.4018325 | 0.3675 | 0.3787 |
|  | INF_2 | IP_2 | MB_2 | PE_1 | TS_1 W | ER |  |  |


| 1 | 0.026786 | 0.100527 | 0.046695 | 0.1785 | 0.002380 | 1 |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| 2 | 0.032738 | 0.096325 | 0.051422 | 0.1743 | -0.003219 | 1 |
| 3 | 0.032641 | 0.093860 | 0.051778 | 0.1712 | 0.019155 | 1 |
| 4 | 0.038576 | 0.095886 | 0.055034 | 0.1674 | 0.019947 | 1 |
| 5 | 0.038576 | 0.094733 | 0.060271 | 0.1671 | 0.008768 | 0 |
| 6 | 0.032448 | 0.093014 | 0.058601 | 0.1581 | 0.022364 | 0 |

```
> tail(stocks)
```

OBS CS_1 DY_1 EXRET I12_1 I12_2 I3_1 I3_2 475 2005M07 0.0714640 .1463703 .47727400 .29838740 .27577840 .2645000 .244200
476 2005M08 $0.0706120 .141754-1.21194150 .31691720 .29838740 .2822000 .264500$
477 2005M09 $0.0690130 .148075 \quad 0.51953510 .34183280 .31691720 .2806280 .282200$
478 2005M10 $0.0713590 .145608-1.93795520 .35386430 .34183280 .3040310 .280628$
479 2005M11 $0.0751630 .147520 \quad 3.46842770 .35546740 .35386430 .3177220 .304031$
480 2005M12 $0.0766930 .149449-0.28406510 .36347820 .35546740 .3185270 .317722$
INF_2 IP_2 MB_2 PE_1 TS_1 WINTER
$4750.0355940 .023892 \quad 0.0215070 .19880 .0628740$
$4760.0457300 .037026 \quad 0.0138190 .2050 \quad 0.059633 \quad 0$
$477 \quad 0.0525250 .031695 \quad 0.0124220 .19230 .067624 \quad 0$
$4780.0700340 .033067 \quad 0.004816 \quad 0.19210 .039407 \quad 0$
$4790.0820440 .021309 \quad 0.0057730 .18800 .046557 \quad 1$
$480 \quad 0.0414470 .024396-0.0018240 .18720 .052155 \quad 1$
> stock.model <- Im (EXRET/100~PE_1+DY_1+INF_2+IP_2+I3_1+I3_2+I12_1+I12_2+MB_2+CS_1+WINTER)
> summary(stock.model)
Call:
lm(formula = EXRET/100 ~ PE_1 + DY_1 + INF_2 + IP_2 + I3_1 +
I3_2 + I12_1 + I12_2 + MB_2 + CS_1 + WINTER)
Residuals:

| Min | $1 Q$ | Median | $3 Q$ | Max |
| ---: | ---: | ---: | ---: | ---: |
| -0.204406 | -0.024293 | 0.001638 | 0.027697 | 0.146903 |

Coefficients:


