
INTRODUCTORY
ECONOMETRICS
 FORFINANCE

ROBERT WICHMANN
CHRIS BROOKS

R GUIDE TO ACCOMPANY

4TH EDITION

c© Robert Wichmann and Chris Brooks, 2019
The ICMA Centre, Henley Business School, University of Reading
All rights reserved.

This guide draws on material from ‘Introductory Econometrics for Finance’, published by Cambridge
University Press, c© Chris Brooks (2019). The Guide is intended to be used alongside the book, and
page numbers from the book are given after each section and subsection heading.

The authors accept no responsibility for the persistence or accuracy of URLs for external or third-party
internet websites referred to in this work, and nor do we guarantee that any content on such web sites
is, or will remain, accurate or appropriate.

i

Contents

1 Introduction to R and RStudio 1
1.1 What Are R and RStudio? . 1
1.2 What Does RStudio Look Like? . 1

2 Getting Started 3
2.1 Packages . 3
2.2 Importing Data . 3
2.3 Data Description . 5
2.4 Changing and Creating Data . 6
2.5 Graphics and Plots . 7
2.6 Keeping Track of Your Work . 8

3 Linear Regression – Estimation of an Optimal Hedge Ratio 10

4 Hypothesis Testing – Example 1: Hedging Revisited 13

5 Hypothesis Testing – Example 2: The CAPM 15

6 Sample Output for Multiple Hypothesis Tests 19

7 Multiple Regression Using an APT-Style Model 20
7.1 Stepwise Regression . 22

8 Quantile Regression 25

9 Calculating Principal Components 28

10 Diagnostic Testing 30
10.1 Testing for Heteroscedasticity . 30
10.2 Using White’s Modified Standard Error Estimates . 31
10.3 The Newey–West Procedure for Estimating Standard Errors 32
10.4 Autocorrelation and Dynamic Models . 33
10.5 Testing for Non-Normality . 34
10.6 Dummy Variable Construction and Application . 35
10.7 Multicollinearity . 38
10.8 The RESET Test for Functional Form . 38
10.9 Stability Tests . 39
10.10Recursive Estimation . 40

11 Constructing ARMA Models 43
11.1 Estimating Autocorrelation Coefficients . 43
11.2 Using Information Criteria to Decide on Model Orders 44

12 Forecasting Using ARMA Models 47

13 Estimating Exponential Smoothing Models 49

14 Simultaneous Equations Modelling 50

i

15 Vector Autoregressive (VAR) Models 54

16 Testing for Unit Roots 60

17 Cointegration Tests and Modelling Cointegrated Systems 62
17.1 The Johansen Test for Cointegration . 64

18 Volatility Modelling 69
18.1 Estimating GARCH Models . 69
18.2 EGARCH and GJR Models . 70
18.3 GARCH-M Estimation . 72
18.4 Forecasting from GARCH Models . 74
18.5 Estimation of Multivariate GARCH Models . 75

19 Modelling Seasonality in Financial Data 78
19.1 Dummy Variables for Seasonality . 78
19.2 Estimating Markov Switching Models . 79

20 Panel Data Models 82

21 Limited Dependent Variable Models 87

22 Simulation Methods 93
22.1 Deriving Critical Values for a Dickey–Fuller Test Using Simulation 93
22.2 Pricing Asian Options . 97

23 Value at Risk 100
23.1 Extreme Value Theory . 100
23.2 The Hill Estimator for Extreme Value Distributions . 101
23.3 VaR Estimation Using Bootstrapping . 102

24 The Fama–MacBeth Procedure 105

References 108

ii

List of Figures

1 RStudio Main Windows . 2
2 Installing a Package in RStudio . 3
3 Importing Data . 4
4 The Environment Tab with Imported Data . 5
5 Line Plot of the Average House Price Series . 8
6 Histogram of Housing Return Series . 8
7 Time-series Plot of Two Series . 16
8 Generating a Scatter Plot of Two Series . 17
9 Plot of Coefficients from Quantile Regression Against OLS 27
10 Plot of Residuals from Linear Regression . 30
11 Histogram of Residuals . 34
12 Regression Residuals and Fitted Series . 36
13 Plot of the Parameter Stability Test . 41
14 CUSUM Plot . 42
15 Autocorrelation and Partial Autocorrelation Functions 43
16 Graph Comparing Static and Dynamic Forecasts with the Actual Series 48
17 Graphs of Impulse Response Functions (IRFs) for the VAR(1) Model 57
18 Graphs of FEVDs for the VAR(1) Model . 58
19 Graphs for FEVDs with Reverse Ordering . 59
20 Actual, Fitted and Residual Plot . 63
21 Graph of the Six US Treasury Interest Rates . 65
22 Graph of the Static and Dynamic Forecasts of the Conditional Variance 75
23 State Probabilities Graph . 81
24 Graph of the Fitted Values from the Failure Probit Regression 91
25 Changing the Way Code is Displayed in RStudio . 94
26 Hill Plot for Value at Risk . 102

iii

List of Tables

1 Commonly Used Operators . 7
2 Simulated Asian Option Prices . 99
3 Fama–MacBeth Market Prices of Risk . 107

iv

1 Introduction to R and RStudio

1.1 What Are R and RStudio?

R is a language and environment for statistical computing and graphics. It provides a wide variety of
statistical and graphical techniques, and is highly flexible. One of Rs strengths is the ease with which
well-designed publication-quality plots can be produced, including mathematical symbols and formulae
where needed. Great care has been taken over the defaults for the minor design choices in graphics, but
the user retains full control.1

The most commonly used graphical integrated development environment for R is RStudio, which is
also the one used in this guide.2 A good way of familiarising yourself with RStudio is to work through
the examples given in this guide. This section assumes that readers have installed RStudio and have
successfully loaded it onto an available computer and that they have downloaded and installed a recent
version of R (at the date of writing this guide, the latest version 3.5.2).

1.2 What Does RStudio Look Like?

When you start Rstudio you will be presented with a window which should resemble Figure 1. You
will soon realise that the main window is actually subdivided into four smaller windows, headed by an
application toolbar. The upper left Source window, which is minimised when starting a new session,
will display R scripts or file once you open them, or you can browse through data within this window;
you can also open several tabs like working on a script and having a look at a data set.

The lower left Console window is showing a prompt ‘¿’ and can be used directly. It is the place
where you can execute commands and where the output is displayed. A command is typed directly
after the prompt and can be executed by pressing Enter. As such, you can use it as a calculator and
for example type 1 + 1 into the Console and press Enter. You should obtain the result [1] 2, where
the [1] only indicates the row of the result, followed by the actual result 2.

On the right-hand side of the screen, you will see two windows: the upper window with the tabs
Environment, History and Connections and the lower window with the tabs Files, Plots, Packages,
Help and Viewer. You can customise the location and number of tabs shown in RStudio by clicking
Tools/Global Options. . . in the top toolbar, and then switch to the tab Pane Layout on the left
of the pop up window. However, we will keep the default arrangement here.

We will not discuss in detail every one of these tabs, but instead focus on the main tabs that we will
use in this guide. The Environment tab shows the data and variables that have been loaded and created
in the current workspace as such, it is helpful to get a quick information on size, elements, formats and
other characteristics of the data. The History tab acts as a log and can be helpful to find commands
you executed in the past as it is usually also not cleared after ending a session.

1https://www.r-project.org
2RStudio is freely available with an open source license from https://www.rstudio.com/products/rstudio/

download/. The version used in this guide is 1.1.463.

1

https://www.r-project.org
https://www.rstudio.com/products/rstudio/download/
https://www.rstudio.com/products/rstudio/download/

Figure 1: RStudio Main Windows

The Files tab shows the directory you are currently working with and the files stored therein. It is
helpful to set this directory by default to the folder you want to work in, although this can also be done
manually every time you open RStudio. For the general Option, again open Tools/Global Options. . .
and change the default working directory in the General tab. Alternatively, you can set this working
directory every time you restart RStudio by navigating to the directory in the Files tab. Once you have
open the desired directory, click More in the top toolbar of the Files tab and select Set As Working
Directory; after that, you can see an executed command in the Console that should resemble the one
below with the specific path you chose.

This small example is one of the built-in tools where RStudio translates an operation into code and
executes it for you, which can helpful in the beginning as you might be overwhelmed by all the commands
that you would need to know to do this without the graphical interface. However, note that typing

setwd("D:/ Programming Guide/R Guide/code")

into the Console and hitting Enter would have had the same effect.
Next to the Files tab, you can find the Plots tab showing the graphical output produced during the

session. The Packages window shows which libraries are installed and loaded into the current session
memory. Finally, the Help tab offers many ways of support and documentation.

2

2 Getting Started

2.1 Packages

Since R is an open source language, libraries are an essential part of R programming. These are packages
of R functions, data or compiled code that have been provided by other users. Some standard libraries
are pre-installed, while others have to be added manually. Clicking on the Packages tab in RStudio
displays a list of installed packages. The Comprehensive R Archive Network (CRAN) is a repository
of packages that is widely known and from which packages can be downloaded and installed directly
through RStudio. For the first exercises you need to download and install the package ‘readxl’ which
contains functions to read data from Microsoft Excel ‘.xls’ and ‘.xlsx’ files. To select the necessary
package, click on Tools/Install Packages. . . in the main toolbar. The window in Figure 2 appears.

Figure 2: Installing a Package in RStudio

Now specify the package by typing ‘readxl’. Note that you can install packages from your hard drive
instead of the CRAN repository, too. Make sure the option Install dependencies is ticked, so all
necessary packages which ‘readxl’ is linked to are also installed. A log of the installation process is
displayed in the Console. A package only needs to be installed once, but it is recommended to update
package by clicking the Update button right of Install in the Packages window regularly to keep track
of changes. You will see that installing packages is also possible within the Console directly using the
function install.packages().

However, installing the package does not automatically provide us with the functions included in the
package. To include these in a program, they need to be loaded by either using the command library(),
or, to embed the functions (of, for example, ‘readxl’) into a program, tick mark ‘readxl’ in the list of
libraries in the Packages window. Throughout this guide, we will introduce packages for the different
sections that contain functions of use for achieving particular tasks. However, note that many libraries
are already part of the System library and do not have to be installed.

2.2 Importing Data

As a first example, we will import the file ‘UKHP.xls’ into RStudio. For this purpose, RStudio has a
built-in function that translates the action into code. In this way you can learn how to write this code
yourself. Click File/Import Dataset/From Excel. . . to open the window in Figure 3. If you have
not installed ‘readxl’ beforehand, RStudio will now ask you to do so as this package is needed to import
the dataset.

3

Figure 3: Importing Data

In the Import window, choose the file UKHP.xls and you will see a preview of how the file will be
imported. The dataset includes two variables, Month and Average House Price, which are currently
both interpreted as doubles. To change the data type of ‘Month’ to Date, click on the small arrow next
to it and choose Date in the drop down menu.

Using this embedded tool to import a dataset might not be the most efficient way, but it offers a
first glance at how these actions are translated into R code.3 In the Code Preview panel in the lower
right corner, the following code is presented to the reader.

library(readxl)

UKHP <- read_excel("D:/ Programming Guide/data/UKHP.xls",

col_types = c("date", "numeric"))

View(UKHP)

Clicking Import will run this code, so it will be displayed in the Console. The first line is necessary
to embed the package ‘readxl’ which was installed before and includes the function ‘read excel’. This
function is called in the second line to read from the given path. Note that the path is dependent on
where the files are stored. To change the format of the first column into date, the argument ‘col types’
has to be set to ‘date’. However, since there are two columns, both formats have to be specified. By
setting ‘col types’ to c(“date”, “numeric”). Here another function is used, c(), which is a generic
function that combines the arguments into a vector. Finally, the data read is stored in the list object
UKHP. To view the data, type View(UKHP) or click on the new element in the Environment window.

Within this example, we can already see how much of the R code we will apply in this guide is
structured. Most operations are done using functions like read excel. These functions need input
arguments, such as a path, and can take optional arguments such as col types.

3However, there are several other ways to import data into R depending on the format of the source file, including
read.table() for ‘.txt’ files, read.csv() for ‘.csv’ files which are included in the system library utils or even the alternative
package ‘xlsx’ and its function read.xlsx for Excel files.

4

This example also reveals a peculiarity of R, which originally uses the arrow symbol ‘<–’ to assign
values to variables. However, it is also possible to use the more common equal sign ‘=’. Although it
might be unusual to use an arrow, it can improve the readability of code, since setting arguments in R
is already done by using ‘=’, see ‘col types = . . . ’. Throughout this guide, the equals sign will be used.

2.3 Data Description

After having loaded the dataset successfully into the workspace, it should appear in the Environment
tab under Data as in Figure 4. Clicking on the blue arrow to the left will unfold the variables.

Figure 4: The Environment Tab with Imported Data

We can see that the dataset has two variables with 327 observations. The variable Month is of format
POSIXct, which is a specific date and time format, and the variable Average House Price is of
format numeric (num). If we click on UKHP in the Environment tab, a new tab will open in the
source window showing the dataset. This way ,we can check whether the data have been imported
correctly.

Another good idea is to check some basic summary statistics to make sure data has the expected
properties. R provides the function summary() for this. As there is no built-in function, we have
to type this command directly into the Console. Typing summary(UKHP) into the Console and
pressing Enter will produce the following output

While the summary command displays several statistics, they can also be called individually using
the specific functions like mean(), median(), quantile(), min() or max(). There is also sd() as a
function for the standard deviation. Throughout this guide, these functions will be used frequently and
explained in more detail. However, they can be used in a straight-forward fashion in most cases.

Summary statistics for the variable Month are not necessary, so to access the column ‘Average House
Prices’ only in R, the extract operator $ followed by the name of the variable can be used. Hence to

5

obtain the mean of house price, type mean(UKHP$‘Average House Price’). The function names()
provides the names of the variables of a list such as ‘UKHP’.4

2.4 Changing and Creating Data

In any programming language including R, it is highly recommended not to use white spaces for variable
names. While other platforms do not allow for it, when reading data R does permit white spaces
to be part of the variable names. However, to avoid future problems, this should be changed. As
we learned above, with names() the variable names can be accessed. Since there are two variables,
names(UKHP) will return a vector with two entries. To address specific entries of a vector or matrix
in R, you use square bracket ‘[]’. Hence, we address the second entry of the name vector followed by an
equals sign and the new string for the name. We type

names(UKHP)[2] = "hp"

This command will set the new name of the second column to hp. As seen before, strings in R have to
be put between double quotes. However, single quotes also work.

