
An Introduction to R

Jamie Monogan

Washington University in St. Louis∗

Objectives

By the end of this course, participants will be able to:

• Use resources about R to look-up more information on it.

• Load, manipulate, and use data in R.

• Run basic models.

• Perform matrix algebra in R.

• Explain the logic of programming in R.

• Program maximum likelihood estimators.

• Install packages and use them for upper-level methods.

• Draw graphs using the base and lattice graphics packages.

1 Background

1.1 What is R?

R is a platform for the object-oriented statistical programming language S. It is widely used in
statistics and has become quite popular in political science over the last decade. R, which is
shareware, is similar to S-plus, which is the commercial platform for S. Essentially R can be used
as either a matrix-based programming language or as a standard statistical package that operates
much like Stata, SAS, or PASW/SPSS.

1.2 Where Can I get R?

The beauty of R is that it is shareware, so it is free to anyone. To obtain R for Windows, Mac,
or Linux go to The Comprehensive R Archive Network (CRAN) at http://www.r-project.org/.
Just download the executable file, and it will install itself.1 Unfortunately, there are not update
patches, so you must completely install a new version whenever you would like to upgrade.

∗These notes draw heavily from a short course Luke Keele did at Oxford University on May 21, 2004 and another
course by Evan Parker-Stephen for UNC’s political science department on November 2, 2006. They also draw from a
presentation given by Xun Pang at Washington University in St. Louis on August 12-14, 2009. My thanks to Luke,
Evan, and Xun for sharing this information. This document was last revised on August 11, 2010.

1Linux users will find it easier to install from a terminal. Terminal code is available at
http://stats.wustl.edu/~jmonogan/computing/linux/.
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2 Resources

As questions emerge when you use R, here are a few resources you may want to consider:

• Within R, there is the “Introduction to R,” which is under the “Help” pull down menu under
“Manuals,” as well as the ?, help(), help.search(), and help.start() commands. Also
note the html-based help search.

• To do a web-based search, Rseek (powered by Google) is the only worthwhile search engine.
http://www.rseek.org/

• More resources are on CRAN (including an online book: Robinson, A., IcebreakeR):
http://cran.r-project.org/other-docs.html

• Monogan’s R website, http://j.mp/rStats has a number of links and resources posted on
it.

• Jeff Harden’s webpage also includes many resources. http://jjharden.web.unc.edu/r

• Jones, O., R. Maillardt, and A. Robinson, Introduction to Scientific Programming and Sim-

ulation Using R, Chapman & Hall/CRC, 2009

• Peter Dalgaard, Introductory Statistics with R, Springer, 2002.

• John Fox’s Introduction to Regression in R and S-plus.

• For a more in-depth treatment see Venables and Ripley’s Modern Applied Statistics in S.

• Twitter: #rstats

3 Getting Started

Once you have installed R, there will be an icon on your desktop. Double click it and R will start
up. You will notice the R does have a few pull-down menus, but mostly commands in R are entered
on the command line:

>

Some preliminaries on entering commands.

• Expressions and commands in R are case-sensitive.

• Command lines do not need to be separated by any special character like a semicolon as in
Limdep, SAS, or Gauss.

• Anything following the pound character (#) R ignores as a comment.

• An object name must start with an alphabetical character, but may contain numeric char-
acters thereafter. A period may also form part of the name of an object. For example, x.1 is
a valid name for an object in R.

• You can use the arrow keys on the keyboard to scroll back to previous commands.

Arithmetic. Rcan function as a calculator for scalar arithmetic, performing addition +, sub-
straction −, multiplication ∗, division /, exponentiation ˆ , taking the modulus %%, and integer
division %/%. Parentheses () specifies the order of operations.
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> (3+5/78)^3*7

[1] 201.3761

> 89%%13

[1] 11

> 89%/%13

[1] 6

You have the option to adjust how many digits are displayed. (Example: How precise do you want
to be on a table?) Useful built-in functions include: sin(x), cos(x), tan(x), exp(x), log(x), sqrt(x)
and pi.

> options(digits=16)

> pi

[1] 3.141592653589793

> sin(pi/6)

[1] 0.5

Saving Output. Your output from a session in R can be saved using the sink command. To
save your session to the file “Rintro.txt”:

> sink(‘‘D:/temp/Rintro.txt’’)

Notice that the path directory uses forward slashes rather than backslashes. This is different from
normal Windows syntax.

Now that we have created an output file, if you use the print command, your output will be
saved to “Rintro.txt”. You can print strings of text like this:

> print(‘‘The mean of variable x is...’’)

and your “D:\temp\Rintro.txt” file will contain:

[1] ‘‘The mean of variable x is...’’

Another useful printing command is the cat command since it lets you mix objects in R with
text. For example, let’s say we create the variable x:

x <- rnorm(1000)

By way of quick explanation: this syntax draws randomly 1,000 times from a standard normal
distribution and assigns the values to the vector x. Observe the arrow (<-), which is R’s assignment
operator. Now we can print the mean of these 1,000 draws as follows:

> cat("The mean of variable x is...", mean(x), ‘‘\n’’)

So now objects from R can be embedded into the statement you print. The character \n puts
in a carriage return. You can also print any statistical output using the either print or cat com-
mands. Remember, though, your output does not go to the log file unless you use one of the print
commands. You can also copy and paste into Word or a text editor out of the R window. To turn
off the sink command:

> sink()
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Objects. R saves any object you create. To list the objects you have created in a session use
either of the following commands:

> objects()

> ls()

To remove all the objects in R type:

> rm(list=ls(all=TRUE))

Quitting. To quit R type:

> q()

Packages. R has many useful add on components that are called packages. Later, we will use
some packages to perform advanced methods not available in most econometric software. To load
a package you simply type:

> library(packagename)

Text Editing. While one can type R commands one line at a time directly into the R console
this is cumbersome and not at all efficient for writing programs. So instead most users type R

commands into a text editor and then copy and paste them into R. Most simply this is done with
the notepad. Type your R commands into the notepad and then cut and paste them into R. You
can also use more advanced setups with text editors like Emacs or RWinEdt.