Residual standard error: 0.04164 on 468 degrees of freedom Multiple R-squared: 0.1179, Adjusted R-squared: 0.09712
F-statistic: 5.684 on 11 and 468 DF, p-value: $1.281 \mathrm{e}-08$

```
> AIC(stock.model)
[1] -1675.488
> BIC(stock.model)
[1] -1621.229
> # data snooping:
> # stepwise selection using the AIC
> step(stock.model, direction = "backward")
Start: AIC=-3039.67
EXRET/100 ~ PE_1 + DY_1 + INF_2 + IP_2 + I3_1 + I3_2 + I12_1 +
 I12_2 + MB_2 + CS_1 + WINTER
 Df Sum of Sq RSS AIC
- IP_2 1 0.0002383 0.81175 -3041.5
- DY_1 1 0.0017210 0.81323 -3040.7
<none> 0.81151 -3039.7
- I3_1 1 0.0043489 0.81586 -3039.1
- I3_2 1 0.0045801 0.81609 -3039.0
- PE_1 1 0.0054144 0.81692 -3038.5
- CS_1 1 0.0059000 0.81741 -3038.2
- INF_2 1 0.0071962 0.81871 -3037.4
- WINTER 1 0.0073437 0.81885-3037.3
- MB_2 1 0.0075506 0.81906 -3037.2
- I12_2 1 0.0141815 0.82569 -3033.3
- I12_1 1 0.0202895 0.83180 -3029.8
Step: AIC=-3041.53
EXRET/100 ~ PE_1 + DY_1 + INF_2 + I3_1 + I3_2 + I12_1 + I12_2 +
 MB_2 + CS_1 + WINTER
 Df Sum of Sq RSS AIC
- DY_1 1 0.0018950 0.81364 -3042.4
<none> 0.81175 -3041.5
- I3_2 1 0.0044567 0.81621 -3040.9
- I3_1 1 0.0044589 0.81621 -3040.9
- PE_1 1 0.0052129 0.81696 -3040.5
- INF_2 1 0.0069583 0.81871 -3039.4
- WINTER 1 0.0071826 0.81893-3039.3
- MB_2 1 0.0080102 0.81976 -3038.8
- CS_1 1 0.0109916 0.82274 -3037.1
- I12_2 1 0.0139694 0.82572 -3035.3
- I12_1 1 0.0206039 0.83235 -3031.5
Step: AIC=-3042.41
EXRET/100 ~ PE_1 + INF_2 + I3_1 + I3_2 + I12_1 + I12_2 + MB_2 +
 CS_1 + WINTER
Df Sum of Sq RSS AIC
<none> 0.81364 -3042.4
- I3_1 1 0.0038002 0.81744 -3042.2
- I3_2 1 0.0047271 0.81837-3041.6
```

```
- INF_2 1 0.0056675 0.81931 -3041.1
- MB_2 1 0.0061733 0.81982 -3040.8
- WINTER 1 0.0075870 0.82123 -3039.9
- CS_1 1 0.0146547 0.82830 -3035.8
- I12_2 1 0.0159771 0.82962 -3035.1
- I12_1 1 0.0199986 0.83364 -3032.8
- PE_1 1 0.0228703 0.83651 -3031.1
Call:
lm(formula = EXRET/100 ~ PE_1 + INF_2 + I3_1 + I3_2 + I12_1 +
 I12_2 + MB_2 + CS_1 + WINTER)
Coefficients:
\begin{tabular}{rrrrrr}
(Intercept) & PE_1 & INF_2 & I3_1 & I3_2 & I12_1 \\
0.047479 & -0.159540 & -0.118789 & 0.177635 & -0.196934 & -0.409218 \\
I12_2 & MB_2 & CS_1 & WINTER & & \\
0.375002 & -0.095765 & 0.227046 & 0.008154 & &
\end{tabular}
> step(stock.model, direction = "forward")
Start: AIC=-3039.67
EXRET/100 ~ PE_1 + DY_1 + INF_2 + IP_2 + I3_1 + I3_2 + I12_1 +
 I12_2 + MB_2 + CS_1 + WINTER
Call:
lm(formula = EXRET/100 ~ PE_1 + DY_1 + INF_2 + IP_2 + I3_1 +
 I3_2 + I12_1 + I12_2 + MB_2 + CS_1 + WINTER)
\begin{tabular}{rrrrrr}
\begin{tabular}{l}
Coefficients: \\
(Intercept)
\end{tabular} & PE_1 & DY_1 & INF_2 & IP_2 & I3_1 \\
0.033010 & -0.113984 & 0.059894 & -0.139880 & -0.021111 & 0.191875 \\
I3_2 & I12_1 & I12_2 & MB_2 & CS_1 & WINTER \\
-0.194518 & -0.413432 & 0.358917 & -0.128530 & 0.183006 & 0.008057
\end{tabular}
> # or using the stepAIC function in the MASS package
> #library(MASS)
> #stepAIC(stock.model, direction = "backward") # output suppressed
> #stepAIC(stock.model, direction = "forward") # output suppressed
```


## 3 OLS Diagnostics

In many cases, the Gauss-Markov conditions (10)-(13) will not all be satisfied. This is not necessarily fatal for the OLS estimator in the sense that it is consistent under fairly weak conditions. In this section we apply three approaches to validating linear regression (OLS) models:

1. A popular approach compares various statistics computed for the full data set with those obtained from deleting single observations. This is known as regression diagnostics.
2. In econometrics, diagnostic tests have played a prominent role since about 1980. The most important alternative hypotheses are heteroskedasticity, autocorrelation, and misspecification of the functional form.
3. Also, the impenetarble disturbance structures typically present in observational data have been led to the development of "robust" covariance matrix estimators (for the parameter estimates), a number of which have been available during the last 20 years.