Writing a new variable into the data ‘UKHP’ is fairly simple. Choose the name and define the
variable directly afterwards in the same line. For the computation of returns, however, we need some
more functions. In the end, the new return series ‘dhp’ will be defined by typing

UKHP$dhp = c(NA, 100*diff(UKHP$hp)/UKHP$hp[1:nrow(UKHP)-1])

into the Console. But let us go through the right-hand side of this line step by step.
First, we use the function c(), which we have seen before, to create vector out of a collection of single

values. This is necessary, because when creating returns, one observation is lost automatically, which
has to be set to ‘’NA’. Without this adjustment, R, would produce an error since the new variable does
not have the appropriate length to fit into the data frame. For demonstration, try to type the same
command without adding an ‘NA’ before. You should obtain the following output.

Therefore, typing only the definition of returns would not be compatible with the necessary length of
the vector. The actual computation of returns is done in

100*diff(UKHP$hp)/UKHP$hp[1:nrow(data)-1]

which uses two new functions, diff() and nrow(). The term diff(UKHP$hp) computes the vector of
differences (hp2−hp1, hp3−hp2, . . . ,), which forms the numerator of the return series. The denominator
is formed as UKHP$hp[1:nrow(data)-1], which takes into account that the last entry of ‘hp’ is not
used. To use all values up to the second to last entry of ‘hp’, the range is set as 1:nrow(UKHP), where

4If the default settings are not altered, RStudio also provides the possible completions automatically. In this case, after
$ one can choose between Month and ‘Average House Price’.

6

nrow() returns the number of rows of ‘UKHP’. The colon ‘:’ in R can be used to create sequences with
step size 1, e.g., the numbers from 1 to 10 are abbreviated by 1:10.5

Note that R automatically understood that the two vectors had to be divided element-wise. This
feature is called vectorisation and is very helpful as we do not have to tell R what to do with every
single entry. Instead, the syntax is automatically interpreted as an element-wise division. However, this
also makes it necessary to think carefully about the dimensions of the variables because R will interpret
commands in specific pre-determined ways instead of producing an error. Table 1 gives some more
examples for operators that can be used to create or compare variables.

Table 1: Commonly Used Operators

Z/2 Dividing == (exactly) equal to
Z*2 Multiplication != not equal to
Zˆ2 or Z**2 Squaring > larger than
log(Z) Taking the logarithms < smaller than
exp(Z) Taking the exponential >= larger than or equal to
sqrt(Z) Square root <= smaller than or equal to
abs(Z) Absolute value & AND

| OR
! NOT

2.5 Graphics and Plots

This subsection will introduce some of the standard ways to produce graphical output in R using only
functions from the system library graphics.6

While you can customise any plot individually, it is helpful to set certain parameters globally so
that they do not have to be adjusted in every single plot. This includes fonts, font sizes, colours,
labels, symbols, line styles, legends and many more. To see what is the actual global setting for each
of these parameters, type par() into the Console. You can also view the settings in a list by typing
View(par()). For explanations of the specific parameters, type help(par).

Let us plot a simple line graph of the house price series. Before we give the instructions for the actual
plot produced by the function plot, we set the parameters to improve the readability. The following
code produces the graph in Figure 5.

par(cex.axis = 1.5, cex.lab = 1.5, lwd = 2)

plot(UKHP$Month ,UKHP$hp ,type = ’l’,xlab="Date",ylab="House price")

In the first line, we double the size of the axis (cex.axis), labels (cex.lab) and linewidth (lwd) within
the par command. The second line produces a line graph that shows the date variable ‘Month’ on the
x-axis and the house price ‘hp’ on the y-axis. Setting the argument type to ‘l’ will connect the points.7

With the arguments xlab and ylab you can write new strings to the axis labels, otherwise the names
of the data series are used.

5Note that there is also the function seq() to construct more complicated sequences. See the Help tab for more
information, or type help(seq) into the Console.

6One of the most used extensions to the standard graphics is the package ggplot2. See the documentation on the
CRAN website for more information (https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf).

7The default setting here is ‘p’, which will only plot the points. Search for ‘plot’ in the Help window to receive more
information on graphical options for plots.

7

https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf

Figure 5: Line Plot of the Average House Price Series

After executing the commands, you will see that the lower right window automatically switches to
the Plots tab displaying the most recent plot. The toolbar above enables you to export your plots and
saves them so that you can navigate through them using the arrows in the tool bar.

To plot histograms, the graphics package provides the function hist. To produce a histogram of
the return series dhp, simply type hist(UKHP$dhp) and you will find the graph in Figure 6 in the
Plots tab. If you want to refine the histogram, use the argument breaks within the hist function.8

Figure 6: Histogram of Housing Return Series

2.6 Keeping Track of Your Work

In order to be able to reproduce your work and remember what you have done after some time, you
can save the current workspace by clicking Session/Save Workspace As. . . in the top menu. Save
the workspace as UKHP.RData. The instructions are logged in the History window, the second tab
in the upper right corner. However, it is easier to save the instruction in an R script or ‘.R’-file. To
create a new R script, click File/New File/R Script. In the example below you will find all of the
instructions that we have used so far.

8Note that I also added a box around the graph with the simple command box().

8

1 library(readxl)

2 UKHP = read_excel("D:/ Programming Guide/data/UKHP.xls", col_types = c("date"

, "numeric"))

3 names(UKHP)[2] = "hp"

4 UKHP$dhp = c(NA, 100*diff(UKHP$hp)/UKHP$hp[1:nrow(UKHP)-1])

5 par(cex.axis = 2, cex.lab =2, lwd = 2)

6 plot(UKHP$Month ,UKHP$hp ,type = ’l’,xlab="Date",ylab="House price")

7 hist(UKHP$dhp)

This file can again be saved clicking File/Save. Save the script as UKHP.R. From an empty workspace,
you could regain all of the results by running the script. To do so, open the file with File/Open File. . . ,
and in the script run any line by clicking Run in the top right corner of the Source window or by pressing
Ctrl+Enter with the cursor is the respective line. To run the whole block of code at once, either mark
everything or click Source in the upper right-hand corner of the Source window.

However, since we already saved the results in the file ‘UKHP.RData’, we don’t necessarily need to
re-run the code. You can import the results by clicking File/Open File. . . and choosing the ‘.RData’
file. As you see in the Console, this command can be typed using the function load. To avoid naming
the whole path, it is useful to set the working directory to the directory where you keep your files, then
a simple load(“.RData” is sufficient.9

9See the beginning of this chapter to check how to set your working directory.

9

3 Linear Regression – Estimation of an Optimal Hedge Ratio

Reading: Brooks (2019, Section 3.3)

This section shows how to run a bivariate regression in R. In our example, an investor wishes to hedge a
long position in the S&P500 (or its constituent stocks) using a short position in futures contracts. The
investor is interested in the optimal hedge ratio, i.e., the number of units of the futures asset to sell per
unit of the spot assets held.10

This regression will be run using the file ‘SandPhedge.xls’, which contains monthly returns for the
S&P500 Index (in Column 2) and the S&P500 Futures (in Column 3). Before we run the regression,
this Excel workfile needs to be imported. As learned in the section before, this can be done using
File/Import Dataset/From Excel or directly by typing the line of code

SandPhedge <- read_excel("D:/ Programming Guide/data/SandPhedge.xls",

col_types = c("date", "numeric", "numeric"))

Note that the path of the file has to be adapted to the local path of course. Also, the format of the first
variable has been changed to date. Do not forget to tick-mark the package ‘readxl’ or insert the line
library(readxl) before importing the data.

We can see the three imported variables in the dataset ‘SandPhedge’ in the Environment window
on the right-hand side of the screen. In order to examine the data and verify some data entries, you can
click on ‘SandPhedge’ or type View(SandPhedge) into the Console.

We run our analysis based on returns to the S&P500 index instead of price levels; so the next step
is to transform the ‘spot’ and ‘future’ price series into percentage returns. For our analysis, we use
continuously compounded returns, i.e., logarithmic returns, instead of simple returns as is common in
academic finance research. To create the log return series for spot and futures prices, type

SandPhedge$rspot = c(NA ,100*diff(log(SandPhedge$Spot)))

SandPhedge$rfutures = c(NA ,100*diff(log(SandPhedge$Futures)))

To have a look at the new variables, use the summary command. Since you do not need to see a
summary of every variable in the dataset, specify the variables that should be summarised. Type

summary(SandPhedge[c("rspot","rfutures")])

and the following output should be displayed in the Console.

10See also Chapter 9 in Brooks (2019).

10

We observe that the two return series are quite similar as based on their mean values, standard deviations
(not displayed here), as well as minimum and maximum values, as one would expect from economic
theory.

Now proceed to estimate the regression. Note that it is not necessary to tell R which of the three
variables is the time indicator. We can run a regression directly after having created the new variables.
To estimate linear models, R provides the function lm(). The main argument lm() requires is the
formula for the regression given by y ∼ x, with y as dependent and x as independent variable. The
independent variable is the rfutures series. Thus, we are trying to explain variations in the spot rate
with variations in the futures rate. An intercept is automatically included. We specify the regression
model and save it as lm returns in the first line and then call the summary function to present the
results by typing

lm_returns = lm(rspot ~ rfutures ,data = SandPhedge)

summary(lm_returns)

Note that instead of entering the variables directly as SandPhedge$rspot and SandPhedge$rspot,
lm() provides the argument data such that we only need to type the variable names.11 After running
these two lines of code, the output below will be presented in the console.

The parameter estimates for the intercept (α̂) and slope (β̂) are 0.013 and 0.975, respectively. A large
number of other statistics are also presented in the regression output – the purpose and interpretation
of these will be discussed later.

Now we estimate a regression for the levels of the series rather than the returns (i.e., we run a
regression of ‘Spot’ on a constant and ‘Futures’) and examine the parameter estimates. We follow the
steps described above and specify ‘Spot’ as the dependent variable and ‘Futures’ as the independent
variable by typing and running the commands

lm_prices = lm(Spot ~ Futures ,data = SandPhedge)

summary(lm_prices)

11A discussion of other optional arguments of lm() will follow in later sections.

11

The intercept estimate (α̂) in this regression is –2.838 and the slope estimate (β̂) is 1.002, as presented
in the output below.

Let us now turn to the (economic) interpretation of the parameter estimates from both regressions. The
estimated return regression slope parameter measures the optimal hedge ratio as well as the short-run
relationship between the two series. By contrast, the slope parameter in a regression using the raw spot
and futures indices (or the log of the spot series and the log of the futures series) can be interpreted as
measuring the long-run relationship between them. The intercept of the price level regression can be
considered to approximate the cost of carry. Looking at the actual results, we find that the long-term
relationship between spot and futures prices is almost 1:1 (as expected). Before exiting RStudio, do not
forget to click Save to place the workspace into SandPhedge.RData.

12

4 Hypothesis Testing – Example 1: Hedging Revisited

Reading: Brooks (2019, Sections 3.8 and 3.9)

Let us now have a closer look at the results table from the returns regressions in the previous section
where we regressed S&P500 spot returns on futures returns in order to estimate the optimal hedge ratio
for a long position in the S&P500. If you closed RStudio, reload the workspace ‘SandPhedge.RData’
by clicking File/Open File. . . . The workspace should include the dataset ‘SandPhedge’ consisting
of five variables and the two linear models. While we have so far mainly focused on the coefficient
estimates, i.e., α and β, the two linear models also contain several other statistics which are presented
next to the coefficient estimates: standard errors, the t-ratios and the p-values.

The t-ratios are presented in the third column indicated by ‘t value’ in the column heading. They
are the test statistics for a test of the null hypothesis that the true values of the parameter estimates are
zero against a two-sided alternative, i.e., they are either larger or smaller than zero. In mathematical
terms, we can express this test with respect to our coefficient estimates as testing H0 : α = 0 versus
H1 : α 6= 0 for the constant ‘ cons’ in the second row of numbers and H0 : β = 0 versus H1 : β 6= 0 for
‘rfutures’ in the first row. Let us focus on the t-ratio for the α estimate first. We see that with a value
of only 0.44, the t-ratio is very small, which indicates that the corresponding null hypothesis H0 : α = 0
is likely not to be rejected. Turning to the slope estimate for ‘rfutures’, the t-ratio is high with 146.54
suggesting that H0 : β = 0 is to be rejected against the alternative hypothesis of H1 : β 6= 0. The p-
values presented in the fourth column, ‘P > |t|’, confirm our expectations: the p-value for the constant
is considerably larger than 0.1, meaning that the corresponding t-statistic is not even significant at the
10% level; in comparison, the p-value for the slope coefficient is zero to, at least, three decimal places.
Thus, the null hypothesis for the slope coefficient is rejected at the 1% level.

While R automatically computes and reports the test statistics for the null hypothesis that the
coefficient estimates are zero, we can also test other hypotheses about the values of these coefficient
estimates. Suppose that we want to test the null hypothesis that H0 : β = 1. We can, of course,
calculate the test statistics for this hypothesis test by hand; however, it is easier if we let a function do
this work. The package car contains the function linearHypothesis() which can do this job. Hence we
install and load the package from the Packages window. Looking into the help function for this package,
you can find the documentation for the whole package and the function by clicking on the package in
the Packages window. As arguments, linearHypothesis asks for a model, while the second input is a
vector of restrictions that can be written straightforwardly using the variable names. Since we want to
specify β = 1, we set

linearHypothesis(lm_returns ,c("rfutures=1"))

After running the code, the output on the following page should appear in the Console. The first lines
list the models that are being compared: the restricted model 1, where β = 1 and the original model
‘rspot ∼ rfutures’. Below, we find the F -test statistics under ‘F’; 14.03 states the value of the F -test.
The corresponding p-value is 0.0002246, as stated in the last column. As it is considerably smaller than
0.01, we can reject the null hypothesis that the coefficient estimate is equal to 1 at the 1% level.

13

We can also perform hypothesis testing on the levels regressions. For this we use the regression in levels
lm prices and type this command into the Console:

linearHypothesis(lm_prices ,c("Futures=1"))

The following output is presented.