Reading in Data. Getting data into R is quite easy. There are two primary ways to import
data. The first is to read in a delimited text file with the read.table command. R will read in a
variety of delimited files. (For all the options associated with this command type ?read.table in
R.) As an example read in the following dataset by Poe and Tate (1994) called hmnrghts.txt:

> hmnrghts <- read.table("D:/temp/hmnrghts.txt", header=TRUE, na="NA")

Remember you will have to specify the location of the file yourself depending on where you
have it saved. The header option specifies whether the first line of the file contains the names of
the variables, which here are: (1) country, (2) democ, a scale rating the level of democracy in a
country, (3) sdnew, U.S. State Department scale of Political Terror, (4) military, a dummy vari-
able for a military regime, (5) gnpcats, level of gnp in four categories, (6) lpop, log of population,
(7) civ.war, a dummy variable for whether a country was involved in a civil war, and (7) int.war,
a dummy variable for whether a country was involved in an international war. All variables are
for 1993 only. Now type:

> hmnrghts

Our new dataset will print to the screen. This is not recommended with large datasets. To
check the names of the variables in our dataset type:

> names(hmnrghts)

4



You also can import data from another many other statistical packages. The foreign package
in R makes it very easy to bring in data from other statistical packages, such as SAS, SPSS, and
Stata. To install the foreign package (or any other R package) type:

> install.packages("foreign")

Then follow the mirror-selection prompts. After this, to bring in a dataset from Stata type:

> library(foreign)

> data.name <- read.dta(file.choose())

which lets you browse for a Stata dataset. Any data in Stata format that you select will be con-
verted to R format. To read data in directly replace file.choose() with the path to the file and
the file name like so:

> hmnrghts <- read.dta(‘‘D:/temp/hmnrghts.dta’’)

> hmnrghts <- read.dta(‘‘http://stats.wustl.edu/ jmonogan/computing/r/hmnrghts.dta’’)

One word of warning, the value labels from Stata do not always translate neatly. Often it is
not a problem, but if you are having problems, try importing the data without value labels. As a
quick check on whether the data imported correctly, try the command:

> fix(hmnrghts)

Please note: before continuing with R commands, you must close the data editor window. (Be
careful that you are only closing the editor window.)

Writing out Data. To export data you are using in R to a text file, use the function write:

write(x, file = "data",

ncolumns = if(is.character(x)) 1 else 5,

append = FALSE, sep = " ")

> (x <- matrix(1:24, nrow=4))

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 5 9 13 17 21

[2,] 2 6 10 14 18 22

[3,] 3 7 11 15 19 23

[4,] 4 8 12 16 20 24

> write.csv(x, file="x.csv")

> save(x, file="x.RData")

> write(x, file="x.txt")

> dump("x", file="x.txt")

> rm(x)

> source("x.txt")

> x

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 5 9 13 17 21

[2,] 2 6 10 14 18 22

[3,] 3 7 11 15 19 23

[4,] 4 8 12 16 20 24

Missing Data. R designates missing values with NA. It translates missing values from other
statistics packages into the NA missing format. To create a new data set with all the missing values

5



deleted through listwise deletion, type:

> hmnrghts <- na.omit(hmnrghts)

Arrays, Vectors, Data Frames, and Matrices. R distinguishes between vectors, data
frames, and matrices. Vectors are indexed by length and matrices are indexed by rows and
columns. Data frames are a matrix that R designates as a data set. With a data frame, the
columns of the matrix can be referred to as variables. After reading in a data set, R will treat
your data as a data frame, which means that you can refer to any variable within a data frame by
adding $VARIABLENAME to the name of the data frame. For example, we can print out the variable
country in order to see which countries are in the dataset:

> hmnrghts$country

Or you can use the attach command, which lets so you use variable names individually. For
example, after typing

> attach(hmnrghts)

you can now refer to country as an individual vector, without having to refer to the name of the
data frame where it is located. Importantly, the “detach” command works the same way:

> detach(hmnrghts)

4 Viewing Attributes of the Data

The summary command gives a lot of information about a variable, including its mean, median,
minimum, and maximum:

> summary(hmnrghts$lpop)

You also may want to create a table of various values:

> table(hmnrghts$military)

For a table that considers categories of two variables:

> table(hmnrghts$military, hmnrghts$civ war)

5 Logical Statements

Logical statements in R are evaluated as to whether they are TRUE or FALSE. Table 1 summarizes
the different logical operators in R.

For example, suppose we wanted to know which countries have had a civil war and have above
average GNP:

> wealthWar <- hmnrghts$civ_war==1 & hmnrghts$gnpcats>2.6

returns a vector of TRUE and FALSE for every observation. In this case, we see that there is only
one country with above average GNP that have been involved in a civil war (in 1992 anyway).
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Table 1: Logical Operators in R

Operator Means

< Less Than
<= Less Than or Equal To
> Greater Than
>= Greater Than or Equal To
== Equal To
!= Not Equal To
& And
| Or

6 Recoding

Often we need to recode variables, and there are a variety of ways to do this in R. The basic syn-
tax for creating mathematical transformations of variables follows the form of the example below.
Suppose we want the actual population of each country instead of its logarithm:

> hmnrghts$pop <- exp(hmnrghts$lpop)

Any type of mathematical operator could be substituted in for exp. Another standard type
of recoding we might want to do is the creation of a dummy variable that is coded as 1 if the
observation meets certain conditions and 0 otherwise. For example, suppose instead of having
categories of GNP, we just want to compare the highest category of GNP to all the others:

> hmnrghts$gnp.dummy <- as.numeric(hmnrghts$gnpcats>3)

Here we use a logical statement and modify it with the as.numeric statement which turns each
TRUE into a 1 and each FALSE into a 0. Let’s say instead of having the population of each country
we wanted a 3 category ordinal level variable.

> library(car)

> hmnrghts$pop.3<-recode(hmnrghts$lpop, ‘lo:15.18=1;15.18:17.11=2;17.11:hi=3’)

In commands above, we have created a new variable from 1 to 3, where countries with a log
population below 15 are coded as 1 and so on. Of course, this syntax could be used to create
dummy variables, ordinal variables, or a variety of other recoded variables.

There is one quirk in R when it comes to recoding variables or creating new ones. If you recode
or create new variables for an attached data set, those changes are made to global variables and
not to the specific data frame that you would like to change. To make changes to a specific data
set make certain it is detached before making the changes and use $ syntax to refer to variables in
a data frame. If you like, re-attach after the changes are completed.

Factors. Categorical variables in R can be given a special designation as factors. If you des-
ignate a categorical variable as a factor, R will treat it as such in statistical operation and create
dummy variables for each level when it is used in a regression. If you import a variable with no
numeric coding, R will automatically treat the variable as a factor. For example, the variable
country in the data set is automatically treated as a factor. Once R thinks a variable is a factor
it has a series of special commands that can be used. For example, try:

> levels(country)
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This lists all the levels in the factor with their names. The levels of a factor need not be named.
To change the levels of a factor to character strings, it exactly the same as recoding the variable
in the second example, but use quotes around the character string that you want the level of a
factor to take on. To change which level is the first level (i.e. to change which category R will
use as the reference category in a regression) use the relevel command. The following code es-
tablishes the variable “country” as a factor, and then sets “united states” as the reference category:

> hmnrghts$country <- as.factor(hmnrghts$country)

> hmnrghts$country <- relevel(hmnrghts$country, "united states")

7 Simple Test Statistics: Difference of Means & Crosstabulations

Let’s practice recoding using some toy data from a Spring 2010 class at Washington University.
(Note: These data are gathered for instructional purposes only and may not bue used for anything
else.) Afterward, we will conduct t-tests and crosstabulations on these data.