In this section we pay attention to heteroskedasticity and autocorrelation, typical to financial data, which imply that the error terms in the model are no longer independently and identically distributed. In such cases, the OLS estimator may still be unbiased or consistent, but its covariance matrix is different from the one given by (14). Moreover, the OLS estimator may be relatively inefficient and no longer have the BLUE property. Let's go through the basic diagnostics using applications.

### 3.1 Regression Diagnostics

- See, Lecture-3.R and Chapter 4: Diagnostics andAlternative Methods of Regression

```
> library(sandwich)
> data("PublicSchools")
> summary(PublicSchools)
```

| Expenditure |  | Income |  |
| :--- | :--- | :--- | :---: |
| Min. $\quad: 259.0$ | Min. $\quad: 5736$ |  |  |
| 1st Qu.: 315.2 | 1st Qu.: 6670 |  |  |
| Median $: 354.0$ | Median $: 7597$ |  |  |
| Mean | $: 373.3$ | Mean $: 7608$ |  |
| 3rd Qu.: 426.2 | 3rd Qu.: 8286 |  |  |
| Max. | $: 821.0$ | Max. $: 10851$ |  |
| NA's $: 1$ |  |  |  |

> ps <- na.omit(PublicSchools) \# remove missing values
> ps\$Income <- ps\$Income/10000
> \#plot(Expenditure ~ Income, data = ps, ylim = c(230,830)) \# figure 4.1
> ps_lm <- lm(Expenditure ~ Income, data = ps)
> \#abline(ps_lm) \#id <- c(2, 24, 48)
> \#text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE)
> \#plot(ps_lm, which = 1:6) \# figure 4.2
> ps_hat <- hatvalues(ps_lm)
> \#plot(ps_hat) \# figure 4.3
> \#abline $(h=c(1,3) *$ mean( $p s$ _hat $)$, col $=2)$
> \#id <- which(ps_hat > 3 * mean(ps_hat))
> \#text(id, ps_hat[id], rownames(ps)[id], pos = 1, xpd = TRUE)
> influence.measures(ps_lm)
Influence measures of
$\operatorname{lm}$ (formula $=$ Expenditure $\sim$ Income, data $=\mathrm{ps}$ ) :