With an F -statistic of 2.58 and a corresponding p-value of 0.1092, we find that the null hypothesis is
not rejected at the 5% significance level.

14

5 Hypothesis Testing – Example 2: The CAPM

Reading: Brooks (2019, Sections 3.10 and 3.11)

This exercise will estimate and test some hypotheses about the CAPM beta for several US stocks. The
data for this example are contained in the excel file ‘capm.xls’. We first import this data file by selecting
File/Import Dataet/From Excel. . . . Without further specifying anything, R automatically con-
verts the first column into a date variable. The imported data file contains monthly stock prices for the
S&P500 index (‘SANDP’), the four companies, Ford (‘FORD’), General Electric (‘GE’), Microsoft (‘MI-
CROSOFT’) and Oracle (‘ORACLE’), as well as the 3-month US-Treasury bill yield series (‘USTB3M’)
from January 2002 until February 2018. Before proceeding to the estimation, save the R workspace as
‘capm.RData’ by selecting Session/Save workspace as. . . .

It is standard in the academic literature to use five years of monthly data for estimating betas, but
we will use all of the observations (over fifteen years) for now. In order to estimate a CAPM equation for
the Ford stock for example, we need to first transform the price series into (continuously compounded)
returns and then to transform the returns into excess returns over the risk-free rate.

To generate continuously compounded returns for the S&P500 index, type

capm$rsandp = c(NA,100*diff(log(capm$SANDP)))

and returns are written to the new variable rsandp in the list capm. Recall that the first entry needs
to be empty (‘NA’) as the returns series has one observation less.

We need to repeat these steps for the stock prices of the four companies. Hence,type the commands

capm$rford = c(NA,100*diff(log(capm$FORD)))

capm$rge = c(NA,100*diff(log(capm$GE)))

capm$rmsoft = c(NA,100*diff(log(capm$MICROSOFT)))

capm$roracle = c(NA ,100*diff(log(capm$ORACLE)))

into the Console and press Enter. We should then find the new variables in the Environment window
after clicking on ‘capm’.

In order to transform the returns into excess returns, we need to deduct the risk free rate, in our case
the 3-month US-Treasury bill rate, from the continuously compounded returns. However, we need to be
slightly careful because the stock returns are monthly, whereas the Treasury bill yields are annualised.
When estimating the model it is not important whether we use annualised or monthly rates; however,
it is crucial that all series in the model are measured consistently, i.e., either all of them are monthly
rates or all are annualised figures. We decide to transform the T-bill yields into monthly figures, before
generating excess returns:

capm$USTB3M = capm$USTB3M/12

capm$ersandp = capm$rsandp - capm$USTB3M

We similarly generate excess returns for the four stock returns. Before running the CAPM regression,
we plot the data series to examine whether they appear to move together. We do this for the S&P500
and the Ford series. The following two lines will produce the graph in Figure 7

par(cex.axis = 1.5, cex.lab = 1.5, lwd = 2)

plot(capm$Date ,capm$ersandp ,type=’l’,col = "red",ylim=c(-100,100),ylab="")

lines(capm$Date ,capm$erford , lwd = 1)

15

legend("topright",c("SP500","Ford"), col = c("red","black"),lty=1,cex=1.5)

Since both plots should appear in the same window, some modifications of the simple plot() command
are necessary. To insert a second plot into an existing one can be achieved with the function lines().
However, to make it easier to distinguish between the two lines, we also need to change the colour as
otherwise both lines would be black. This is done by setting the argument col to “red”. Further, we
increase the linewidth (lwd) to 1 and adjust the limits of the y-axis (ylim) to include the range from
-100 to 100, so all points of the second plot are visible in the graph. With the legend command, we
can further customise the legend.

Figure 7: Time-series Plot of Two Series

However, in order to get an idea about the association between two series, a scatter plot might be more
informative. To generate a scatter plot, use plot() with ‘ersandp’ as x-axis and ‘erford’ as y-axis.

plot(capm$ersandp ,capm$erford ,pch=19)

To improve visibility, we also set the argument pch for the point symbols to a solid circle (19).12

12A list with all possible symbols can be found in the help documentation for the function points().

16

Figure 8: Generating a Scatter Plot of Two Series

We see from this scatter plot that there appears to be a weak association between ‘ersandp’ and ‘erford’.
We can also create similar scatter plots for the other data series and the S&P500.

For the case of the Ford stock, the CAPM regression equation takes the form

(RFord − rf)t = α + β(RM − rf)t + ut (1)

Thus, the dependent variable (y) is the excess return of Ford ‘erford’ and it is regressed on a constant
as well as the excess market return ‘ersandp’. Hence, specify the CAPM equation regression as

lm_capm = lm(erford ~ ersandp , data = capm)

summary(lm_capm)

and run this code to obtain the results below.

17

Take a couple of minutes to examine the results of the regression. What is the slope coefficient estimate
and what does it signify? Is this coefficient statistically significant? The beta coefficient (the slope
coefficient) estimate is 1.89 with a t-ratio of 9.86 and a corresponding p-value of 0.000. This suggests
that the excess return on the market proxy has highly significant explanatory power for the variability
of the excess return of Ford stock.

Let us turn to the intercept now. What is the interpretation of the intercept estimate? Is it
statistically significant? The α estimate is –0.96 with a t-ratio of –1.21 and a p-value of 0.230. Thus,
we cannot reject the null hypothesis that the α estimate is different from zero, indicating that the Ford
stock does not seem to significantly outperform or underperform the overall market.

Assume that we want to test the null hypothesis that the value of the population coefficient on ‘er-
sandp’ is equal to 1. How can we achieve this? The answer is to run an F -test using linearHypothesis()
from the car package. Load the package by typing library(car) and then run the code

linearHypothesis(lm_capm ,c("ersandp=1"))

The output should appear as below.

The F -statistic of 21.56 with a corresponding p-value of 0.000006 implies that the null hypothesis of the
CAPM beta of the Ford stock being 1 is convincingly rejected and hence the estimated beta of 1.89 is
significantly different from 1.13

13This is hardly surprising given the distance between 1 and 1.89. However, it is sometimes the case, especially if
the sample size is quite small and this leads to large standard errors, that many different hypotheses will all result in
non-rejection – for example, both H0 : β = 0 and H0 : β = 1 not rejected.

18

6 Sample Output for Multiple Hypothesis Tests

Reading: Brooks (2019, Section 4.4)

This example uses the ‘capm.RData’ dataset constructed in the previous section. So in case you are
starting a new session, re-load the workspace. If we examine the F -statistic of 97.26 from the regression
lm capm), this also shows that the regression slope coefficient is significantly different from zero, which
in this case is exactly the same result as the t-test (t-stat: 9.86) for the beta coefficient. Since in this
instance there is only one slope coefficient, the F -test statistic is equal to the square of the slope t-ratio.

Now suppose that we wish to conduct a joint test that both the intercept and slope parameters
are one. We would perform this test in a similar way to the test involving only one coefficient. We
can specify the restrictions in matrix form by saying that the product of coefficients with the identity
matrix should equal the vector (1, 1)′. Therefore, we use the arguments hypothesis.matrix and rhs
of linearHypothesis. We type in the Console:

linearHypothesis(lm_capm ,hypothesis.matrix = diag(2),rhs = c(1,1))

This command shows the generic function diag(), which can be used to create diagonal matrices.
Applied on a scalar, it returns the identity matrix of that dimension, but it can also be used with a vector
that specifies the diagonal of the matrix – i.e., diag(2) and diag(c(1,1)) are equivalent commands.

In the Output window above, R produces the familiar output for the F -test. However, we note that the
joint hypothesis test is indicated by the two conditions that are stated, ‘(Intercept) = 1’ and ‘ersandp =
1’.14 Looking at the value of the F -statistic of 12.94 with a corresponding p-value of 0.0000, we conclude
that the null hypothesis, H0 : β1 = 1 and β2 = 1, is strongly rejected at the 1% significance level.

14Thus, the command linearHypothesis(lm capm,c(“(Intercept)=1”,“ersandp=1”)) is equivalent to the version
using two arguments.

19

7 Multiple Regression Using an APT-Style Model

Reading: Brooks (2019, Section 4.4)

The following example will show how we can extend the linear regression model introduced in the
previous sections to estimate multiple regressions in R. In the spirit of arbitrage pricing theory (APT),
we will examine regressions that seek to determine whether the monthly returns on Microsoft stock
can be explained by reference to unexpected changes in a set of macroeconomic and financial variables.
For this, we rely on the dataset ‘macro.xls’ which contains nine data series of financial and economic
variables as well as a date variable spanning the time period from March 1986 until March 2018 (i.e., 385
monthly observations for each of the series). In particular, the set of financial and economic variables
comprises the Microsoft stock price, the S&P500 index value, the consumer price index, an industrial
production index, Treasury bill yields for three months and ten years, a measure of ‘narrow’ money
supply, a consumer credit series, and a ‘credit spread’ series. The latter is defined as the difference in
annualised average yields between a portfolio of bonds rated AAA and a portfolio of bonds rated BAA.

Before we can start with our analysis, we need to import the dataset ‘macro.xls’ into a new
workspace that we save as ‘macro.RData’. The first stage is to generate a set of changes or differences
for each of the variables, since the APT posits that the stock returns can be explained by reference to
the unexpected changes in the macroeconomic variables rather than their levels. The unexpected value
of a variable can be defined as the difference between the actual (realised) value of the variable and its
expected value. The question then arises about how we believe that investors might have formed their
expectations, and while there are many ways to construct measures of expectations, the easiest is to
assume that investors have naive expectations that the next period value of the variable is equal to the
current value. This being the case, the entire change in the variable from one period to the next is the
unexpected change (because investors are assumed to expect no change).15

To transform the variables, directly type the commands into the Console:

macro$dspread = c(NA,diff(macro$BMINUSA))

macro$dcredit = c(NA,diff(macro$CCREDIT))

macro$dprod = c(NA,diff(macro$INDPRO))

macro$dmoney = c(NA ,diff(macro$M1SUPPLY))

macro$inflation = c(NA,diff(log(macro$CPI)))

macro$rterm = c(NA,diff(macro$USTB10Y-macro$USTB3M))

macro$dinflation = c(NA ,100*diff(macro$inflation))

macro$rsandp = c(NA ,100*diff(log(macro$SANDP)))

macro$ermsoft = c(NA,100*diff(log(macro$MICROSOFT)))-macro$USTB3M/12

macro$ersandp = macro$rsandp -macro$USTB3M/12

The final three of these commands calculate returns on the index and the excess returns for the stock
and for the index. We can now run the multiple regression using the same function as before, lm().
The variable whose behaviour we seek to explain is the excess return of the Microsoft stock, hence put
‘ermsoft’ on the left-hand side. The explanatory variables are the excess market return (ersandp) as
well as unexpected changes in: industrial production (dprod), consumer credit (dcredit), the inflation
rate (dinflation), the money supply (dmoney), the credit spread (dspread), and the term spread

15It is an interesting question as to whether the differences should be taken on the levels of the variables or their
logarithms. If the former, we have absolute changes in the variables, whereas the latter would lead to proportionate
changes. The choice between the two is essentially an empirical one, and this example assumes that the former is chosen,
apart from for the stock price series themselves and the consumer price series.

20

(rterm). These variables are put on the right-hand side connected with a plus sign.

lm_msoft = lm(ermsoft ~ ersandp + dprod + dcredit + dinflation + dmoney +

dspread + rterm , data = macro)

Again, run the summary function afterwards to obtain the output below.

Take a few minutes to examine the main regression results. Which of the variables has a statistically
significant impact on the Microsoft excess returns? Using your knowledge of the effects of the financial
and macroeconomic environment on stock returns, examine whether the coefficients have their expected
signs and whether the sizes of the parameters are plausible. The regression F -statistic (last line) takes a
value of 28.24. Remember that this tests the null hypothesis that all of the slope parameters are jointly
zero. The p-value of <2.2e-16 afterwards shows that this null hypothesis should be rejected.

However, there are a number of parameter estimates that are not significantly different from zero
– specifically those on the ‘dprod’, ‘dcredit’, ‘dmoney’ and ‘dspread’ variables. Let us test the null
hypothesis that the parameters on these four variables are jointly zero using an F -test. Again we use
the function linearHypothesis, this time specifying the restrictions using the names of the variables.16

library(car)

linearHypothesis(lm_msoft ,c("dprod=0","dcredit=0","dmoney=0","dspread=0"))

Running the above code results in the following output.

16Note that the same results can be produced using the arguments hypothesis.matrix and rhs. However, you need
to be careful, as the matrix has to only address these entries. Therefore, the above version is much easier to read.

21

The resulting F -test statistic follows an F (4, 375) distribution as there are 4 restrictions, 383 usable
observations and eight parameters to estimate in the unrestricted regression. The F -statistic value is
0.4139 with p-value 0.7986, suggesting that the null hypothesis cannot be rejected. The parameters on
‘rterm’ and ‘dinflation’ are significant at the 10% level. Hence they are not included in this F -test and
the variables are retained.

7.1 Stepwise Regression

There are a number of different stepwise regression procedures, but the simplest is the uni-directional
forwards method. This starts with no variables in the regression (or only those variables that are
always required by the researcher to be in the regression) and then it compares the same model with
all possible models that include one more variable with respect to the Akaike Information Criterion
(AIC). The variable that improves the criterion the most is added to the model and this becomes the
new base line model from which the next variable can be added until there are no more variables left or
the existing model is superior to all extensions.

We want to conduct a stepwise regression which will automatically select the most important variables
for explaining the variations in Microsoft stock returns. As the maximal model, we use the already
estimated model lm msoft, which includes an intercept and seven variables. The model to start with
will only include an intercept. We therefore estimate lm start as

lm_start = lm(ermsoft~1,data=macro[-2 ,])

step(lm_start ,direction = "forward",scope = formula(lm_msoft))

Note that we do not use the first two observations since the maximal model also discards these ob-
servations as not all variables are defined. For the stepwise regression procedure, we use the function
step() from the package stats which is included in the system library and therefore does not need to be
installed.17 The arguments for step include the minimal model which was just estimated only including
an intercept, the argument direction which we set to “forward”, since the model is to be extended,
and scope which defines the maximal model, which is given using the function formula, so it is not
necessary to specify it separately. Executing the code yields the following output.