#Load Packages

library(car)

library(gmodels)

#Load Data

class.poll <-read.csv("http://stats.wustl.edu/~jmonogan/teaching/po/poll10.csv",

header=TRUE)

###Recode Data###

#Create a Missing Data Code: Parties, assuming "other" & "don’t know" are missing

class.poll$party3 <- class.poll$q1

class.poll$party3[class.poll$party3>3]<-NA

table(class.poll$party3, class.poll$q1, useNA="always")

#Recode 5-point ideology scale into Liberal, Moderate, Conservative

class.poll$ideol <- recode(class.poll$q3,’lo:2=1;2:3=2;3:hi=3’)

table(class.poll$ideol, class.poll$q3)

#Create a variable for knowledgability from nine composites

class.poll$k1<-as.numeric(class.poll$q28==3)

class.poll$k2<-as.numeric(class.poll$q29==4)

class.poll$k3<-as.numeric(class.poll$q44==1)

class.poll$k4<-as.numeric(class.poll$q45==1)

class.poll$k5<-as.numeric(class.poll$q46==2)

class.poll$k6<-as.numeric(class.poll$q47==2)

class.poll$k7<-as.numeric(class.poll$q48==3)

class.poll$k8<-as.numeric(class.poll$q49==1)

class.poll$k9<-as.numeric(class.poll$q50==3)

class.poll$knowledge<-class.poll$k1+class.poll$k2+class.poll$k3+class.poll$k4+

class.poll$k5+class.poll$k6+class.poll$k7+class.poll$k8+class.poll$k9

table(class.poll$knowledge)
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# one sample t-test: Does the average student know 4 things about politics?

t.test(class.poll$knowledge,mu=4) # Ho: mu=4

#Does the average student know less than 4?

t.test(class.poll$knowledge,mu=4,alternative="less") # Ho: mu=4

# independent 2-group t-test: Do liberals differ from others in political information?

class.poll$liberal <- as.numeric(class.poll$ideol==1)

t.test(class.poll$knowledge~class.poll$liberal) # where y is numeric and x is binary

#Does the average moderate or conservative know more than the average liberal?

t.test(class.poll$knowledge~class.poll$liberal,alternative="greater")

###Measures of Association###

# Cross-tabulation with Chi-Square Test:

#How does party influence view on the military, armaments and defense?

class.poll$military<-recode(class.poll$q9,’1=1;2=3;3=2’)

#This means 1="too much", 2="about right", 3="too little"

CrossTable(class.poll$military, class.poll$party3, prop.r=FALSE, prop.t=FALSE,

chisq=TRUE, missing.include=TRUE)

8 Basic Models

8.1 Ordinary Least Squares

Estimating an OLS model in R is done with the lm command. Let’s predict human rights violations
as function of the variables democ and gnpcats:

> hmnrghts.model <- lm(sdnew ∼ democ + gnpcats, data=hmnrghts)

hmnrghts.model is the name we have given to our regression model. In the linear model (lm)
command itself, the dependent variable comes first, followed by a ∼, and all independent variables
must be separated with a +. You also need to specify the data frame which R should use when it
estimates the model. After typing the above command, R will not automatically print any output.
To see the output you have to type the following command:

> summary(hmnrghts.model)

Which will give you the following output:

Call:

lm(formula = sdnew ∼ democ + gnpcats)

Residuals:

Min 1Q Median 3Q Max

-2.4881 -0.5839 -0.1624 0.6421 3.0252

Residual standard error: 1 on 122 degrees of freedom

Multiple R-squared: 0.4105, Adjusted R-squared: 0.4009

F-statistic: 42.48 on 2 and 122 DF, p-value: 9.969e-15
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Coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 3.90950 0.17403 22.464 <2e-16 ***

democ -0.09577 0.02370 -4.040 9.37e-05 ***

gnpcats -0.32564 0.05879 -5.539 1.78e-07 ***

—
Signif codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

It is now worth noting that R is an object-oriented environment. Whenever we run a model
or create a data frame, we create an object, which consists of several components. Hence, we
can call on these components of the hmnrghts.model object to obtain several other regression
outputs including the coefficients, residuals, cov.unscaled (the variance-covariance matrix)
and fitted.values.2 To see these outputs take the model name and use the $ to append the
object. For example, to see only the coefficients from the model type:

> hmnrghts.model$coefficients

(Intercept) democ gnpcats

3.90950 -0.09577 -0.32564

As far as model specification, the lm command is also designed to allow you to do interactions
on the fly. For example, to test for an interaction between democracy and the level of GNP we
would use the following command:

> hmnrghts.model2 <- lm(sdnew ∼ democ + gnpcats + democ*gnpcats, data=hmnrghts)

Type this command and then look at the results. You will see that R creates an interaction and
includes it in the model. Lastly, if you wanted to run a model without a constant:

> hmnrghts.model3 <- lm(sdnew ∼ democ + gnpcats + democ*gnpcats-1, data=hmnrghts)

8.1.1 Output to LATEX

For users of LATEX or HTML, R can produce ready-to-use, error-free tables by installing the xtable
package. To create a table for LATEX, I enter the following syntax:

> install.packages(‘‘xtable’’)

> library(xtable)

> xtable(hmnrghts.model)

Which gives this output:

% latex table generated in R 2.6.2 by xtable 1.5-2 package

% Tue Jun 10 00:06:33 2008

\begin{table}[ht]

\begin{center}

\begin{tabular}{rrrrr}

\hline

& Estimate & Std. Error & t value & Pr($>$$|$t$|$) \\

\hline

(Intercept) & 3.9095 & 0.1740 & 22.46 & 0.0000 \\

2See section 18 on page 24 for examples of the usefulness of this.
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democ & $-$0.0958 & 0.0237 & $-$4.04 & 0.0001 \\

gnpcats & $-$0.3256 & 0.0588 & $-$5.54 & 0.0000 \\

\hline

\end{tabular}

\end{center}

\end{table}

Pasting this output into LATEX, with one additional line for a caption, produces Table 2:

Table 2: Regression Model of Human Rights Violations

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.9095 0.1740 22.46 0.0000

democ −0.0958 0.0237 −4.04 0.0001
gnpcats −0.3256 0.0588 −5.54 0.0000

8.2 General Linear Models

The glm command allows you to run a variety of models. To use the glm command you must
specify your formula, the family, and the link function. For example, let’s say we wanted to predict
whether a country has a military regime as a function of GNP and population using a logit model:

> mil.model <- glm(military ∼ lpop + gnpcats,

+ family=binomial(link=logit), data=hmnrghts)

> summary(mil.model)

Which will give you the following output:

Call:

glm(military ∼ lpop + gnpcats, family=binomial(link=logit))

Deviance Residuals:

Min 1Q Median 3Q Max

-0.9886 -0.7021 -0.2784 -0.1170 3.0956

Coefficients:

Estimate Std.Error t value Pr(> |t|)
(Intercept) 2.7284 3.1318 0.871 0.3836

democ -0.1676 0.1907 -0.879 0.3794

gnpcats -0.9873 0.3509 -2.813 0.0049 **

—
Signif codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

Dispersion parameter for binomial family taken to be 1)

Null deviance: 103.040 on 124 degrees of freedom

Residual deviance: 84.893 on 122 degrees of freedom

AIC: 90.893

Number of Fisher Scoring Iterations: 6
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If you wanted to estimate a probit, you would use the exact same command, but substitute
link=probit in the specification of the model. If you wanted to run a count model:

> democ.model<-glm(democ~military+civ_war,

+ family=poisson(link=log), data=hmnrghts)

9 Probability Distributions

R allows you to use a wide variety of distributions for four purposes. For each distribution, R allows
you to call the cumulative distribution function (cdf), probability density function (pdf), quantile
function, and random draws from the distribution. All probability distribution commands consist
of a prefix and a suffix. Table 3 presents the four prefixes, and their usage, as well as the suffixes
for some commonly-used probability distributions.

Table 3: Using Probability Distributions in R

Prefix Usage Suffix Distribution

p cumulative distribution function norm normal
d probability density function logis logistic
q quantile function t t
r random draw from distribution f F

unif uniform
pois poisson
exp exponential
chisq chi-squared
binom binomial

If you wanted to know the probability that a standard normal observation will be less than
1.645, use the command pnorm:

> pnorm(1.645)

Let’s say you want to draw a scalar from the standard normal distribution: to draw a ∼ N (0, 1),
use the command rnorm:

> a <- rnorm(1)

To draw a vector with 10 values from a χ2 distribution with four degrees of freedom:

> c <- rchisq(10,4)

10 Vector and Matrix Algebra

Assignment The way to assign values to a vector or matrix is to use the <- command. So to
create a vector a with the specific values of 3, 4, and 5:
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>a <- c(3,4,5)

Or to create a 10 by 1 vector of 1’s:

> a1 <- rep(1, 10)

To create a vector that contains values counting from 1 to 10, type:

> d <- c(1:10)

A more general command is the seq command, which allows you to define the intervals of a
sequence, as well as starting and ending values. For example to create a sequence from -2 to 1 in
increments of .25:

> e <- seq(-2,1, by=0.25)

[1] -2.00 -1.75 -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

[13] 1.00

To create a 4 by 4 matrix b with values of 3:

> b <- matrix(3, ncol=4,nrow=4)

To draw a 10 by 10 matrix b1 from N(10, 4):

> b1 <- matrix(rnorm(100, mean=10, sd=2), nrow=10, ncol=10)

To create a 2 by 2 matrix X (which we will use in a later example) in which you list the value
of each cell column-by-column:

> X <- matrix(c(1,2,3,4),ncol=2,nrow=2) #fills-in by columns

Or, if you wanted to list the cell elements row-by-row in matrix Z:

> Z <- matrix(c(1,2,3,4),ncol=2,nrow=2,byrow=TRUE) #fills-in by rows

Concatenation. You can concatenate by column or by row with cbind and rbind commands.
Suppose f and g are both n x 1 vectors:

> f <-c(3,4,5)

> g <-c(10,11,12)

> H <- cbind(f,g)

f g

[1,] 3 10

[2,] 4 11

[3,] 5 12
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> L <- rbind(f,g)

[1,] [2,] [3,]

f 3 4 5

g 10 11 12

Subscripting To call a specific value, you can index a vector f by the nth element, use f[n].
To index an n × k matrix H for the value Hij, where i represents the row and j represents the
column, use the syntax H[i,j]. If you want to select all values of the j th column of H you can
use H[,j]. For example, to return the second column of matrix H, type:

> H[,2]

To get the third row of H:

> H[2,]

Vector Commands. To take the sum of a vector:

> sum(a)

To take the mean of a vector:

> mean(a)

To take the variance of a vector:

> var(a)

Or take the standard deviation with the sd command.

Matrix Algebra
In addition to creating vectors and matrices, the assignment command is also used when per-

forming basic vector and matrix operations. For example, to assign vector a the sum of two vectors
b and c, we type:

> a <- b + c

All other arithmetic operations, such as +,−, ∗, /,ˆ (exponents), and log work similarly. Note
that simple multiplication by * performs multiplication element by element, while %*% performs
matrix multiplication. Some other useful matrix functions include:

To take the transpose of b:

> t(b)

To take the inverse of b:

> solve(b)

14



To obtain the length of a vector a:

> length(a)

To obtain the dimension of a matrix:

> dim(b)

Can you find the dimensions of hmnrghts? The dimension should be the number of variables
by the number of cases.

To illustrate the various matrix algebra operations R has available, let us work an applied ex-
ample by computing the OLS estimator (β̂ = (X ′X)−1X ′y):
> y <- c(5,6)

> beta <- solve(t(X)%*%X)%*%t(X)%*%y

Sampling If you want to sample from a given object use the command sample. Suppose we
want a sample of 10 ten numbers from b1, our 10 by 10 matrix of random numbers:

> b1 <- matrix(rnorm(100, mean=10, sd=2), nrow=10, ncol=10)

> s <- sample(b1,10)

This gives you a vector of ten random elements from b. However this is not the best way to
perform a bootstrap. If you are interested in bootstrapping, install the boot package as below and
run some examples:

> library(boot)

> example(boot)

Apply. The apply command is often the most efficient way to do vectorized calculations. For
example, to calculate the means for all the variables in the humanrights data set:

> apply(as.matrix(hmnrghts[,3:7]),2,mean)

In the command here, we refer to columns 3 to 7 of the hmnrghts data frame, which are
variables 3 to 7. The 2 tells R to apply a mathematical function along the columns of the matrix,
and mean is the function we want to apply to each column. If we used a 1 instead of a 2, R would
apply the calculation to the rows of the data frame. Any function defined in R can be used with
the apply command.