|  | dfb. $1-$ | dfb. Incm | dffit | cov.r | cook.d | hat |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Alabama | $-1.52 \mathrm{e}-02$ | $1.39 \mathrm{e}-02$ | $-1.74 \mathrm{e}-02$ | 1.103 | $1.55 \mathrm{e}-04$ | 0.0543 |
| Alaska | $-2.39 \mathrm{e}+00$ | $2.52 \mathrm{e}+00$ | $2.65 \mathrm{e}+00$ | 0.555 | $2.31 \mathrm{e}+00$ | 0.2144 |
| Arizona | $-1.51 \mathrm{e}-02$ | $9.50 \mathrm{e}-03$ | $-4.32 \mathrm{e}-02$ | 1.061 | $9.51 \mathrm{e}-04$ | 0.0210 |
| Arkansas | $5.93 \mathrm{e}-05$ | $-5.44 \mathrm{e}-05$ | $6.73 \mathrm{e}-05$ | 1.107 | $2.32 \mathrm{e}-09$ | 0.0576 |
| California | $1.83 \mathrm{e}-01$ | $-2.09 \mathrm{e}-01$ | $-2.72 \mathrm{e}-01$ | 1.031 | $3.67 \mathrm{e}-02$ | 0.0485 |
| Colorado | $-2.90 \mathrm{e}-02$ | $4.58 \mathrm{e}-02$ | $1.30 \mathrm{e}-01$ | 1.035 | $8.48 \mathrm{e}-03$ | 0.0228 |
| Connecticut | $-1.83 \mathrm{e}-01$ | $2.07 \mathrm{e}-01$ | $2.65 \mathrm{e}-01$ | 1.042 | $3.48 \mathrm{e}-02$ | 0.0515 |
| Delaware | $3.45 \mathrm{e}-02$ | $-4.06 \mathrm{e}-02$ | $-5.87 \mathrm{e}-02$ | 1.081 | $1.76 \mathrm{e}-03$ | 0.0383 |
| Florida | $-2.75 \mathrm{e}-02$ | $1.17 \mathrm{e}-02$ | $-1.18 \mathrm{e}-01$ | 1.035 | $7.01 \mathrm{e}-03$ | 0.0202 |
| Georgia | $-1.09 \mathrm{e}-01$ | $9.47 \mathrm{e}-02$ | $-1.44 \mathrm{e}-01$ | 1.056 | $1.05 \mathrm{e}-02$ | 0.0353 |
| Hawaii | $3.31 \mathrm{e}-02$ | $-4.10 \mathrm{e}-02$ | $-6.87 \mathrm{e}-02$ | 1.070 | $2.41 \mathrm{e}-03$ | 0.0310 |
| Idaho | $-3.03 \mathrm{e}-02$ | $2.60 \mathrm{e}-02$ | $-4.27 \mathrm{e}-02$ | 1.075 | $9.32 \mathrm{e}-04$ | 0.0317 |
| Illinois | $3.30 \mathrm{e}-02$ | $-3.81 \mathrm{e}-02$ | $-5.16 \mathrm{e}-02$ | 1.088 | $1.36 \mathrm{e}-03$ | 0.0439 |
| Indiana | $-4.17 \mathrm{e}-03$ | $-6.73 \mathrm{e}-03$ | $-8.03 \mathrm{e}-02$ | 1.050 | $3.27 \mathrm{e}-03$ | 0.0201 |