17There is also an implementation of the stepwise regression procedure in the leaps package.

22

The output is structured into four blocks which represent the four steps until no further variable is
added. A block always starts with the AIC value of the prevalent baseline model noted below, hence in
the first block is the minimal model, ermsoft ∼ 1, which only includes an intercept. The table below
specifies all possible extensions of one variable sorted with increasing AIC. Note that there is also the
possibility of not adding any variable, denoted by <none>. In the first table, clearly adding ersandp

23

to the model improves the AIC the most, it declines from 1733.94 for the intercept only model to 1586.8.
Therefore, the new baseline model in the second block is ermsoft ∼ ersandp.18

Turning to the second block, again all possible extensions and their AIC values are listed. Because
ersandp is already added, there is one possibility less but still it seems better to add another variable
as the inclusion of rterm increases the AIC further to 1580.8. In the third block, dinflation is added
to the baseline model, before in the last block the best possibility to extend the model is <none>. At
this point, the algorithm stops and prints the coefficients of the last baseline model, which in this case
is ermsoft ∼ ersandp + rterm + dinflation.

18To be more specific, this could also be written as ermsoft ∼ 1 + ersandp.

24

8 Quantile Regression

Reading: Brooks (2019, Section 4.10)

To illustrate how to run quantile regressions using R, we will now employ the simple CAPM beta
estimation conducted in a previous section. We re-open the ‘capm.Rdata’ workfile. To esti-
mate a quantile regression, the quantreg package needs to be installed and loaded, hence type in-
stall.packages(”quantreg”) into the Console or install the package using the menus. Do not forget
to load the library afterwards using library(quantreg).

This package provides the function rq() to estimate a quantile regression. The arguments are similar
to the ones for lm() plus you need to specify the quantile that should be estimated in the argument,
tau. The default setting for tau is 0.5, which is the median, but any value between 0 and 1 can be
chosen.19. For now, we will not specify tau further and take a look at the median estimation. As before,
we save the results in a new object and report them using the summary function. Hence, we type

qreg = rq(erford ~ ersandp , data = capm)

summary(qreg)

Pressing Enter should produce the following results.

Besides the coefficients for α and β, the results also provide confidence intervals for the estimated
parameters by inverting a rank test, as described in Koenker (1994).20

While this command only provides estimates for one particular quantile, we might be interested
in differences in the estimates across quantiles. Next, we generate estimates for a set of quantiles.
Fortunately, the function rq() is implemented in such a way that it can vectorise the arguments for
tau. This is not always the case, but very useful as we can just replace the single entry 0.5 from before.
Note that we did not actually type tau = 0.5 as it is implicit. Instead, we type

rq(erford ~ ersandp , data = capm , tau=seq(0.1,0.9,0.1))

This command makes use of the function seq() to create a sequence from a given start point to an end
point using a defined step size. In this case, it starts at 0.1 and ends at 0.9 using steps of size 0.1. Hence,
we obtain the estimations for all deciles. Pressing Enter provides the following results:

19Note that R will not produce an error for an input of tau = 2. However, you will not find any meaningful results.
20Specify the additional argument se of the summary function to receive results for standard errors. Possible specifica-

tions include “iid”, “nid”, “ker” and “boot” – see the help function for more detailed descriptions.

25

For each decile, two estimates are presented: the β-coefficient on ‘ersandp’ and the intercept. Take some
time to examine and compare the coefficient estimates across quantiles. What do you observe? We find
a monotonic rise in the intercept coefficients as the quantiles increase. This is to be expected since the
data on y have been arranged that way. But the slope estimates are very revealing - they show that
the beta estimate is much higher in the lower tail than in the rest of the distribution of ordered data.
Thus the relationship between excess returns on Ford stock and those of the S&P500 is much stronger
when Ford share prices are falling most sharply. This is worrying, for it shows that the ‘tail systematic
risk’ of the stock is greater than for the distribution as a whole. This is related to the observation that
when stock prices fall, they tend to all fall at the same time, and thus the benefits of diversification that
would be expected from examining only a standard regression of y on x could be much overstated.

An interesting diagnostic test is to see whether the coefficients for each quantile are significantly
different from the OLS regression. The quantreg package has implemented this test such that it is
easily accessible. It is part of the graphical output of the summary function

qreg = rq(erford ~ ersandp , data = capm , tau=seq(0.1,0.9,0.1))

plot(summary(qreg), level = 0.95)

Running the above code will produce the two graphs in Figure 9, showing the regression coefficients
of the nine quantile regressions in black and their 95% confidence intervals in the gray shaded area.
Further, the coefficient of the OLS regression is included in red with the 95% confidence band, the
exact values were αOLS = −0.956 and βOLS = 1.890. The graph clearly shows the increasing pattern in
intercepts discussed in the paragraph above, and hence they are also not likely to be equal to the OLS
intercept. For the β, however, most quantile estimations are within the 95% confidence interval, except
for the 10, 40, 50 and 60% quantiles.

26

Figure 9: Plot of Coefficients from Quantile Regression Against OLS

27

9 Calculating Principal Components

Reading: Brooks (2019, Appendix 4.2)

In this section, we will examine a set of interest rates of different maturities and calculate the principal
components for this set of variables. We can import the Treasury bill data directly from the Excel file
fred.xls and save the dataset into fred.RData. To check whether the data was imported correctly, you
can run summary on the six interest rates GS3M, GS6M, GS1, GS3, GS5 and GS10 and should
obtain the following output.

To run a principal component analysis (PCA), the stats package provides the function prcomp(),
which only needs the dataset as input. However, also set the argument scale. to T (true) to scale the
variables to unit variance before rotating them.

The function prcomp() returns a list of five variables, the standard deviations sdev, the transformation
matrix rotation, the centring parameter of the transformation center and the scaling parameter scale.
With the optional binary argument retx, you can also obtain the transformed variables, hence the
scaling, centring and rotating applied to the original data series. Applying the summary function returns
a matrix containing the standard deviations of the six principal components and their proportion of the
total variance, as well as the cumulative proportion of all components up to the specific column. Typing
fred$rotation will show the six eigenvectors or principal components.

It is evident that there is a great deal of common variation in the series, since the first principal
component captures over 98% of the variation in the series and the first two components capture 99.9%.
Consequently, if we wished, we could reduce the dimensionality of the system by using two components

28

rather than the entire six interest rate series. Interestingly, the first component comprises almost exactly
equal weights in all six series while the second component puts a larger negative weight on the shortest
yield and gradually increasing weights thereafter. This ties in with the common belief that the first
component captures the level of interest rates, the second component captures the slope of the term
structure (and the third component captures curvature in the yield curve).

29

10 Diagnostic Testing

10.1 Testing for Heteroscedasticity

Reading: Brooks (2019, Section 5.4)

In this example we will undertake a test for heteroscedasticity, using the ‘macro.RData’ workfile. We
will inspect the residuals of the APT-style regression of the excess return of Microsoft shares, ‘ermsoft’,
on unexpected changes in a set of financial and macroeconomic variables, which we have estimated
above. Thus, the first step is load the data set using load(“macro.RData”).21

To get a first impression of the properties of the residuals, we want to plot them. The linear regression
model lm msoft has saved the residuals in the variable residuals, hence plotting is straight-forward
by typing

plot(macro$Date [-(1:2)],lm_msoft$residuals ,type = "l",xlab="",ylab="")

We need to take care to exclude the first two observations from the date variable, as they are not
included in the regression. Forgetting to do so will result in an error as the lengths of the two series are
not equal. The resulting plot should resemble Figure 10.

Figure 10: Plot of Residuals from Linear Regression

Let us examine the pattern of residuals over time. If the residuals of the regression have systematically
changing variability over the sample, that is a sign of heteroscedasticity. In this case, it is hard to see
any clear pattern (although it is interesting to note the considerable reduction in volatility post-2003),
so we need to run the formal statistical test.

To do so, we install the package lmtest which includes tests, data sets, and examples for diagnostic
checking in linear regression models. The two test demonstrated here are the Breusch–Pagan and the
studentized Breusch–Pagan test. Both can be executed with the function bptest() from the lmtest
package. The function only needs the regression formula and dataset as inputs. However, to run the

21Note this command only works if you have set your working directory to the path the file is stored in. Otherwise
input the complete path.

30

(original) Bresuch–Pagan test, which assumes that the regression disturbances are normally distributed,
the optional argument studentize has to be set to F (false), while with the default setting, studentize
= T, the studentized Breusch–Pagan test is executed that drops the normality assumption. Hence, run
the following two commands to obtain the output below.

bptest(formula(lm_msoft),data = macro ,studentize = FALSE)

bptest(formula(lm_msoft),data = macro ,studentize = TRUE)

As can be seen, the null hypothesis is one of constant variance, i.e., homoscedasticity. With a χ2-value
of 6.31 and a corresponding p-value of 0.5037, the Breusch–Pagan test suggests not to reject the null
hypothesis of constant variance of the residuals. This result is robust to the alternative distributional
assumption, since the test statistic and p-value also suggest that there is not a problem of heteroscedastic
errors for the APT-style model.

10.2 Using White’s Modified Standard Error Estimates

Reading: Brooks (2019, Section 5.4.3)

The aim of this paragraph is to obtain heteroscedasticity-robust standard errors for the previous regres-
sion. Another way to reproduce the test statistics from the simple OLS regression is to use the function
coeftest which is part of the package lmtest, that was already used in the previous subsection. The
advantage of coeftest is that it offers the argument vcov. to specify the covariance matrix of the esti-
mated coefficients and therefore to adjust the standard errors. The package sandwich provides several
functions that automatically compute these covariance matrices. Therefore, after installing and loading
the sandwich package, use the function vcovHC() for heteroskedasticity-consistent estimation of the
covariance matrix.

The function vcovHC() is then called within the ccoeftest function in the following way:

coeftest(lm_msoft ,vcov. = vcovHC(lm_msoft ,type="HC1"))

where the argument type specifies the standard errors. To obtain the estimator suggested by White
(1980),use ”HC0”. The possible alternatives “HC1”, “HC2” and “HC3” are related to “HC0”, but
corrected for a factor of n

n−k , 1
1−h or 1

(1−h)2 , respectively. The output below shows White standard errors

with an adjustment for the degree of freedom k (“HC1”).

31

Comparing the regression output for our APT-style model using robust standard errors with that using
ordinary standard errors (section 7), we find that the changes in significance are only marginal. Of
course, only the standard errors have changed and the parameter estimates remain identical to those
estimated before. However, this has not resulted in changes about the conclusions reached about the
significance or otherwise of any variable.

10.3 The Newey–West Procedure for Estimating Standard Errors

Reading: Brooks (2019, Section 5.5.7)

In this subsection, we will estimate the Newey–West heteroscedasticity and autocorrelation robust stan-
dard errors. Compared to the previous command, the only aspect that needs to be changed is the
covariance matrix given by the argument vcov. in the coeftest function. Instead of vcovHC, use the
function NeweyWest also provided by the sandwich package.

coeftest(lm_msoft ,vcov. = NeweyWest(lm_msoft ,lag = 6,adjust=T,prewhite=F))

As arguments, specify that R should use six lags by setting lag to 6. To disable the pre-whitening of
functions, set prewhite to false and as before adjust for the degree of freedom by setting adjust to
true. Press Enter and you should obtain the following results.

32

10.4 Autocorrelation and Dynamic Models

Reading: Brooks (2019, Subsections 5.5.7–5.5.11)

The simplest test for autocorrelation is due to Durbin and Watson (1951) (DW) and is implemented in
dwtest() from the lmtest package. It can be applied in a straightforward way to the regression model
without any further specification to obtain the following output.

The value of the DW statistic is 2.10. What is the appropriate conclusion regarding the presence
or otherwise of first order autocorrelation in this case? An alternative test for autocorrelation is the
Breusch–Godfrey test. It is a more general test for autocorrelation than DW and allows us to test for
higher order autocorrelation. It is also implemented in the lmtest package within the function bgtest.
Again, executing is simple, the only argument to change is order which is 1 by default to allow for more
lags to be included. Set order to 10, run the command and the results should appear as below.

33

10.5 Testing for Non-Normality

Reading: Brooks (2019, Section 5.7)

This section looks at higher moments of the residual distribution to test the assumption of normality.
The package moments includes functions to compute these moments and tests for normality. Assume
that we would like to test whether the normality assumption is satisfied for the residuals of the APT-style
regression of Microsoft stock on the unexpected changes in the financial and economic factors. Before
calculating the actual test statistic, it might be useful to have a look at the data as this might give us
a first idea as to whether the residuals might be normally distributed. The two functions skewness()
and kurtosis() compute the third and fourth moments of the residuals as

If the residuals follow a normal distribution, we expect a histogram of the residuals to be bell-shaped
(with no outliers). To create a histogram of the residuals, we type

hist(lm_msoft$residuals ,main = "")

box()

to generate the histogram in Figure 11. We removed the title by setting main to an empty string and
added a box around the histogram using box().

Figure 11: Histogram of Residuals

Looking at the histogram plot, we see that the distribution of the residuals roughly assembles a bell-
shape, although we also find that there are some large negative outliers which might lead to a considerable
negative skewness of the data series. We could increase the argument breaks to get a more differentiated
histogram.

34

However, if we want to test the normality assumption of the residuals more formally it is best to turn
to a formal normality test. One of the most commonly applied tests for normality is the Jarque–Bera
(JB) test.22 It is implemented in the function jarque.test() of the moments package. Further, there is
the skewness test of D’Agostino (1970) and the kurtosis test of Anscombe and Glynn (1983), which are
variations of the Jarque–Bera test. While the Jarque–Bera test is based on the skewness and kurtosis of
a data series, the other functions test the two moments separately. The application of the tests is fairly
easy, as they only need one argument, the residuals. Pressing Enter should provide the output below.

The results support the earlier observation that while the skewness does not diverge from that of a normal
distribution (0), the kurtosis is significantly higher than that of a normal distribution (3). Hence, the
D’Agostino test does not reject the null hypothesis of zero skewness, but the Anscombe–Glynn test
rejects the null hypothesis of a kurtosis of 3. The joint Jarque–Bera test also rejects the normality
assumption.