Can you calculate the standard error of these variables using apply? One thing to note: If the
data you import from Stata has value labels in it, the apply function will not work. It only works
on variables that R has designated as a numeric object, which is why here I use the as.numeric

command to temporarily coerce the hmnrghts data frame into a matrix.

11 Loops

Loops are easy to write in R and can be used to repeat calculations. The basic structure for a loop is:
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> for (i in 1:10) {COMMANDS}

To demonstrate how loops work, let’s do a demonstration of the law of large numbers:
# First create a storage matrix

store <- matrix(NA,1000,1)

# Start the Loop

for (i in 1:1000){
a <- rnorm(i)

store[i] <- mean(a)

}
# Plot the Output

plot(store, type=‘‘o’’)

In this simple program with a loop, I demonstrate the Law of Large Numbers. In each pass
of the program, R samples from a N (0, 1) distribution and then takes the mean of that sample.
The sample size increases with each pass of the loop. As such, our plot should show the mean of
the sample converging to the true mean of zero as the sample size increases. (More on the plot

command this afternoon.)
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Figure 1: The Law of Large Numbers and Loops in Action

In Figure 1 you can see the results for this simple program. Loops are necessary for many
types of programs, particularly if you want to do a Monte Carlo analysis. However, they should be
avoided whenever possible, since they will slow down your program considerably. If possible try to
use the apply command. R also supports while loops which follow a similar command structure:
j <- 1

while(j < 10) {COMMANDS
j <- j + 1

}
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12 Functions

Another way to program in R is to create your own functions with the function command. The
function command uses the basic following syntax:

> function.name <- function(INPUTS){YOUR ARGUMENTS}

Let’s do a simple example. Let’s say you wanted to make your own jitter function and call it
“shaky”:

> shaky <- function(x){x + rnorm(length(x))}

Now if we type:

> hmnrghts$jit.gnp <- shaky(hmnrghts$gnpcats)

Normal random errors will be added to each value of the gnpcats variable, and the resulting
variable will be called “jit.gnp.”

13 Maximum Likelihood in R

A nice feature of R’s simple function definition is that R can readily use the full flexibility of
Maximum Likelihood Estimation (MLE). If a “canned” model does not suit your research, and
you want to derive your own estimator using MLE, then R can accommodate you. To illustrate
how programming an MLE works in R, consider the estimator for the probability parameter in a
binomial distribution. Our likelihood function is:

πy(1 − π)n−y (1)

So our log-likelihood function is:

y · log(π) + (n − y) log(1 − π) (2)

We can easily define our log-likelihood function in R with the function command:

binomial.loglikelihood <- function(pi, y, n) {

loglikelihood <- y*log(pi) + (n-y)*log(1-pi)

return(loglikelihood)

}

Now to get our estimate, we need R to find the value of π that maximizes the log-likelihood
function given the data. We can do this with the optim command:

test <- optim(c(.5), # starting value for pi

binomial.loglikelihood, # the log-likelihood function

method="BFGS", # optimization method

hessian=TRUE, # return numerical Hessian

control=list(fnscale=-1), # maximize function instead of minimize

y=43, n=100) # the data

print(test)

Note that optim is actually a minimizer, so we turn it into a maximizer with fnscale=-1.
A neat feature of defining our log-likelihood function is that we can readily call it to get a

picture of the optimization problem:
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ruler <- seq(0,1,0.01)

loglikelihood <- binomial.loglikelihood(ruler, y=43, n=100)

plot(ruler, loglikelihood, type="l", lwd=2, col="blue",

xlab="pi", ylab="L(pi)", ylim=c(-300,-70),

main="Log-Likelihood for Binomial Model")

abline(v=.43)

14 Using Packages for Upper-Level Methods

In this section, we consider a few methods that go beyond the typical expectations for econometric
software. To do this, we load a package and use some of the commands associated with it. Consider
a hierarchical linear model: Mainline software is increasingly getting better at accommodating this
framework, but most people have to use MLWin or HLM to run such models. In R, we need only
load the nlme package to use such a model. Here is an example based on some data measured at
UNC’s Dental School:

library(nlme)

data(Orthodont)

fm1<-lme(distance~age, data=Orthodont) #everything is random

fm2<-lme(distance~age+Sex, data=Orthodont, random=~1) #only random intercept

For an example that is even more out-of-reach from most software, let’s run a Bayesian re-
gression model estimated with Markov Chain Monte Carlo (MCMC). We do this by installing
MCMCpack, which was written by R users Andrew Martin and Kevin Quinn. To do this, we need
to install two packages and load the library:

install.packages("MCMCpack")

library(MCMCpack)

Now we load a data set on Swiss demographics and run our Bayesian regression model:

data(swiss)

posterior1 <- MCMCregress(Fertility ~ Agriculture + Examination +

Education + Catholic + Infant.Mortality, data=swiss)

summary(posterior1)

Just for fun, let’s see how our Bayesian regression compared to classic OLS:

OLS1 <-lm(Fertility ~ Agriculture + Examination + Education +

Catholic + Infant.Mortality, data=swiss)

summary(OLS1)

15 Object-Oriented Programming (An Advanced Use of R)

As I mentioned before, R is an object-oriented environment. This means that you, as a researcher,
have the opportunity to use sophisticated programming tools in your own research. In object-
oriented programming, you create a “class” of item that has a variety of features. You then can
create items within the class (called “objects” or “variables”) that will have unique features. In R,
you can create classes from the object system S3 or S4.

To illustrate, a “linear model” is a class of objects created by the lm command. It is an S3

class. Earlier today, we created hmnrghts.model, which was an object of the linear model class.
This object had features including coefficients, residuals, and cov.unscaled. In all S3-class
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objects, we can call a feature by writing the object name, the dollar sign, and the name of the
feature we want. For example hmnrghts.model$coefficients would list the vector of coefficients
from that model.

You may also define your own objects of either class. Here I offer and example of the more
general S4 class. These are excerpts from some code I have written, so they call functions I define
elsewhere. To see the full version of the program, consult
http://stats.wustl.edu/~jmonogan/research/FULL_SIMULATIONS.R. To start, any S4 class
needs to be defined with the setClass command, which defines the name of the class and all of
its features, which are called “slots” for S4:

setClass(’simulation’,

representation(outcomeA=’matrix’, outcomeD=’matrix’, bestResponseA=’numeric’,

bestResponseD=’numeric’, equilibriumA=’character’, equilibriumD=’character’,

parameters=’character’))

Now I define a function that ends by returning an object of class “simulation”:

simulate<-function(type,v,delta,m.2,m.1=0.7,theta.A=seq(-1,1,.1),

theta.D=seq(-1,1,.1)){

#call the correct utility functions

utilityA<-get(paste(type,"A",sep="."))

utilityD<-get(paste(type,"D",sep="."))