| Iowa | -1.08e-02 | $2.35 \mathrm{e}-02$ | 9.53e-02 | 1.047 | $4.60 \mathrm{e}-03$ | 0.0213 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Kansas | $2.53 \mathrm{e}-02$ | -4.01e-02 | -1.14e-01 | 1.043 | 6.51e-03 | 0.0228 |
| Kentucky | -1.15e-01 | $1.02 \mathrm{e}-01$ | -1.48e-01 | 1.060 | $1.10 \mathrm{e}-02$ | 0.0383 |
| Louisiana | $2.38 \mathrm{e}-02$ | -2.10e-02 | $3.08 \mathrm{e}-02$ | 1.082 | $4.83 \mathrm{e}-04$ | 0.0373 |
| Maine | $1.36 \mathrm{e}-01$ | -1.23e-01 | $1.59 \mathrm{e}-01$ | 1.076 | $1.28 \mathrm{e}-02$ | 0.0501 |
| Maryland | -7.03e-03 | 8.91e-03 | $1.60 \mathrm{e}-02$ | 1.074 | $1.31 \mathrm{e}-04$ | 0.0290 |
| Massachusetts | -1.56e-02 | $2.29 \mathrm{e}-02$ | $5.72 \mathrm{e}-02$ | 1.062 | $1.66 \mathrm{e}-03$ | 0.0238 |
| Michigan | -5.49e-02 | $6.69 \mathrm{e}-02$ | $1.07 \mathrm{e}-01$ | 1.063 | $5.80 \mathrm{e}-03$ | 0.0328 |
| Minnesota | -1.90e-02 | $4.76 \mathrm{e}-02$ | $2.13 \mathrm{e}-01$ | 0.976 | $2.22 \mathrm{e}-02$ | 0.0211 |
| Mississippi | $7.09 \mathrm{e}-02$ | -6.65e-02 | 7.61e-02 | 1.137 | $2.95 \mathrm{e}-03$ | 0.0848 |
| Missouri | -7.47e-02 | $4.92 \mathrm{e}-02$ | -1.98e-01 | 0.988 | $1.93 \mathrm{e}-02$ | 0.0213 |
| Montana | $1.57 \mathrm{e}-01$ | $-1.27 e-01$ | $2.68 \mathrm{e}-01$ | 0.957 | $3.47 \mathrm{e}-02$ | 0.0257 |
| Nebraska | -5.19e-02 | $3.17 \mathrm{e}-02$ | -1.55e-01 | 1.016 | $1.19 \mathrm{e}-02$ | 0.0209 |
| Nevada | $3.45 \mathrm{e}-01$ | -3.86e-01 | -4.79e-01 | 0.949 | $1.08 \mathrm{e}-01$ | 0.0575 |
| New Hampshire | -7.62e-02 | $5.38 \mathrm{e}-02$ | -1.77e-01 | 1.006 | $1.56 \mathrm{e}-02$ | 0.0220 |
| New Jersey | 8.20e-02 | -9.38e-02 | -1.24e-01 | 1.080 | $7.77 \mathrm{e}-03$ | 0.0470 |
| New Mexico | $2.63 \mathrm{e}-01$ | -2.35e-01 | $3.23 \mathrm{e}-01$ | 0.988 | 5.07e-02 | 0.0425 |
| New York | -3.28e-02 | $4.22 \mathrm{e}-02$ | $7.88 \mathrm{e}-02$ | 1.063 | $3.16 \mathrm{e}-03$ | 0.0280 |
| North Carolina | $7.97 \mathrm{e}-02$ | -7.05e-02 | $1.02 \mathrm{e}-01$ | 1.073 | 5.24e-03 | 0.0385 |
| North Dakota | -3.24e-02 | $1.57 \mathrm{e}-02$ | -1.26e-01 | 1.031 | $7.96 \mathrm{e}-03$ | 0.0203 |
| Ohio | $8.97 \mathrm{e}-03$ | -3.01e-02 | -1.57e-01 | 1.015 | $1.22 \mathrm{e}-02$ | 0.0208 |
| Oklahoma | -1.42e-02 | $1.18 \mathrm{e}-02$ | -2.20e-02 | 1.072 | $2.47 \mathrm{e}-04$ | 0.0280 |
| Oregon | -1.54e-03 | $4.05 \mathrm{e}-03$ | $1.87 \mathrm{e}-02$ | 1.065 | $1.79 \mathrm{e}-04$ | 0.0210 |
| Pennsylvania | $1.19 \mathrm{e}-03$ | $8.42 \mathrm{e}-03$ | $7.08 \mathrm{e}-02$ | 1.054 | $2.55 \mathrm{e}-03$ | 0.0203 |
| Rhode Island | -1.28e-02 | $4.73 \mathrm{e}-03$ | -5.98e-02 | 1.057 | $1.82 \mathrm{e}-03$ | 0.0201 |
| South Carolina | $1.25 \mathrm{e}-01$ | -1.14e-01 | $1.44 \mathrm{e}-01$ | 1.087 | $1.05 \mathrm{e}-02$ | 0.0545 |
| South Dakota | $1.33 \mathrm{e}-03$ | -1.14e-03 | $1.91 \mathrm{e}-03$ | 1.076 | $1.87 \mathrm{e}-06$ | 0.0309 |
| Tennessee | -8.06e-02 | $7.21 \mathrm{e}-02$ | -9.85e-02 | 1.080 | $4.93 \mathrm{e}-03$ | 0.0432 |
| Texas | -7.75e-03 | -1.29e-02 | -1.52e-01 | 1.015 | $1.15 \mathrm{e}-02$ | 0.0201 |
| Utah | $2.95 \mathrm{e}-01$ | -2.61e-01 | $3.79 \mathrm{e}-01$ | 0.934 | $6.80 \mathrm{e}-02$ | 0.0380 |
| Vermont | $1.47 \mathrm{e}-01$ | -1.31e-01 | $1.83 \mathrm{e}-01$ | 1.052 | $1.68 \mathrm{e}-02$ | 0.0411 |
| Virginia | -5.15e-03 | -6.33e-04 | -4.27e-02 | 1.060 | $9.27 \mathrm{e}-04$ | 0.0200 |
| Washington | $2.56 \mathrm{e}-02$ | -3.10e-02 | -4.94e-02 | 1.075 | $1.24 \mathrm{e}-03$ | 0.0331 |
| Washington DC | $6.57 \mathrm{e}-01$ | -7.05e-01 | -7.68e-01 | 1.014 | $2.77 \mathrm{e}-01$ | 0.1277 |
| West Virginia | $7.72 \mathrm{e}-02$ | -6.94e-02 | $9.34 \mathrm{e}-02$ | 1.083 | $4.44 \mathrm{e}-03$ | 0.0446 |
| Wyoming | -7.54e-02 | $8.41 \mathrm{e}-02$ | $1.03 \mathrm{e}-01$ | 1.103 | 5.36e-03 | 0.0609 |