What could cause this strong deviation from normality? Having another look at the histogram, it
appears to have been caused by a small number of very large negative residuals representing monthly
stock price falls of more than 20%. The following subsection discusses a possible solution to this issue.

10.6 Dummy Variable Construction and Application

Reading: Brooks (2019, Subsection 5.7.2)

As we saw from the plot of the distribution above, the non-normality in the residuals from the Microsoft
regression appears to have been caused by a small number of outliers in the sample. Such events can be
identified if they are present by plotting the actual values and the residuals of the regression. We have
created a plot containing the residuals of the Microsoft regression. Let us now add the fitted values.
Fortunately, these are already saved in the variable fitted.values of the linear regression model. Thus,

22For more information on the intuition behind the Jarque–Bera test, please refer to section 5.7 in Brooks (2019).

35

we only need to add the second plot using the function lines(). To make them easier to distinguish, we
also change the colour (col) and thickness (lwd).

plot(macro$Date [-(1:2)],lm_msoft$residuals ,type = "l", col="red",xlab="",

ylab="")

lines(macro$Date [-(1:2)],lm_msoft$fitted.values)

legend("bottomright",c("Residuals","Fitted"), col = c("red","black"),lty=1)

These two lines of code will then produce the graph in Figure 12.

Figure 12: Regression Residuals and Fitted Series

From the graph, it can be seen that there are several large (negative) outliers, but the largest of all
occur in 2000. All of the large outliers correspond to months where the actual return was much smaller
(i.e., more negative) than the model would have predicted, resulting in a large residual. Interestingly,
the residual in October 1987 is not quite so prominent because even though the stock price fell, the
market index value fell as well, so that the stock price fall was at least in part predicted.

In order to identify the exact dates that the biggest outliers were realised, it is probably easiest to
just examine a table of values for the residuals, by sorting the variable. The function sort applied to
the residuals reveals that the 170th and 178th entries are the smallest, which represent the residuals in
April (−36.075) and December 2000 (−28.143), respectively.

One way of removing the (distorting) effect of big outliers in the data is by using dummy variables.
It would be tempting, but incorrect, to construct one dummy variable that takes the value 1 for both
April 2000 and December 2000, but this would not have the desired effect of setting both residuals to
zero. Instead, to remove two outliers requires us to construct two separate dummy variables. In order to
create the Apr 00 dummy first, it is useful to change the format of the Date variable which is POSIXct
to a simple Date type. After that, the dates can be easily compared using the ‘==’ operator, such
that the dummy variable can be constructed as a logical expression.

macro$Date = as.Date(macro$Date)

macro$APR00DUM = as.integer(macro$Date == as.Date("2000-04-01"))

macro$DEC00DUM = as.integer(macro$Date == as.Date("2000-12-01"))

36

The above code makes use of the functions as.integer and as.Date to cast variables into a specific
format. These are inherited from the general class object and hence are available for any data format.
The second (third) line transforms the logical expression in the parentheses into an integer of 0 or 1.
The new variable takes the value 1 if the Date is equal to “2004-04-01” (“2004-12-01”) and 0 otherwise.

Let us now rerun the regression to see whether the results change once we remove the effect of the
two largest outliers. For this, we just add the two dummy variables APR00DUM and DEC00DUM to
the list of independent variables and create the new linear regression model lm dummy. The output
of this regression should look as follows.

Note that the dummy variable parameters are both highly significant and take approximately the values
that the corresponding residuals would have taken if the dummy variables had not been included in
the model.23 By comparing the results with those of the regression above that excluded the dummy
variables, it can be seen that the coefficient estimates on the remaining variables change quite a bit in
this instance. The inflation parameter is now insignificant and the R2 value has risen from 0.34 to 0.41
because of the perfect fit of the dummy variables to those two extreme outlying observations.

Finally, we can re-examine the normality test results of the residuals based on this new model
specification by applying the functions to the residuals of lm dummy. We see that now also the
skewness test strongly rejects the normality assumption with a p-value of 0.0016. The residuals are
still a long way from following a normal distribution, and the joint null hypothesis of normality is still
strongly rejected, probably because there are still several very large outliers. While it would be possible

23Note the inexact correspondence between the values of the residuals and the values of the dummy variable parameters
because two dummies are being used together; had we included only one dummy, the value of the dummy variable
coefficient and that which the residual would have taken would be identical.

37

to continue to generate dummy variables, there is a limit to the extent to which it would be desirable
to do so. With this particular regression, we are unlikely to be able to achieve a residual distribution
that is close to normality without using an excessive number of dummy variables. As a rule of thumb,
in a monthly sample with 381 observations, it is reasonable to include, perhaps, two or three dummy
variables for outliers, but more would probably be excessive.

10.7 Multicollinearity

Reading: Brooks (2019, Section 5.8)

Let us assume that we would like to test for multicollinearity issues in the Microsoft regression (‘macro.RData’
workfile). To generate the correlation matrix, we use the function cor() of the stats package. We specify
the six columns and exclude the first two rows from the data to discard ‘NA’ values.

cor(macro[-(1:2),c("dprod","dcredit","dinflation",

"dmoney","dspread","rterm")])

After typing the above command and pressing Enter, the following correlation matrix appears in the
Console.

Do the results indicate any significant correlations between the independent variables? In this particular
case, the largest observed correlations (in absolute value) are 0.17 between the money supply and spread
variables, and –0.23 between the spread and unexpected inflation. These figures are probably sufficiently
small that they can reasonably be ignored.

10.8 The RESET Test for Functional Form

Reading: Brooks (2019, Section 5.9)

To conduct the RESET test for the Microsoft regression, lmtest provides the function resettest().
Passing the regression model and the argument power to define which powers of the dependent variables
should be included, it is sufficient to run a RESET test in R.

resettest(lm_msoft ,power = 2:4)

Pressing Enter will present the following results.

38

The F -statistic has three degrees of freedom, since ŷ2, ŷ3 and ŷ4 are included in the auxiliary regressions.
With an F -value of 0.9938 and a corresponding p-value of 0.3957, the RESET test result implies that
we cannot reject the null hypothesis that the model has no omitted variables. In other words, we do
not find strong evidence that the chosen linear functional form of the model is incorrect.

10.9 Stability Tests

Reading: Brooks (2019, Section 5.12)

There are two types of stability tests presented in this section: the classical Chow test based on the
F -distribution and recursive regression or CUSUM tests.

The package strucchange provides a variety of tools for testing, monitoring and dating structural
changes in (linear) regression models. After installing and loading this package, we will start with the
classical Chow test for a known or unknown break date. The specific function for this test is Fstats and
its use is straightforward. Using only the regression formula and the dataset, the test is run by typing

sbtest = Fstats(formula(lm_msoft),data = macro)

which returns a list of nine with the most important variable Fstats. However, by default the test
does not include the first and last 15% percent of the data to avoid break dates at the very beginning
or end of the data set. The threshold can be altered within the function using the argument from.
This circumstance makes it necessary to discuss in a bit more detail how to interpret the results as the
variable Fstats now has 270 entries. Let us assume that we want to test whether a breakpoint occurred
in January 1996, which is roughly in the middle of the sample period. To see the test statistic in Fstats
for a structural break at this date, the date needs to be translated into an index.

Remember that the data set includes 385 observations of which only 383 are used in the regression.
Out of these 383, the first and last 15% are excluded, which corresponds to 57 observations on each
side, since 383 × 0.15 = 57.45, which is floored to 57. Therefore, the first entry in the vector Fstats
corresponds to the break date with index (385− 383) + 57 = 59, which is January 1991. Checking the
index of January 1996 in the dataset macro, can be done with the function match. Typing

jan96 = match(as.Date("1996-01-01"),macro$Date)

will return 119. Now, the corresponding F -statistic can be found in the entry 119−2−57 = 60. Knowing
that this F or Chow-statistic has an asymptotic chi-squared distribution with k = 8 degrees of freedom
helps to calculate the corresponding p-value as

chow = sbtest$Fstats[jan96-2-57]

1-pchisq(chow ,8)

39

Running the code will result in the following output.

The output presents the statistics of a Wald test of whether the coefficients in the Microsoft regression
vary between the two subperiods, i.e., before and after January 1996. The null hypothesis is one of no
structural break. We find that the Chow statistic is 15.3223 and that the corresponding p-value is 0.0532.
Thus, we can reject the null hypothesis that the parameters are constant across the two subsamples at
the 10% level.

Often, the date when the structural break occurs is not known in advance. Therefore, the Chow
statistic is computed for every possible breakpoint in the given range. Applying the function sctest
from the strucchange package will then run a supremum Wald test to compare the maximum statistic
with what could be expected under the null hypothesis of no break.

sctest(sbtest)

bp = which.max(sbtest$Fstats)+59

macro$Date[bp]

To get the actual date of the suggested break, compute the index of the maximal statistic using the
function which.max() and add 59, as explained above. The output obtained is displayed below.

Again, the null hypothesis is one of no structural breaks. The test statistic and the corresponding p-
value suggest that we can reject the null hypothesis that the coefficients are stable over time, confirming
that our model has a structural break for any possible break date in the sample. The test suggests May
2001 as the break date.

10.10 Recursive Estimation

Another way of testing whether the parameters are stable with respect to any break dates is to use
one of the tests based on recursive estimation. To do so, run a small loop to re-estimate the regression
with an increasing dataset and save the β estimates for the excess return on the S&P500 (‘ersandp’). A
possible set of code to do so could like the one below.

1 beta = NULL

2 for (t in 20:nrow(macro)){

40

3 lr = summary(lm(formula(lm_msoft), data = macro[3:t,]))

4 beta = rbind(beta ,lr$coefficients["ersandp",1:2])

5 }

In the first line, the variable in which to save the beta estimates and standard errors is initialised as
‘NULL’. Afterwards, the for loop begins signalled by for. In the same line, the sequence for which the
loop is to be repeated is defined in brackets, here for all values between 20 and the number of rows of
the dataset ‘macro’. The statements that will be repeated are surrounded by curly brackets and in this
case contain the estimation of a linear regression model in line 3 and the writing of coefficients into the
variable beta in line 4. While the dataset used comprises the observations 3 to 20 in the first execution
of the loop, it will increase to 3:21 for the second time, and so on until all observations from 3 to 385
are used. After every estimation, a summary is written to the intermediate variable lr, in the second
step, and the first and second entry of the second row (this is the β and the respective σ) are appended
to the matrix beta.

x_axis = macro$Date[20:nrow(macro)]

plot(x_axis ,beta[,1],type = "l",ylim = c(0,3),xlab="",ylab="Beta")

lines(x_axis ,beta[,1]+2*beta[,2],lty="dashed")

lines(x_axis ,beta[,1]-2*beta[,2],lty="dashed")

To plot the computed β estimates and their standard errors, the above code is sufficient using the known
functions plot and lines. Note that we need to adjust the x-axis, saved in the variable x axis, to only
include observations 20 to 385 as we discarded the first observations. With the argument lty, you can
change the line style, turning the confidence bands into dashed lines.

Figure 13: Plot of the Parameter Stability Test

What do we observe from the graph in Figure 13? The coefficients of the first couple of subsamples
seem to be relatively unstable with large standard error bands while they seem to stabilise after a short
period of time and only show small standard error bands. This pattern is to be expected, as it takes
some time for the coefficients to stabilise since the first few sets are estimated using very small samples.
Given this, the parameter estimates are remarkably stable. We can repeat this process for the recursive

41

estimates of the other variables to see whether they show similar stability over time.24

Another option is to run a so-called CUSUM test. The strucchange package provides the function
efp; to run such a test and plot the results, type

plot(efp(lm_msoft ,data=macro))

to obtain the graph in Figure 14

Figure 14: CUSUM Plot

Most of the time, the test statistic is within the 95% confidence bands, which means we cannot reject
the null hypothesis of unstable parameters. However, the values are close to the boundary and in the
period around 2010 we reject the null hypothesis.

24Note that to do this we only need to change the row specification in line 4 of the code from ”ersandp” to the variable
name we would like to inspect.

42

11 Constructing ARMA Models

Reading: Brooks (2019, Sections 6.4–6.7)

This example uses the monthly UK house price series which was already incorporated in section 2
(‘ukhp.RData’). So first we re-load the workfile. There is a total of 326 monthly observations running
from February 1991 (recall that the January observation is ‘NA’ because we are looking at returns) to
March 2018 for the percentage change in house price series. Although in general it is not recommended
to drop observations unless necessary, it will be more convenient to drop the first row of UKHP as the
‘NA’ value can cause trouble in several functions. To do so, execute the following line.

UKHP = UKHP[-1,]

The objective of this exercise is to build an ARMA model for the house price changes. Recall that there
are three stages involved: identification, estimation and diagnostic checking. The first stage is carried
out by looking at the autocorrelation and partial autocorrelation coefficients to identify any structure
in the data.

11.1 Estimating Autocorrelation Coefficients

To generate autocorrelations and partial correlations, the stats package provides the functions acf and
pacf. Setting the argument lag.max to twelve, you obtain a plot of the first 12 autocorrelations and
partial autocorrelations as shown in Figure 15.

Figure 15: Autocorrelation and Partial Autocorrelation Functions

It is clearly evident that the series is quite persistent given that it is already in percentage change
form: the autocorrelation function dies away rather slowly. Only the first two partial autocorrelation
coefficients appear strongly significant.

Remember that as a rule of thumb, a given autocorrelation coefficient is classed as significant if it is
outside a ±1.96× 1/(T)1/2 band, where T is the number of observations. In this case, it would imply
that a correlation coefficient is classed as significant if it is bigger than approximately 0.11 or smaller
than –0.11. This band is also drawn in Figure 15 with blue colour. The band is of course wider when the
sampling frequency is monthly, as it is here, rather than daily, where there would be more observations.
It can be deduced that the first six autocorrelation coefficients (then nine through twelve) and the first

43

two partial autocorrelation coefficients (then nine, eleven and twelve) are significant under this rule.
Since the first acf coefficient is highly significant, the joint test statistic presented in column 4 rejects
the null hypothesis of no autocorrelation at the 1% level for all numbers of lags considered. It could be
concluded that a mixed ARMA process might be appropriate, although it is hard to precisely determine
the appropriate order given these results. In order to investigate this issue further, information criteria
are now employed.