#create matrices and vectors

outcomeA<-matrix(NA,21,21) #I need an error message if NA isn’t replaced.

outcomeD<-matrix(NA,21,21)

bestResponseA<-rep(NA,21) #Again, NA needs to be replaced.

bestResponseD<-rep(NA,21)

equilibriumA<- ’NA’ #NA may stick, but this is class ’character’

equilibriumD<- ’NA’

#matrix attributes

rownames(outcomeA)<-seq(-1.0,1.0,0.1)

colnames(outcomeA)<-seq(-1.0,1.0,0.1)

rownames(outcomeD)<-seq(-1.0,1.0,0.1)

colnames(outcomeD)<-seq(-1.0,1.0,0.1)

names(bestResponseA)<-seq(-1.0,1.0,0.1)

names(bestResponseD)<-seq(-1.0,1.0,0.1)

#fill-in the utilities for all strategies for party A

for (i in 1:21){

for (j in 1:21){

outcomeA[i,j]<-round(utilityA(m.1,m.2,v,delta,theta.A[i],

theta.D[j]),4)

}

}

#utilities for party D

for (i in 1:21){

for (j in 1:21){

outcomeD[i,j]<-round(utilityD(m.1,m.2,v,delta,theta.A[i],

theta.D[j]),4)
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}

}

#best responses for party A

for (i in 1:21){

bestResponseA[i]<-which.max(outcomeA[,i])

}

#best responses for party D

for (i in 1:21){

bestResponseD[i]<-which.max(outcomeD[i,])

}

#find the equilibria

for (i in 1:21){

if (bestResponseD[bestResponseA[i]]==i){

equilibriumA<-dimnames(outcomeA)[[1]][bestResponseA[i]]

equilibriumD<-dimnames(outcomeD)[[2]][bestResponseD[bestResponseA[i]]]

}

}

#save the input parameters in a slot that can be called

parms<-c(type,v,delta,m.2)

#call the simulation class and fill the slots

result<-new(’simulation’, outcomeA=outcomeA, outcomeD=outcomeD,

bestResponseA=bestResponseA, bestResponseD=bestResponseD,

equilibriumA=equilibriumA, equilibriumD=equilibriumD, parameters=parms)

result

}

Now that the function is defined, I can create an object called “treatment.1” and then print-out
the value of the slot “equilibriumA” for this object. Notice that calling a feature is different in S4

because we now use the @ symbol instead of the $ of S3:

treatment.1<-simulate("Quadratic",v=0.1,delta=0.0,m.2=-0.1)

treatment.1@equilibriumA
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Figures in R

16 The plot Function

Take a look at R’s graphing capacities: http://addictedtor.free.fr/graphiques/.
For sections 16-21, we discuss graphs in the base package, which seem to be more popular

due to their inclusion in Fox’s R and S-plus Companion. Within the base framework, the plot

function performs almost all graphics tasks. To see the total sum of arguments that one can call
using plot, type args(plot.default), which returns the following:

function (x, y = NULL, type = "p", xlim = NULL, ylim = NULL,

log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL,

ann = par("ann"), axes = TRUE, frame.plot = axes, panel.first = NULL,

panel.last = NULL, asp = NA, ...)

Obviously there is a lot going on underneath the generic plot function. But for the purpose
of getting started with figure creation in R we want to ask what is essential. The answer is
straightforward: one value x must be specified. Everything else has either a default value or is not
essential. To start experimenting with plot, let’s load data from John Fox’s car package (car =
“Companion to Applied Regression”). We’re going to use Duncan’s data on occupational prestige,
appropriately titled “Prestige”. The summary function gives some basic descriptive statistics of
Duncan’s prestige data.

> library(car)

> data(Duncan)

> attach(Duncan)

> summary(Duncan)

type income education prestige

bc :21 Min. : 7.00 Min. : 7.00 Min. : 3.00

prof:18 1st Qu.:21.00 1st Qu.: 26.00 1st Qu.:16.00

wc : 6 Median :42.00 Median : 45.00 Median :41.00

Mean :41.87 Mean : 52.56 Mean :47.69

3rd Qu.:64.00 3rd Qu.: 84.00 3rd Qu.:81.00

Max. :81.00 Max. :100.00 Max. :97.00

As a first foray into creating figures, we can plot the variables separately with the com-
mand plot(varname).3 For example, if we want to look at the distribution of the data points
for education, we simply type plot(education) and Figure 2(a) is returned in the R graphics
interface. Note that this figure plots education against a default index. Of course, we are more
often interested in bivariate relationships. We can explore these easily by incorporating an x and
a y in the call to plot: plot(education, prestige). This produces Figure 2(b).

17 Figure Construction

R graphics are wonderful in that one begins with a blank slate. There are a good number of
options that can be combined in a number of ways to create figures that suit your specific needs.

3For univariate plots, see section 21 on page 30 for better alternatives that plot. Two that you might find
especially useful are the histogram function (hist(varname)) and the boxplot function (boxplot(varname)).
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(b) Education and Occupational Prestige

Figure 2: Education and Education by Occupational Prestige

These include scatterplots, line graphs, bar graphs, histograms, box plots, and more. It is perhaps
most useful for getting started to work through the basic functions/options that bring considerable
flexibility to creating figures in R.

The Coordinate System: In the above scatterplot, we were not worried about establishing the
coordinate system because the data effectively did this for us. But often, you will want to
establish the dimensions of the figure before plotting anything—especially if you are building
up from the blank canvas. The most important point here is that your x and y must be of
the same length. This is perhaps obvious, but missing data can create difficulties that will
lead R to balk. One alternative is to establish the coordinate system outright by creating
vectors like the following, which go into Figure 8:

> xaxis <- c(1:12)

> econ.inds <- c(2, 3, 3.5, 2, 3, 2.5, 3, 2.5, 3, 3.5, 4, 4)

> econ.reps <- econ.inds + 2

> econ.dems <- econ.inds - 1

We can now take these four vectors as data—that is, we can think of these four objects as
variables. Let’s treat these data as four separate series, where xaxis represents some generic index
for time and the other three objects represent average perceptions on some hypothetical scale for
Independents, Republicans, and Democrats respectively.

Plot Types: We now want to plot these series, but the plot function allows for different types
of plots. The different types that one can include within the generic plot function include:

type=‘‘p" This is the default and it plots the x and y coordinates as points.

type=‘‘l’’ This plots the x and y coordinates as lines.

type=‘‘n’’ This plots the x and y coordinates as nothing (it sets up the coordinate space
only).
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type=‘‘o’’ This plots the x and y coordinates as points and lines overlaid (i.e., it “over-
plots”).

type=‘‘h’’ This plots the x and y coordinates as histogram-like vertical lines.

type=‘‘s’’ This plots the x and y coordinates as stair-step like lines.