Alaska Washington DC
248
> summary(influence.measures(ps_lm))
Potentially influential observations of lm(formula $=$ Expenditure $\sim$ Income, data $=$ ps) :
dfb.1_ dfb.Incm dffit cov.r cook.d hat

| Alaska | $-2.39_{-} *$ | $2.52_{-} *$ | $2.65 \_*$ | $0.55_{-} *$ | $2.31_{-} *$ | $0.21_{-} *$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mississippi | 0.07 | -0.07 | 0.08 | $1.14_{-} *$ | 0.00 | 0.08 |
| Washington DC | 0.66 | -0.71 | $-0.77 \_*$ | 1.01 | 0.28 | $0.13_{-} *$ |

### 3.2 Diagnostic Tests

- See, Lecture-3.R and Chapter 4: Diagnostics andAlternative Methods of Regression

```
> options(prompt = "R> ", continue = "+ ", width = 64, digits = 4,
+ show.signif.stars = FALSE, useFancyQuotes = FALSE)
R> library(AER)
R> # demo("Ch-Validation", package = "AER") # you can run all the demos
R> data("Journals")
R> summary(Journals)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{title} & publisher & society \\
\hline Length: 180 & Elsevier & :42 & no :164 \\
\hline Class : characte & r Blackwell & :26 & yes: 16 \\
\hline Mode :characte & Kluwer & :16 & \\
\hline & Springer & :10 & \\
\hline & Academic & ress : 9 & \\
\hline & Univ of Ch & icago Press: 7 & \\
\hline & (Other) & :70 & \\
\hline price & pages & charpp & citations \\
\hline Min. : 20 & Min. : 167 & Min. :1782 & Min. : 21 \\
\hline 1st Qu.: 134 & 1st Qu.: 549 & 1st Qu.:2715 & 1st Qu.: 98 \\
\hline Median : 282 & Median : 693 & Median :3010 & Median : 262 \\
\hline Mean : 418 & Mean : 828 & Mean :3233 & Mean : 647 \\
\hline 3rd Qu.: 541 & 3rd Qu.: 974 & 3rd Qu.:3477 & 3rd Qu.: 656 \\
\hline Max. :2120 & Max. :2632 & Max. :6859 & Max. : 89 \\
\hline
\end{tabular}
\begin{tabular}{llrlr}
\multicolumn{2}{c}{ foundingyear } & subs & & field \\
Min. \(: 1844\) & Min. & \(:\) & 2 & General
\end{tabular}\(): 40\)
R> journals <- Journals[,c("subs", "price")]
R> journals$citeprice <- Journals$price/Journals$citations
R> journals$age <- 2000-Journals$foundingyear
R> jour_lm <- lm(log(subs) ~ log(citeprice), data = journals)
R> #summary(jour_lm)
R> # Testing for heteroskedasticity
R> bptest(jour_lm) # Breusch-Pagan test
 studentized Breusch-Pagan test
data: jour_lm
BP = 9.803, df = 1, p-value = 0.001742
R> gqtest(jour_lm, order.by = ~citeprice, data = journals) # Goldfeld-Quandt test
 Goldfeld-Quandt test
data: jour_lm
GQ = 1.703, df1 = 88, df2 = 88, p-value = 0.00665
R> # Testing the functional form
R> resettest(jour_lm) # RESET test
```