11.2 Using Information Criteria to Decide on Model Orders

An important point to note is that books and statistical packages often differ in their construction of the
test statistic. For example, the formulae given in Brooks (2019) for Akaike’s and Schwarz’s Information
Criteria are

AIC = ln(σ̂2) +
2k

T
(2)

SBIC = ln(σ̂2) +
k

T
ln(T) (3)

where σ̂2 is the estimator of the variance of regressions disturbances ut, k is the number of parameters
and T is the sample size. When using the criterion based on the estimated standard errors, the model
with the lowest value of AIC and SBIC should be chosen. The AIC() function of the stats package in
R uses a formulation of the test statistic based on maximum likelihood estimation. The corresponding
formulae are

AICL = −2 · ln(L) + 2 · n (4)

SBICL = −2 · ln(L) + ln(T) · n (5)

where ln(L) is the maximised log-likelihood of the model. Unfortunately, this modification is not benign,
since it affects the relative strength of the penalty term compared with the error variance, sometimes
leading different packages to select different model orders for the same data and criterion!

Suppose that it is thought that ARMA models from order (0,0) to (5,5) are plausible for the house
price changes. This would entail considering 36 models (ARMA(0,0), ARMA(1,0), ARMA(2,0), . . . ,
ARMA(5,5)), i.e., up to 5 lags in both the autoregressive and moving average terms.

This can be done by separately estimating each of the models and noting down the value of the
information criteria in each case. We can do this in the following way. Using the function arima() for
an ARMA(1,1) model, we specify the argument order as c(1,0,1). An equivalent formulation would be

∆HPt = µ+ ϕ∆HPt−1 + θεt−1 + εt, (6)

with mean µ, AR coefficient ϕ and MA coefficient θ. We type

arima(UKHP$dhp ,order = c(1,0,1))

into the Console and the following estimation output appears.

44

In theory, the output would be discussed in a similar way to the simple linear regression model discussed
in section 3. However, in reality it is very difficult to interpret the parameter estimates in the sense
of, for example, saying ‘a 1 unit increase in x leads to a β unit increase in y’. In part because the
construction of ARMA models is not based on any economic or financial theory, it is often best not to
even try to interpret the individual parameter estimates, but rather to examine the plausibility of the
model as a whole, and to determine whether it describes the data well and produces accurate forecasts
(if this is the objective of the exercise, which it often is).

In order to generate the information criteria corresponding to the ARMA(1,1) model, we use the
function AIC(). Although the AIC criterion is already given in the output above, it can also be
computed using this function. For the SBIC, the only change necessary is to set k to ln(T). Having
saved the model from before into a new variable ar11, we apply the functions and obtain the output
below.

We see that the AIC has a value of 928.30 and the BIC a value of 943.45. However, by themselves these
two statistics are relatively meaningless for our decision as to which ARMA model to choose. Instead,
we need to generate these statistics for the competing ARMA models and then select the model with
the lowest information criterion. Repeating these steps for the other ARMA models would give all of
the required values for the information criteria. The quickest way to this is within two loops running
over the two variable the order of the AR part and the order of the MA part. A possible set of code
could look like the one below.

1 aic_table = array(NA ,c(6,6,2))

2 for (ar in 0:5) {

3 for (ma in 0:5) {

4 arma = arima(UKHP$dhp ,order = c(ar ,0,ma))

5 aic_table[ar+1,ma+1,1] = AIC(arma)

6 aic_table[ar+1,ma+1,2] = AIC(arma , k = log(nrow(UKHP)))

7 }

8 }

45

As this section is dealing with ARMA models and the way to choose the right order, the above code will
not be discussed in detail. However, note that it makes use of the possibility to define three dimensional
arrays in line 1. The table created by the code above is presented below with the AIC values in the
first table and the SBIC values in the second table. Note that due to the fact that row and column
indices start with 1, the respective AR and MA order represented is to be reduced by 1, i.e., entry (5,3)
represents an ARMA(4,2) model.

So which model actually minimises the two information criteria? A quick way of finding the index of
the minimal entry in a matrix is to use the function which.min(). Note that the index is not given in
two dimensions, but as if the matrix would be a list of concatenated columns. In this case, the criteria
choose different models: AIC selects an ARMA(4,2), while SBIC selects the smaller ARMA(2,0) model.
It will always be the case that SBIC selects a model that is at least as small (i.e., with fewer or the same
number of parameters) as AIC, because the former criterion has a stricter penalty term. This means
that SBIC penalises the incorporation of additional terms more heavily. Many different models provide
almost identical values of the information criteria, suggesting that the chosen models do not provide
particularly sharp characterisations of the data and that a number of other specifications would fit the
data almost as well.

46

12 Forecasting Using ARMA Models

Reading: Brooks (2019, Section 6.8)

Suppose that an AR(2) model selected for the house price percentage changes series was estimated using
observations February 1991–December 2015, leaving 27 remaining observations to construct forecasts
for and to test forecast accuracy (for the period January 2016–March 2018). Let us first estimate the
ARMA(2,0) model for the time period from February 1991–December 2015. To account for this reduced
dataset, simply put the restrictions into the square brackets for the dataset. The regression output is
presented below.

Now that we have fitted the model, we can produce the forecasts for the period January 2016 to March
2018. There are two methods for constructing forecasts: dynamic and static. Dynamic forecasts are
multi-step forecasts starting from the first period in the forecast sample. Static forecasts imply a
sequence of one-step-ahead forecasts, rolling the sample forwards one observation after each forecast. In
R, the simplest way to forecast is using the function predict which is part of the system library stats.25

Although a static forecast only uses one-step ahead predictions, it is not as easy to implement, since the
data has to be updated and predict does not allow for this. A dynamic forecast instead does not need
any further input as it builds on the forecasted values to compute the next forecasts.

Thus, we can compute the static forecast directly after estimating the AR(2) model by typing

ar2 = arima(UKHP$dhp[UKHP$Month <="2015-12-01"], order = c(2,0,0))

dynamic_fc = predict(ar2,n.ahead = 27)

Since there are 27 out-of-sample observations, set the argument n.ahead to 27 to produce a 27-steps
ahead forecast. For a one-step ahead forecast, n.ahead would only need to be altered to 1. But as the
static forecast uses the out-of-sample observations, it is less straight-forward to compute. However, we
can just use the formula for the one-step ahead forecast of AR models and update the data manually.
Remember that for an AR(2) model like

∆HPt = µ+ ϕ1∆HPt−1 + ϕ2∆HPt−2 + εt, (7)

the one-step ahead forecast is given by

∆̂HPt+1 = µ+ ϕ1∆HPt + ϕ2∆HPt−1 + εt, (8)

25Note that there is also the package forecast which extends some forecasting techniques that are not necessary for
this section.

47

and for any step h the static forecast is given as

∆̂HPt+h = µ+ ϕ1∆HPt+h−1 + ϕ2∆HPt+h−2 + εt, (9)

Putting this into code is very efficiently done by typing

static_fc = ar2$coef[3]+ar2$coef[1]* UKHP$dhp[299:325]+ar2$coef[2]* UKHP$dhp[2

98:324]

which again makes use of the way R interprets combinations of vectors and scalars. The variable coef
contains the estimated coefficients ϕ1, ϕ2 and µ. Multiplied with the vectors of the past observations of
dhp, the code resembles Equation (9) for h=1 to 27.
To spot differences between the two forecasts and to compare them to the actual values of the changes
in house prices that were realised over this period, it is useful to create a graph of the three series. The
code below is sufficient to do so. We have added some graphical options to show how to make graphs
look more professional, while leaving the editing at a minimum.

par(lwd=2,cex.axis = 2)

plot(UKHP$Month[300:326],UKHP$dhp[300:326],type = "l",xlab = "",ylab = "")

lines(UKHP$Month[300:326],dynamic_fc$mean ,col="blue")

lines(UKHP$Month[300:326],static_fc ,col="red")

legend("topright", legend=c("Actual", "Dynamic", "Static"),col=c("black","

blue","red"),lty= 1)

The resulting graph should resemble Figure 16.

Figure 16: Graph Comparing Static and Dynamic Forecasts with the Actual Series

Let us have a closer look at the graph. For the dynamic forecasts, it is clearly evident that the forecasts
quickly converge upon the long-term unconditional mean value as the horizon increases. Of course, this
does not occur with the series of 1-step-ahead forecasts which seem to more closely resemble the actual
‘dhp’ series.

A robust forecasting exercise would of course employ a longer out-of-sample period than the two years
or so used here, would perhaps employ several competing models in parallel, and would also compare
the accuracy of the predictions by examining the forecast error measures, such as the square root of the
mean squared error (RMSE), the MAE, the MAPE, and Theil’s U-statistic.

48

13 Estimating Exponential Smoothing Models

Reading: Brooks (2019, Section 6.9)

Exponential smoothing models can be estimated in R using the package smooth. There is a variety of
smoothing methods available, including single and double, or various methods to allow for seasonality
and trends in the data. However, since single-exponential smoothing is the only smoothing method
discussed in Brooks (2019), we will focus on this.

Using the same in-sample data as before and forecasting 27 steps ahead can be done using the
function es() with the following input.

es(data = UKHP$dhp[1:299],h = 27)

Here we use the simpler notation for the observations before January 2016, as we now know these are
the first 299 observations. The argument h, as before, defines the out-of-sample observations. After
pressing Enter, the following output is obtained.

The output includes the value of the estimated smoothing coefficient α (0.235 in this case), together
with the root mean squared error (RMSE) or residual standard deviation for the whole forecast. The
final in-sample smoothed value will be the forecast for those 27 observations (which in this case would
be 0.2489906). You can find these forecasts by saving the forecast model to a variable, e.g., smooth fc
and query the value forecast.

49

14 Simultaneous Equations Modelling

Reading: Brooks (2019, Sections 7.5–7.9)

What is the relationship between inflation and stock returns? Clearly, they ought to be simultaneously
related given that the rate of inflation will affect the discount rate applied to cashflows and therefore
the value of equities, but the performance of the stock market may also affect consumer demand and
therefore inflation through its impact on householder wealth (perceived or actual).

This simple example uses the same macroeconomic data as used previously (‘macro.RData’) to
estimate this relationship simultaneously. Suppose (without justification) that we wish to estimate the
following model, which does not allow for dynamic effects or partial adjustments and does not distinguish
between expected and unexpected inflation

inflationt = α0 + α1returnst + α2dcreditt + α3dprodt + α4dmoney + u1t (10)

returnst = β0 + β1dprodt + β2dspreadt + β3inflationt + β4rtermt + u2t (11)

where ‘returns’ are stock returns – see Brooks (2019) for details.
It is evident that there is feedback between the two equations since the inflation variable appears

in the returns equation and vice versa. Two-stage least squares (2SLS) is therefore the appropriate
technique to use. To do this we need to specify a list of instruments, which would be all of the variables
from the reduced form equation. In this case, the reduced form equations would be:

inflation = f(constant, dprod, dspread, rterm, dcredit, rterm, dmoney) (12)

returns = g(constant, dprod, dspread, rterm, dcredit, rterm, dmoney) (13)

For this example we will be using the ‘macro.RData’ file and the package AER, which provides the
function ivreg() to run instrumental variable regressions. The function works in a similar fashion to the
known lm function with the additional argument instruments. Hence, we put the exogenous variables
on the right hand side of the formula and either define the instruments using the argument directly or
after the exogenous variables separated by |. Also, as with other models, we can call them using the
summary function to see the results in the following way.

50

For the returns regression, we simply alter the formula and obtain the results below.

The results show that the stock index returns are a positive and significant determinant of inflation
(changes in the money supply negatively affect inflation), while inflation has a negative effect on the

51

stock market, albeit not significantly so.
It may also be of relevance to conduct a Hausman test for the endogeneity of the inflation and stock

return variables. To do this, we estimate the reduced form equations and add the fitted values to these
equations. Hence, we run the simple OLS regressions and save the results as follows.

inf_ols = lm(inflation ~ dprod + dspread + rterm + dcredit + dmoney , data =

macro)

ret_ols = lm(rsandp ~ dprod + dspread + rterm + dcredit + dmoney , data =

macro)

macro$inffit = c(NA ,inf_ols$fitted.values)

macro$retfit = c(NA ,ret_ols$fitted.values)

Before we add the fitted values to the following two regressions.

52

The conclusion is that the inflation fitted value term is not significant in the stock return equation and
so inflation can be considered exogenous for stock returns. Thus it would be valid to simply estimate
this equation (minus the fitted value term) on its own using OLS. But the fitted stock return term is
significant in the inflation equation, suggesting that stock returns are endogenous.

53

15 Vector Autoregressive (VAR) Models

Reading: Brooks (2019, Section 7.10)

In this section, a VAR model is estimated in order to examine whether there are lead–lag relationships
between the returns to three exchange rates against the US dollar – the euro, the British pound and the
Japanese yen. The data are daily and run from 14 December 1998 to 3 July 2018, giving a total of 7,142
observations. The data are contained in the Excel file ‘currencies.xls’. First, we import the dataset
into R and construct a set of continuously compounded percentage returns called ‘reur’, ‘rgbp’ and
‘rjpy’ using the following set of commands, respectively

currencies$reur = c(NA,100*diff(log(currencies$EUR)))

currencies$rgbp = c(NA,100*diff(log(currencies$GBP)))

currencies$rjpy = c(NA,100*diff(log(currencies$JPY)))

currencies = currencies[-1 ,]

Note that we also remove the first observations to avoid problems with ‘NA’ values.
VAR estimation, diagnostic testing, forecasting and causality analysis in R is implemented in the

package vars. To estimate a VAR(2) model for the currency returns, use the function VAR with input
data and lag length.

VAR(currencies[c("reur","rgbp","rjpy")],p = 2)

The regression output from running the above code is shown on the next page. It is sectioned into the
three dimensions of the vector.

54

We will shortly discuss the interpretation of the output, but the example so far has assumed that we
know the appropriate lag length for the VAR. However, in practice, the first step in the construction of
any VAR model, once the variables that will enter the VAR have been decided, will be to determine the
appropriate lag length. For this purpose, vars provides the function VARselect, which again only needs
the dataset and the maximal lag length to compute four information criteria. Applying the function to
the dataset with a maximal lag length (lag.max) of 10 produces the following output.