Axes: It is possible to turn off the axes, to adjust the coordinate space by using the xlim and
ylim options, and to create your own labels for the axes.

axes= Allows you to control whether the axes appear in the figure or not; I often like to turn
them off by selecting axes=F. Then I create my own labels as follows:

• axis(side=1, at=c(2, 4, 6, 8, 10, 12), labels=c("Feb", "Apr", "June",

"Aug", "Oct", "Dec"))

xlim=, ylim= For example, if we wanted to expand the space from the R default, we could
enter:

• plot(xaxis, econ.inds, type="o", xlim=c(-5, 17), ylim=c(-5, 15))

xlab="", ylab="" Creates labels for the x- and y-axis (if you use this option you will want
to be sure that you select axes=F).

Style: There are a number of options to adjust the style in the figure, including changes in the
line type, line weight, color, point style, and more. Some that I commonly use include:

lty= Selects the type of line (solid, dashed, short-long dash, etc.)

lwd= Selects the line width (fat or skinny lines)

pch= Selects the plotting symbol, can either be a numbered symbol (pch=1) or a letter
(pch="R")

col= Selects the color of the lines/points in the figure (see “Color in R” for the many options)

par The par function brings added functionality to plotting in R. What is perhaps most important
is that the par allows you to plot multiple (x, y)’s in a single graphic. This is accomplished
by selecting par(new=T) following each call to plot.

17.1 Add-on Functions

There are also a number of add-on functions that one can use once the basic coordinate system
has been created using plot. Some of these are listed below, and their implementation appears in
the following sample code.

arrows(x1, y1, x2, y2) Create arrows within the plot (useful for labeling particular data points,
series, etc

text(x1, x2, "text") Create text within the plot (modify size of text using the character ex-
pansion option cex

lines(x, y) Create a plot that connects lines

points(x, y) Create a plot of points

polygon() Create a polygon of any shape (rectangles, triangles, etc.)

legend(x, y, at = c("", "",), labels=c("", ""))) Create a legend to identify the compo-
nents in the figure
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18 Regression Diagnostic Plots
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Figure 3: A Sample R Graphic

To get a fuller sense of using scatterplots in R, let’s run some pre- and post-regression diagnostics
on our human rights data. You may need to re-run the following commands before plotting:

> detach(Duncan)

> hmnrghts<-read.dta(‘‘D:/temp/hmnrghts.dta")

> hmnrghts.model<-lm(sdnew~democ+gnpcats, data=hmnrghts)

Now, let’s say we wanted to plot human rights violations by the lpop variable. To do that we
would use the following commands to get Figure 3:

> attach(hmnrghts)

> plot(lpop, sdnew)

Given that sdnew is an ordinal variable it is harder to see where the preponderance of obser-
vations are. Often it helps to add some random perturbations to the plot. This is easily done in
R with the jitter command, resulting in Figure 4:

> plot(lpop,jitter(sdnew))

Now let’s use some of the subcommands for the plot function to add options to your graphics:

> plot(lpop,jitter(sdnew), xlab=‘‘Log of Population’’, ylab=‘‘Human

+ Rights Violations’’,main=‘‘Human Rights Violations by Population’’)

As seen in Figure 5, this adds labels for the x and y axis as well as a main title. A subtitle can be
added as well.

We can also easily plot elements from the models that we estimated. Let’s plot the fitted values
from the regression model we estimated against the one of the regressors, the measure of population.
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Figure 4: A Graphic with the Jitter Command

> plot(hmnrghts.model$fit, lpop, xlab=‘‘Fitted Human Rights Violations’’,

+ ylab=‘‘Population’’, main=‘‘Plot of Fitted Values’’)

In Figure 6, we can see the fitted values of our model against one of the regressors, a standard
sight test for heteroscedasticity in linear models.

Let’s say we wanted multiple graphs on a single page in order to make comparisons. For ex-
ample, let’s say we wanted to look at the residual plots for both population and GNP from the
regression model we estimated earlier. To do that we have to use the par command. The par

command is a lower level graphing command which allows you to make a variety of adjustments
to graphs. Type ?par to see all that it controls. Figure 7 is an example of a graph created with
adjustments to the par command:

> par(mfrow=c(2,1))

> plot(lpop, hmnrghts.model$resid, ylab="OLS Residuals",

+ xlab="Population", main="Residual Plot")

> plot(jitter(as.numeric(gnpcats)), hmnrghts.model$resid, ylab="OLS Residuals",

+ xlab="GNP", main="")

> detach(hmnrghts)

Here the par command tells R to create a 2 by 1 set of graphs. You then need to supply two
graphs. You can do up to eight graphs on a single page. By the look of Figure 7, it would appear
that there is some linear relationship between GNP and the fitted values in our model, indicating
heteroscedasticity.

Graphic Output. The easiest way to get graphics out of R is to simply right-click on the fig-
ure itself and then choose to save the figure as either a metafile (for use in Word) or as a postscript
file (for use in LATEX). The default size is for a full page graph. To resize the graph just use the
mouse to resize the plot window. For LATEX users who want to set the bounding box size use the
postscript command. Before you plot the graph, type:
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Figure 5: More R Graphics Commands

> postscript(‘‘FILENAME.eps’’, horizontal=FALSE, width=#, height=#).

This will set the width and height of the graphic in inches. You may have to experiment with
this at first to get the size you want. The graphics in this document have a bounding box that is
5 inches wide and 4 inches high. The horizontal command changes the orientation of the graphic
from landscape to portrait orientation on the page. Change it to TRUE to have the graphic adopt
a landscape orientation. After you plot, type dev.off().