RESET test
data: jour_lm
$\operatorname{RESET}=1.441, \mathrm{df} 1=2, \mathrm{df} 2=176, \mathrm{p}$-value $=0.2395$
R> raintest(jour_lm, order.by $=\sim$ age, data $=$ journals) \# Rainbow test
Rainbow test
data: jour_lm
Rain $=1.774$, df1 $=90, \mathrm{df} 2=88, \mathrm{p}$-value $=0.003741$
$R>$ harvtest(jour_lm, order.by $=\sim$ age, data $=$ journals) \# Harvey-Collier test
Harvey-Collier test
data: jour_lm
$\mathrm{HC}=5.081, \mathrm{df}=177, \mathrm{p}$-value $=9.464 \mathrm{e}-07$
R> \# Testing for autocorrelation
$R>$ data("USMacroG")
$R>$ summary(USMacroG)

| gdp | consumption | invest | government |
| :---: | :---: | :---: | :---: |
| Min. 1610 | Min. :1059 | Min. : 198 | Min. : 360 |
| 1st Qu.:2602 | 1st Qu.: 1640 | 1st Qu.: 309 | 1st Qu.: 741 |
| Median :4142 | Median :2715 | Median : 568 | Median : 952 |
| Mean :4563 | Mean :2999 | Mean : 652 | Mean : 997 |
| 3rd Qu. :6294 | 3rd Qu.:4235 | 3rd Qu.: 874 | 3rd Qu.: 1301 |
| Max. :9304 | Max. :6341 | Max. : 1802 | Max. : 1583 |
| dpi | cpi | m1 | tbill |
| Min. 1178 | Min. : 70.6 | Min. : 110 | Min. : 0.81 |
| 1st Qu.:1822 | 1st Qu.: 91.2 | 1st Qu.: 148 | 1st Qu.: 3.09 |
| Median :3133 | Median :162.1 | Median : 284 | Median : 5.04 |
| Mean :3341 | Mean :225.8 | Mean : 454 | Mean : 5.23 |
| 3rd Qu.:4733 | 3rd Qu.:350.1 | 3rd Qu.: 764 | 3rd Qu.: 6.64 |
| Max. 6635 | Max. $: 521.1$ | Max. : 1152 | Max. $: 15.09$ |
| unemp | population | inflation |  |
| Min. : 2.60 | Min. :149 | Min. $:-2.53$ |  |
| 1st Qu.: 4.40 | 1st Qu.:186 | 1st Qu.: 1.76 |  |
| Median : 5.60 | Median :215 | Median : 3.14 |  |
| Mean : 5.67 | Mean :214 | Mean : 3.94 |  |
| 3rd Qu.: 6.80 | 3rd Qu.:243 | 3rd Qu.: 5.59 |  |
| Max. $: 10.70$ | Max. $: 281$ | Max. $: 16.86$ |  |
|  |  | NA's : 1 |  |
| interest |  |  |  |
| Min. $:$-11.216 |  |  |  |
| 1st Qu.: -0.158 |  |  |  |
| Median : 1.513 |  |  |  |
| Mean : 1.311 |  |  |  |
| 3rd Qu.: 2.916 |  |  |  |
| Max. : 10.626 |  |  |  |
| NA's : 1 |  |  |  |

```
R> library(dynlm)
R> consump1 <- dynlm(consumption ~ dpi + L(dpi), data = USMacroG)
R> #summary(consump1)
R> # Alternative way, apply the Lag operator of the Hmisc package
R> #library(Hmisc)
R> #consump0 <- lm(consumption ~ dpi + Lag(dpi), data = USMacroG)
R> #summary(consump0)
R> dwtest(consump1) # Durbin-Watson test
 Durbin-Watson test
data: consump1
DW = 0.0866, p-value < 2.2e-16
alternative hypothesis: true autocorrelation is greater than 0
R> Box.test(residuals(consump1), type = "Ljung-Box") # Ljung-Box
 Box-Ljung test
data: residuals(consump1)
X-squared = 176.1, df = 1, p-value < 2.2e-16
R> bgtest(consump1) # Breusch-Gofrey test
 Breusch-Godfrey test for serial correlation of order up
 to 1
data: consump1
LM test = 193, df = 1, p-value < 2.2e-16
```