55

The results present the values of four information criteria: the Akaike (AIC), Hannan–Quinn (HQ),
Schwarz (SC) and the Final Prediction Error (FPE) criteria. Under the variable selection, you can
find the optimal lag length according to the four criteria. The AIC and FPE criteria select a lag length of
four, while HQ suggests only two and SC chooses a VAR(1). Let us estimate a VAR(1) and examine
the results. Does the model look as if it fits the data well? Why or why not?

We run the same command as before using a lag length of 1 and save the model into a new variable
var.

var = VAR(currencies[c("reur","rgbp","rjpy")],p = 1)

Next, we run a Granger causality test which is implemented in the function causality. The input will
be the estimated VAR model var and a string vector cause specifying from which variables the causality
originates. This can be a single variable or a couple of variables. However, the function does not allow
the user to specify the other side of the causality. Hence, it automatically performs a joint causality test
on all remaining variables. This implies six possible tests with the summarised output below.

56

The null hypothesis of no Granger-causality is only rejected for the third case of GBP and JPY Granger-
causing EUR. However, as mentioned above, these results are always based on the joint assumption of
either two variables affecting one or one affecting two others.

To obtain the impulse responses for the estimated model, we use the function irf with input var
and set the argument n.ahead to 20 to obtain a response for 20 steps ahead.

ir = irf(var ,n.ahead = 20)

plot(ir)

Executing the above commands will produce the three plots in Figure 17.

Figure 17: Graphs of Impulse Response Functions (IRFs) for the VAR(1) Model

As one would expect given the parameter estimates, only a few linkages between the series are established
here. The responses to the shocks are very small, except for the response of a variable to its own shock,
and they die down to almost nothing after the first lag.

To have a look at the forecast error variance decomposition, we can use the function fevd, with the
same input, so we type

vd = fevd(var ,n.ahead = 20)

plot(vd)

and receive the plot displayed in in Figure 18.

57

Figure 18: Graphs of FEVDs for the VAR(1) Model

There is again little that can be seen from these variance decomposition graphs apart from the fact that
the behaviour is observed to settle down to a steady state very quickly. To illustrate how to interpret
the FEVDs, let us have a look at the effect that a shock to the euro rate has on the other two rates
and itself, which are shown in the first row of the FEVD plot. Interestingly, while the percentage of
the errors that is attributable to own shocks is 100% in the case of the euro rate (top graph), for the
pound, the euro series explains around 43% of the variation in returns (middle graph), and for the yen,
the euro series explains around 7% of the variation.

We should remember that the ordering of the variables has an effect on the impulse responses and
variance decompositions and when, as in this case, theory does not suggest an obvious ordering of the
series, some sensitivity analysis should be undertaken. Let us assume we would like to test how sensitive
the FEVDs are to a different way of ordering.

58

var_reverse = VAR(currencies[c("rjpy","rgbp","reur")],p = 1)

vd_reverse = fevd(var_reverse ,n.ahead = 20)

plot(vd_reverse)

The above code is analogous to the steps we undertook before, with the small difference of arranging
the vector of currencies in the reverse order ‘rjpy’, ‘rgbp’ and ‘reur’. The output is presented in
Figure 19. We can now compare the FEVDs of the reverse order with those of the previous ordering
(Figure 18).

Figure 19: Graphs for FEVDs with Reverse Ordering

59

16 Testing for Unit Roots

Reading: Brooks (2019, Section 8.1)

In this section, we focus on how we can test whether a data series is stationary or not. This example
uses the same data on UK house prices as employed previously (‘ukhp.RData’). Assuming that the
data have been loaded, and the variables are defined as before, we want to conduct a unit root test on
the hp series. The package fUnitRoots provides various functions to test for unit roots, starting with
the common Augmented Dickey–Fuller Test which is implemented in the function adfTest.

To run an ADF test in R, adfTest needs the data series as input, as well as a specification of the
number of lags to be included. Apart from these essentials, you can specify the argument type as nc
to not include a constant, c to include a constant and ct to include constant and trend. If we keep the
default of including a constant, after running the code, we obtain the following output.

The output shows the actual test statistics for the null hypothesis that the series ‘hp’ has a unit root.
Clearly, the null hypothesis of a unit root in the house price series cannot be rejected with a p-value of
0.903.

Now we repeat all of the above step for the returns on the house price series dhp. The output would
appear as below.

We find that the null hypothesis of a unit root can be rejected for the returns on the house price series at
the 5% level.26 Alternatively, we can use a completely different test setting – for example, instead of the
Dickey–Fuller test, we could run the Phillips–Perron test for stationarity. Among the options available,
we only focus on one further unit root test that is strongly related to the Augmented Dickey-Fuller
test presented above, namely the Dickey-Fuller GLS test (DF–GLS). Both test are implemented in the

26If we decrease the number of added lags, we find that the null hypothesis is rejected even at the 1% significance level.

60

function urersTest.27

To run a DF–GLS test, we specify, the argument type to “DF-GLS”. This time, let us include
a trend by setting model to “trend” rather than “constant”. Finally, set the maximum number of
lags to 10. The following three lines summarise the code and results of the test.

adfgls = urersTest(UKHP$hp , type = "DF -GLS", model = "trend", lag.max = 10)

adfgls@test$test@teststat

adfgls@test$test@cval

Note that urersTest also produces graphical output of the test regression that will not be discussed
here; it can be switched off by setting doplot = F. The second and third lines of the above code also
introduce the operator which is similar to $ and is a way to access variables. However, since the output
of urersTest is an object of a different class (not as usually a list), to address one of its attributes, also
called slots, we need the @ operator. The slot test is of list type and hence we can call its attribute
test using $ which is of a different class again and hence we need to call its attributes with @. The two
attributes we look at are the test statistic teststat and the critical values cval.

The conclusion, however, stays the same and the null hypothesis that the house price series has a unit
root cannot be rejected. The critical values are obtained from Elliot et al. (1996).

27In fact, this function relies on the urca package for unit root test which we will study in the next section.

61

17 Cointegration Tests and Modelling Cointegrated Systems

Reading: Brooks (2019, Sections 8.3–8.11)

In this section, we will examine the S&P500 spot and futures series contained in the ‘SandPhedge.RData’
workfile (that were discussed in section 3) for cointegration. We start with a test for cointegration based
on the Engle–Granger approach where the residuals of a regression of the spot price on the futures price
are examined. First, we create two new variables, for the log of the spot series and the log of the
futures series, and call them lspot and lfutures, respectively. Then we run an OLS regression of lspot
on lfutures:

SandPhedge$lspot = log(SandPhedge$Spot)

SandPhedge$lfutures = log(SandPhedge$Futures)

Note that is is not valid to examine anything other than the coefficient values in this regression, as the
two series are non-stationary. Let us have a look at both the fitted and the residual series over time.
As explained in previous sections, we find fitted values and residuals as variables of the new regression
object log lm. Generate a graph of the actual, fitted and residual series by first plotting only the lspot
series and the fitted values and then setting the parameter new=T, before adding the plot of residuals.
A possible set of code could look like this

1 par(lwd=2,cex.axis = 2)

2 plot(SandPhedge$Date ,SandPhedge$lspot ,type = "l",xlab = "",ylab = "",col="

red")

3 lines(SandPhedge$Date ,log_lm$fitted.values)

4 par(new=T)

5 plot(SandPhedge$Date ,log_lm$residuals ,col="blue",axes=F,type="l")

6 axis(side=4, at = pretty(range(log_lm$residuals)))

7 legend("bottomleft", legend=c("Actual", "Fitted"),col=c("black","red"),lty=

1)

8 legend("bottomright", legend=c("Resid"),col=c("blue"),lty= 1)

Running the above code should produce the graph in Figure 20. Note that we have created a second
y-axis for their values as the residuals are very small and we would not be able to observe their variation
if they were plotted in the same scale as the actual and fitted values.

You will see a plot of the levels of the residuals (blue line), which looks much more like a stationary
series than the original spot series (the red line corresponding to the actual values of y). Note how close
together the actual and fitted lines are – the two are virtually indistinguishable and hence the very small
right-hand scale for the residuals.

62

Figure 20: Actual, Fitted and Residual Plot

Let us now perform an DF–GLS Test on the residual series. Specifying the lag length as 12, including
a trend, we can directly look at the results as they appear below.

For twelve lags, we have a test statistic of (−1.458) which is not more negative than the critical values,
even at the 10% level. Thus, the null hypothesis of a unit root in the test regression residuals cannot
be rejected and we would conclude that the two series are not cointegrated. This means that the most
appropriate form of the model to estimate would be one containing only first differences of the variables
as they have no long-run relationship.

If instead we had found the two series to be cointegrated, an error correction model (ECM) could
have been estimated, as there would be a linear combination of the spot and futures prices that would
be stationary. The ECM would be the appropriate model in that case rather than a model in pure first
difference form because it would enable us to capture the long-run relationship between the series as well
as their short-run association. We could estimate an error correction model by running the following
regression.

63

Note that the above model regresses the spot returns on futures returns and lagged residuals (the error
correction term). While the coefficient on the error correction term shows the expected negative sign,
indicating that if the difference between the logs of the spot and futures prices is positive in one period,
the spot price will fall during the next period to restore equilibrium, and vice versa, the size of the
coefficient is not really plausible as it would imply a large adjustment. Given that the two series are not
cointegrated, the results of the ECM need to be interpreted with caution and a model that regresses
spot returns on futures returns, lagged spot and lagged futures returns, would be more appropriate.
Note that we can either include or exclude the lagged terms and both forms would be valid from the
perspective that all of the elements in the equation are stationary.

Before moving on, we should note that this result is not an entirely stable one – for instance, if
we run the regression containing no lags (i.e., the pure Dickey–Fuller test) or on a subsample of the
data, we should find that the unit root null hypothesis should be rejected, indicating that the series are
cointegrated. We thus need to be careful about drawing a firm conclusion in this case.

17.1 The Johansen Test for Cointegration

Although the Engle–Granger approach is evidently very easy to use, as outlined above, one of its major
drawbacks is that it can estimate only up to one cointegrating relationship between the variables. In
the spot–futures example, there can be at most one cointegrating relationship since there are only two
variables in the system. But in other situations, if there are more variables, there can potentially be more
than one linearly independent cointegrating relationship. Thus, it is appropriate instead to examine the
issue of cointegration within the Johansen VAR framework. For this purpose, we will use the R package
urca, which provides unit root and cointegration tests for time series data.

The application we will now examine centres on whether the yields on Treasury bills of different
maturities are cointegrated. For this example we will use the ‘fred.RData’ workfile which we created
in section 9. It contains six interest rate series corresponding to 3 and 6 months, and 1, 3, 5, and 10
years. Each series has a name in the file starting with the letters ‘GS’.

The first step in any cointegration analysis is to ensure that the variables are all non-stationary in
their levels form, so confirm that this is the case for each of the six series, by running a unit root test
on each one using either the adfTest function of the fUnitRoots package from the previous section or

64

the function ur.ers supplied by the urca package.28

Before specifying the VECM using the Johansen method, it is often very useful to graph the variables
to see how they are behaving over time and with respect to each other. This will also help us to select
the correct option for the VECM specification, e.g., if the series appears to follow a linear trend. To
generate the graph, we just type the following lines

plot(fred$Date ,fred$GS3M,type="l",xlab="",ylab="")

lines(fred$Date ,fred$GS6M,col="red")

lines(fred$Date ,fred$GS1,col="blue")

lines(fred$Date ,fred$GS3,col="brown")

lines(fred$Date ,fred$GS5,col="orange")

lines(fred$Date ,fred$GS10,col="darkgreen")

and Figure 21 should appear. Note that we dropped the labels to make the legend easier to read. We
can do this by setting the arguments xlab and ylab to empty strings “”.

Figure 21: Graph of the Six US Treasury Interest Rates

We see that the series generally follow a linear downward trend, though some series show stronger inter-
temporal variation, with large drops, than other series. Additionally, while all series seem to be related
in some way, we find that the plots of some rates resemble each other more strictly than others, e.g.,
the GS3M, GS6M and GS1 rates.

To test for cointegration or fit cointegrating VECMs, we must also specify how many lags to include
in the model. To select the optimal number of lags we can use the method shown in section 15. Hence,
we apply the VARselect function form the vars package to receive the following output.

28The results are not presented here, but note that using 3 lags and a trend, for all series the null hypothesis of no unit
root cannot be rejected.

65

The four information criteria provide conclusive results regarding the optimal lag length. All four
criteria, FPE, AIC, HQIC and SBIC, suggest an optimal lag length of two. Note, that this might not
always be the case and it is then up to the reader to decide on the appropriate lag length. In the
framework of this example, we follow the information criteria and select a lag length of two.

The next step of fitting a VECM is the actual Johansen procedure of determining the number of
cointegrating relationships. The procedure works by comparing the log likelihood functions for a model
that contains the cointegrating equation(s) and a model that does not. If the log likelihood of the
unconstrained model that includes the cointegrating equations is significantly different from the log
likelihood of the constrained model that does not include the cointegrating equations, we reject the null
hypothesis of no cointegration. This is implemented in the function ca.jo of the urca package.

As formerly determined, use the six interest rates and a lag order (K) of two. The argument
ecdet can be set to “none”, “const” or “trend”. We use “const”, since we want to allow for the
cointegrating relationship to be stationary around a constant mean, but we do not want linear time
trends in the levels of the data. Further, set the argument type to “trace” to obtain the trace statistic
rather than the maximum eigenvalue statistic (“eigen”). Setting the values as described and applying
the summary function to the output generates the results on the next page.

The first line summarises the test specifications produced and the six eigenvalues (λ) from which
the test statistics are derived are presented. There then follows a table with the main results. The first
column states the number of cointegrating relationships for the set of interest rates or the cointegrating
rank r. In the second column, the test statistic, hence λtrace, is displayed followed by the critical values
at the 10%, 5% and 1% levels.