Alternatively, for non-LATEX users who would like to create graph output consistent with Mi-
crosoft Office software, a jpeg graph can be created with the commands:
> jpeg(‘‘C:/Temp/test.jpg’’)

> # INSERT GRAPHING COMMANDS

> dev.off()

Sections 19 and 20 offer example uses of these commands.
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Figure 6: An OLS Fitted Values Plot
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Figure 7: Including Multiple Graphs on the Same Page
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19 Example Code: Time Series

#pdf("D:/temp/parallel.pdf")

#postscript("parallel.eps", horizontal=FALSE, width=7, height=7,

# onefile=FALSE, paper="special", family="ComputerModern")

plot(xaxis, econ.inds, type="o", lwd=2, pch=5, ylim=c(0, 6.5),

axes=F, xlab="", ylab="")

par(new=T)

plot(xaxis, econ.dems, type="o", lwd=2, pch=1, col="blue", ylim=c(0, 6.5),

axes=F, xlab="", ylab="")

par(new=T)

plot(xaxis, econ.reps, type="o", lwd=2, pch=2, col="red", ylim=c(0, 6.5),

axes=F, xlab="Month", ylab="Average Perception (Hypothetical)")

axis(side=1, at=c(2, 4, 6, 8, 10, 12),

labels=c("Feb", "Apr", "June", "Aug", "Oct", "Dec"))

box()

text(2.25, 6.25, "Republicans", cex=1.2)

text(6, 3.7, "Independents", cex=1.2)

text(10.5, 1.2, "Democrats", cex=1.2)

arrows(2, 6.05, 3, 5.65, length=.10, lwd=2)

arrows(5.75, 3.5, 6.75, 3.1, length=.10, lwd=2)

arrows(10.25, 1.35, 9.25, 1.75, length=.10, lwd=2)

# dev.off()
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Figure 8: Hypothetical Example of Objective Information Updating
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20 Example Code: Bar Graph

#jpeg("D:/temp/folpa.jpeg")

#postscript("folpa.eps", horizontal=FALSE, width=7, height=7,

# onefile=FALSE, paper="special", family="ComputerModern")

plot(c(0, 4), c(0, 0.35), type=’n’, xlab="How Interested in Politics?",

ylab="Proportion",axes=F)

axis(2)

axis(side = 1, at = c(.5, 1.5, 2.5, 3.5),

labels = c("Not at All", "Hardly", "Quite", "Very"))

polygon(c(0.25, 0.25, .75, .75), c(0, .33, .33, 0), col="gray76")

polygon(c(1.25, 1.25, 1.75, 1.75), c(0, .20, .20, 0), col="gray56")

polygon(c(2.25, 2.25, 2.75, 2.75), c(0, .32, .32, 0), col="gray36")

polygon(c(3.25, 3.25, 3.75, 3.75), c(0, .16, .16, 0), col="gray16")

abline(h=0, col="gray70")

title("Distribution of Political Interest")

text(.5, .35, ".33", cex=1.2)

text(1.5, .22, ".20", cex=1.2)

text(2.5, .34, ".32", cex=1.2)

text(3.5, .18, ".16", cex=1.2)

box()

# dev.off()

How Interested in Politics?

P
ro

p
or

ti
on

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Not at All Hardly Quite Very

Distribution of Political Interest

.33

.20

.32

.16

Figure 9: Attentiveness to Politics in the Albanian Mass Public
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21 Non-plot Functions from base

There are a few graphing commands in the base package that do not call the plot function. One
is the boxplot command, which we try using our data from UNC’s dental school:

library(nlme)

data(Orthodont)

attach(Orthodont)

boxplot(distance~age)

The other command is hist, which gives us a histogram of a variable:

hist(distance)

box()

hist(distance,breaks=c(15,20,25,30,35))

detach(Orthodont)

22 Using lattice Graphics in R

As an alternative to the base graphics package, you may want to consider the lattice add-
on package. These produce trellis graphics from the S language, which tend to make better
displays of grouped data and numerous observations. A few nice features of the lattice pack-
age are that the graphs have viewer-friendly defaults and the commands do not require you to
attach the data beforehand. We will simply touch on these graphs today, but for more informa-
tion type ?xyplot into the R command prompt or see Bill Jacoby’s website at Michigan State,
http://polisci.msu.edu/jacoby/icpsr/graphics/.

To start, the following code loads the library, runs a simple scatterplot, and then applies some
of the options available to the command:

library(lattice)

xyplot(distance~age, data=Orthodont)

xyplot(distance~jitter(age), data=Orthodont, col="black")

We also might like to draw a graph that is similar to a simple scatterplot, but uses ordinal statistics
for the vertical axis variable:

stripplot(distance~age, data=Orthodont)

dotplot(distance~age, data=Orthodont)

Lastly, if we want to get a good look at the distribution of a variable, we can plot the density or
histogram of the variable:

densityplot(~distance, data=Orthodont)

histogram(~distance, data=Orthodont)

histogram(~distance | Sex, data=Orthodont)
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Exercises

23 Exercise I

• Give R assignment statements that set the variable z to:

1. xab

2. (xa)b

3. 3x3 + 2x2 + 6x + 1

4. z + 1

• Give R expressions that return the following vectors:

(1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1)

(1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5)

• Create a 4 × 6 matrix with all diagonal elements equal to 0.

• Use R to produce a vector containing all integers from 1 to 100 that are not divisible by 2, 3,
or 7.

• Which of the following assignments will be successful?

rm(list=ls())

x <- 1

x[3] <- 3

y <- c()

y[2] <- 2

y[3] <- y[1]

y[2] <- y[4]

z[1] <- 0

• Call the library ISwR, load the data set juul, the valuable sex is a dummy variable with
being a girl as 1. Write the logical expression to use to extract girls between 7 and 14 years
of age.

24 Exercise II

• Calculate the probability for each of the following events:

1. A standard normally distributed variable is larger than 3.

2. A normally distributed variable with mean 35 and standard deviation 6 is larger than
42.

3. x < 0.9 when X has the standard uniform distribution.

• It is well known that 5% of the normal distribution lies outside an interval approximately
±2s about the mean. Where are the limits corresponding to 1%, 0.5% and 0.1%?
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25 Exercise III

• Let h(x, n) = 1 + x + x2 + ... + xn =
∑n

i=0
xi. Write an R program to calculate h(0.9, 25)

using a for loop.

26 Exercise IV

• The (Euclidean) length of a vector ν = (a0, ..., ak) is the square root of the sum of squares of

its coordinates, that is
√

a2
0
+ ... + a2

k
. Write a function that returns the length of a vector.

• You have already wrote a program to calculate h(x, n) =
∑n

i=0
xi. Turn this program into a

function that takes two arguments, x and n, and return h(x, n)

• Consider the following program and its output, and explain what is going wrong and how
you would fix it?

random.sum <- function(n){

x[1:n] <- ceiling(10*runif(n))

cat ("x: ", x[1:n], "\n")

return(sum(x))

}

x <- rep(100, 10)

show(random.sum(10))

show(random.sum(5))

27 Exercise V

• From the spuRs library, load the ufc data set.

• Do scatterplots for the height.m variable and dbh.cm variable in the same plotting area, and
explore the possibilities for different kinds of point plots. Vary the plot symbol, line type,
line width, and color

• Select the trees in the ufc dataset which are taller than 26m, plot their heights (height.m)
against their diameters (dbh.cm), and change the default labels, title, and color.
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