### 3.3 Robust Standard Errors

- See, Lecture-3.R and Chapter 4: Diagnostics andAlternative Methods of Regression

```
R> vcov(jour_lm) # covariance matrix of parameter estimates
 (Intercept) log(citeprice)
(Intercept) 3.126e-03 -6.144e-05
log(citeprice) -6.144e-05 1.268e-03
R> vcovHC(jour_lm) # heteroskedasticity consistent covariance matrix
\begin{tabular}{lrr}
& (Intercept) & \(\log\) (citeprice) \\
(Intercept) & 0.003085 & 0.000693 \\
\(\log\) (citeprice) & 0.000693 & 0.001188
\end{tabular}
R> vcovHAC(jour_lm)# heteroskedasticity and autocorrelationconsistent covariance matrix (Newey-West)
 (Intercept) log(citeprice)
(Intercept) 0.0026709 0.0003565
log(citeprice) 0.0003565 0.0009710
R> summary(jour_lm)
Call:
lm(formula = log(subs) ~ log(citeprice), data = journals)
```



### 3.4 Testing for Normality

Let's consider the linear regression model again with, under the null hypothesis, normal errors. For a continuously observed variable, normality tests usually check for skewness (third moment) and excess kurtosis (fourth moment), because the normal distribution implies that $E\left\{\varepsilon_{t}^{3}\right\}=0$ and $E\left\{\varepsilon_{t}^{4}-3 \sigma^{4}\right\}=0$, i.e. for a normal distribution, skewness is zero and excess kurtosis is zero. A popular test for normality is the Jargue-Bera test (see, my Probability and Statistics Review, page 13).
$R>$ names (consump1)

```
[1] "coefficients" "residuals" "effects"
[4] "rank" "fitted.values" "assign"
[7] "qr" "df.residual" "xlevels"
[10] "call" "terms" "model"
[13] "index" "frequency" "twostage"
```

```
R> res <- consump1$residuals
R> library(fBasics)
R> normalTest(res, method = "jb")
Title:
 Jarque - Bera Normalality Test
Test Results:
 STATISTIC:
 X-squared: 72.7384
 P VALUE:
 Asymptotic p Value: < 2.2e-16
Description:
 Wed Feb 06 10:01:35 2013 by user: Hannu
R> # or
R> normalTest(residuals(consump1), method = "jb")
Title:
 Jarque - Bera Normalality Test
Test Results:
 STATISTIC:
 X-squared: 72.7384
 P VALUE:
 Asymptotic p Value: < 2.2e-16
Description:
 Wed Feb 06 10:01:35 2013 by user: Hannu
```


[^0]:    ${ }^{1}$ The data for this example are available as WAGES1.DAT, and it is taken from Marno Verbeek (2012), A Guide to Modern Econometrics, 4th edition, John Wiley \& Sons.

[^1]:    ${ }^{2}$ A type II error is such that that the null hypothesis is not rejected while the alternative is true.
    ${ }^{3}$ Although statistical software packages sometimes provide mechanical routines, e.g. stepwise regression, to select regressors, these are typically not recommended in economic work.
    ${ }^{4}$ In recent years, the possibility of data snooping biases has played an important role in empirical studies modelling financial asset pricing models. Lo and MacKinlay (Lo and MacKinlay (1990), Data-Snooping Biases in Tests of Financial Asset Pricing Models, Review of Financial Studies, 3, 431-469), for example, analyse such biases in tests of financial asset pricing models, while Sullivan, Timmerman and White (Sullivan, Timmerman and White (2001), Dangers of Data-Driven Inference: The Case of Calendar Effects in Stock Returns, Journal of Econometrics, 105, 249-286) analyse the extent to which the presence of calendar effects in stock returns, like the January effect can be attributed to data snooping.