66

Reading the top panel of the table from bottom to top, the last row tests the null hypothesis of no
cointegrating vectors against the alternative hypothesis that the number of cointegrating equations is
strictly larger than the number assumed under the null hypothesis, i.e., larger than zero. The test
statistic of 247.75 considerably exceeds the critical value (111.01) and so the null of no cointegrating
vector is rejected. If we then move up to the next row, the test statistic (154.28) again exceeds the
critical value so that the null of at most one cointegrating vector is also rejected. This continues, and we
also reject the null of at most two cointegrating vectors, but we stop at the next row, where we do not
reject the null hypothesis of at most three cointegrating vectors at the 1% level. If we use a significance
level of 5%, we would still reject this hypothesis and would only stop at the next row.

Besides the λtrace statistic, we can also employ an alternative statistic, the maximum-eigenvalue
statistic (λmax) by setting type to “eigen”. In contrast to the trace statistic, the maximum-eigenvalue
statistic assumes a given number of r cointegrating relations under the null hypothesis and tests this
against the alternative that there are r + 1 cointegrating equations.

The test output should now report the results for the λmax statistics. We find that the results from
the λmax test confirm our previous results and show that we cannot reject the null hypothesis of three

67

cointegrating relations against the alternative of four cointegrating relations between the interest rates.
It is therefore reasonable to assume a cointegration rank of three.

Now that we have determined the lag length, trend specification and the number of cointegrating
relationships, we can fit the VECM model. To do so, we use the function cajorls from the urca package.
This requires the output object of ca.jo and the cointegration rank r=3 as an input and delivers the
following results.

R produces two tables as the main output. The first table contains the estimates of the short-run
parameters. The three coefficients on ‘ect1’, ‘ect2’ and ‘ect3’ are the parameters in the adjustment
matrix α for this model. The second table contains the estimated parameters of the cointegrating
vectors for this model with a unit diagonal.

68

18 Volatility Modelling

In this section, we will use the ‘currrencies.RData’ dataset. The exercises of this section will employ
returns on daily exchange rates where there are 7,141 observations. Models of this kind are inevitably
more data intensive than those based on simple linear regressions and hence, everything else being equal,
they work better when the data are sampled daily rather than at a lower frequency.

18.1 Estimating GARCH Models

Reading: Brooks (2019, Section 9.9)

To estimate a GARCH-type model in R, we will use the package rugarch. Although it might seem
a bit more complicated to become familiar with, it provides plenty of methods to estimate, forecast,
simulate and plot different volatility models.29 To estimate a GARCH model, the function ugarchfit is
used. This requires a uGARCHspec object as input, which defines the lag orders, mean and variance
equation. Hence, before we can estimate the model we create this object and save it by typing

spec = ugarchspec(mean.model = list(armaOrder=c(0,0)),variance.model = list(

garchOrder=c(1,1),model="sGARCH"))

ugarchfit(spec ,data=currencies$rjpy)

The two arguments specify the mean and variance model used, hence the mean equation will be an
ARMA(0,0) model only containing the unconditional mean of the series, while the variance equation
will follow a GARCH(1,1) process. The additional argument model=“sGARCH” stands for standard
GARCH, to distinguish different models of GARCH type. We do not include any further independent
variables. To finally estimate the model, we need to provide the data to the function ugarchfit together
with the uGARCHspec object we just created. This is done in the second line of the above code and
results in the output on the next page.

Note that the actual output also includes some residual diagnostics that we do not display here.
The top panel of the output again specifies the model estimated, before the estimated parameters
are displayed. The coefficients on both the lagged squared residuals (alpha1) and lagged conditional
variance term (beta1) are highly statistically significant. The other two coefficients mu and omega
denote the intercept terms in mean and variance equation.

Also, as is typical of GARCH model estimates for financial asset returns data, the sum of the coeffi-
cients on the lagged squared error and lagged conditional variance is very close to unity (approximately
0.99). This implies that shocks to the conditional variance will be highly persistent. This can be seen
by considering the equations for forecasting future values of the conditional variance using a GARCH
model given in a subsequent section. A large sum of these coefficients will imply that a large positive
or a large negative return will lead future forecasts of the variance to be high for a protracted period.

29The package fGarch provides similar methods, so the reader might also look into this package.

69

The individual conditional variance coefficients are also as one would expect. The variance intercept
term cons in the ‘ARCH’ panel is very small, and the ‘ARCH’-parameter ‘alpha1’ is around 0.037 while
the coefficient on the lagged conditional variance ‘beta1’ is larger at 0.956.

18.2 EGARCH and GJR Models

Reading: Brooks (2019, Sections 9.10–9.13)

Since the GARCH model was developed, numerous extensions and variants have been proposed. In
this section we will estimate two of them, the EGARCH and GJR models. The GJR model is a simple
extension of the GARCH model with an additional term added to account for possible asymmetries. The
exponential GARCH (EGARCH) model extends the classical GARCH by correcting the non-negativity
constraint and by allowing for asymmetries in volatility.

We start by estimating the EGARCH model. Within the rugarch package this can be done very
easily – we only need to alter the argument model in the variance equation to “eGARCH”. Running
the code again results in the following output.

70

Looking at the results, we find that all EARCH and EGARCH terms are statistically significant. The
EARCH terms represent the influence of news – lagged innovations – in the Nelson (1991) EGARCH
model. The term ‘alpha1’ captures the

υt−1√
σ2
t−1

term and ‘gamma1’ captures the

|υt−1|√
σ2
t−1
−
√

2

π

term. The negative estimate on the ‘alpha1’ term implies that negative shocks result in a lower next pe-
riod conditional variance than positive shocks of the same sign. The result for the EGARCH asymmetry
term is the opposite to what would have been expected in the case of the application of a GARCH model
to a set of stock returns. But, arguably, neither the leverage effect or volatility effect explanations for
asymmetries in the context of stocks apply here. For a positive return shock, the results suggest more
yen per dollar and therefore a strengthening dollar and a weakening yen. Thus, the EGARCH results
suggest that a strengthening dollar (weakening yen) leads to higher next period volatility than when the
yen strengthens by the same amount.

Let us now test a GJR model. Again, the only aspect that needs to be changed is the argument
model in the uGARCHspec object. After setting this to “gjrGARCH” and running the code, we
obtain the following results. Note that part of the output is again suppressed.

71

Similar to the EGARCH model, we find that all ARCH, GARCH and GJR terms are statistically
significant. However it is important to recognise the definition of the model as it depends on how
the dummy variable is constructed since it can alter the sign of coefficients. Here, the ‘gamma1’ term
captures the υ2t−1It−1 term where It−1 = 1 if υ2t−1 > 0 and It−1 = 0 otherwise. We find a positive
coefficient estimate on the ‘gamma1’ term, which again is not what we would expect to find according
to the leverage effect explanation if we were modelling stock return volatilities.30

18.3 GARCH-M Estimation

Reading: Brooks (2019, Section 9.15)

To estimate a GARCH-M model in R, we need to adjust the argument mean.model of the specification.
To improve readability, we split the model specifications into separate variables, as they are just lists.
To include an ARCH term in the mean equation, the argument archm has to be set to TRUE. Further,
as we could include the residual with different exponents, by setting archpow = 2 we can be assured
that only the squared residuals are included. The variance equation is set on the standard GARCH(1,1)
model and then a specification object is created and estimation is executed as in the sections above.

30Note that due to the definition of the dummy variable as 0 for negative and 1 for positive values, the results can look
different for other software solutions that define the dummy variable using 1 for negative values and 0 otherwise.

72

meanmodel = list(armaOrder=c(0,0),archm=T,archpow=2)

varmodel = list(garchOrder=c(1,1),model="sGARCH")

spec = ugarchspec(mean.model = meanmodel ,variance.model = varmodel)

ugarchfit(spec ,data=currencies$rjpy)

Running this code will produce the following output.

In this case, the estimated volatility parameter in the mean equation (archm) has a negative sign but
is not statistically significant. We would thus conclude that, for these currency returns, there is no
feedback from the conditional variance to the conditional mean.

73

18.4 Forecasting from GARCH Models

Reading: Brooks (2019, Section 9.18)

GARCH-type models can be used to forecast volatility. In this subsection, we will focus on generating
the conditional variance forecasts in R. Let us assume that we want to generate forecasts based on the
EGARCH model estimated earlier for the forecast period from “2016-08-03” to “2018-07-03”. The first
step is to re-estimate the EGARCH model for the subsample by adding the argument out.sample=700
when calling the ugarchfit function. Doing this, the last 700 observations are not used for estimation.

spec = ugarchspec(mean.model = list(armaOrder=c(0,0)),variance.model = list(

garchOrder=c(1,1),model="eGARCH"))

fit = ugarchfit(spec ,data = currencies$rjpy ,out.sample = 700)

Next, we generate the conditional variance forecasts. This can be done with the function uGARCH-
forecast. To compare static and dynamic forecasting methods, we will create two objects. On the
one hand, a static forecast updates the current value and basically does 700 one-step ahead forecasts.
On the other hand, a dynamic forecast uses the estimated one-step ahead forecast to derive the next
step and creates the complete forecast without the out-of-sample observations. In R, and especially
uGARCHforecast the difference between the two forecasting methods can be implemented by setting
the arguments n.ahead and n.roll. For the static forecast, we set n.ahead=1 to create one-step ahead
forecasts. By also setting n.roll=699, the function rolls the in-sample period forward 699 times, such
that we obtain 700 one-step ahead forecasts. For the dynamic forecasts, it suffices to set n.ahead to
700 and all of the forecasts are created. The following lines will achieve this.

static_fc = ugarchforecast(fit ,n.ahead=1,n.roll = 699)

dynamic_fc = ugarchforecast(fit ,n.ahead = 700)

Finally we want to graphically examine the conditional variance forecasts. As for the function created
forecasts of the actual series, we can actually also look at the return forecasts. Both forecast series are
saved in the slot forecast. After accessing it using , we can choose the variance forecast sigmaFor or
the return forecast seriesFor. To plot both nicely in one graph, follow the code below.

par(lwd=2,cex.axis = 2)

x_axis = currencies$Date[currencies$Date >= "2016-08-03"]

plot(x_axis ,static_fc@forecast$sigmaFor ,type="l",xlab="",ylab="",col="blue3"

)

lines(x_axis ,dynamic_fc@forecast$sigmaFor ,col="brown1")

legend("bottomleft", legend=c("Static", "Dynamic"),col=c("blue3","brown1"),

lty= 1)

In the Plots window, the graph from Figure 22 is displayed.

74

Figure 22: Graph of the Static and Dynamic Forecasts of the Conditional Variance

What do we observe? For the dynamic forecasts (red line), the value of the conditional variance starts
from a historically high level at the end of the estimation period, relative to its unconditional average.
Therefore, the forecasts converge upon their long-term mean value from above as the forecast horizon
increases. Turning to the static forecasts (blue line), it is evident that the forecast period is characterised
by a relatively low variance compared to the spikes seen at the end of the estimation period.

Note that while the forecasts are updated daily based on new information that feeds into the forecasts,
the parameter estimates themselves are not updated. Thus, towards the end of the sample, the forecasts
are based on estimates almost two years old. If we wanted to update the model estimates as we rolled
through the sample, we would need to write some code to do this within a loop – it would also run
much more slowly as we would be estimating a lot of GARCH models rather than one. Predictions can
be similarly produced for any member of the GARCH family.

18.5 Estimation of Multivariate GARCH Models

Reading: Brooks (2019, Sections 9.20 and 9.21)

Multivariate GARCH models are in spirit very similar to their univariate counterparts, except that the
former also specify equations for how the covariances move over time and are therefore by their nature
inherently more complex to specify and estimate. To estimate a multivariate GARCH model in R, install
the package rmgarch, which works in a similar fashion to rugarch. It allows us to estimate, simulate
and forecast constant conditional correlation, dynamic conditional correlation, generalised orthogonal
and Copula GARCH models. 31

The first step for estimation is, as for univariate GARCH models, to specify the model in a speci-
fication object. For this purpose, we use the rugarch function multispec, so remember to load both
packages into memory. With multispec, we can create a uGARCHmultispec object. This alone

31There is also the package ccgarch, which is independent of the two other packages and hence works in a different
way. It extends to the family of CC-GARCH models.

75

could also be estimated using the univariate functions, and would result in a joint but separate estima-
tion, hence the correlations between the currency rates would not be taken into account. To include
an estimation of correlation, we further need to specify a cGARCHspec object, which can then be
estimated by functions of the rmgarch package.

uspec = ugarchspec(mean.model = list(armaOrder=c(0,0)),variance.model = list

(garchOrder=c(1,1),model="sGARCH"))

mspec = multispec(replicate(3,uspec))

cccspec = cgarchspec(mspec ,VAR = F)

The steps described are implemented by running the three lines of code above. First, a univariate
GARCH(1,1) is specified. Second, the univariate model is replicated three times to span a multiple
GARCH(1,1) model. Third, the multiple GARCH model is extended to a multivariate GARCH model
accounting for the correlations between variables. Note that no lags or exogenous variables are included,
since the argument VAR is set to false. Hence, the mean equation will again just include an intercept
term.

The estimation is done by the function cgarchfit which technically is used for Copula GARCH
models, but without further specifications it reduces to a constant conditional correlation (CCC) model.
Hence the command

mod = cgarchfit(cccspec ,data = currencies[c("reur","rgbp","rjpy")])

mod

mod@mfit$Rt

is sufficient to estimate a CCC GARCH model for the three currency rates. The output should appear
as on the next page after executing the above code.

First, a short summary of the estimated model is printed,, then the estimated parameters for the
three variables are presented. Remember even though it says Copula GARCH Fit, the result is a static
GARCH copula (Normal) model, and hence a constant conditional correlation GARCH model. As in
the univariate case above, mu and omega denote the intercepts of the mean and variance equations,
while alpha1 and beta1 are the coefficients of the lagged residual and variance, respectively. Lastly,
the information criteria and the elapsed time are displayed.

76

The table is separated into different parts, organised by dependent variable. The header provides details
on the estimation sample and reports a Wald test of the null hypothesis that all the coefficients on the
independent variables in the mean equations are zero, which in our case is only the constant. The null
hypothesis is not rejected even at the 10% level for any of the series. For each dependent variable, we
first find estimates for the conditional mean equation, followed by the conditional variance estimates
in a separate panel. It is evident that the parameter estimates in the variance equations are all both
plausible and statistically significant. In the final panel, results for the conditional correlation parameters
are reported. For example, the conditional correlation between the standardised residuals for ‘reur’ and
‘rgbp’ is estimated to be 0.637.

77

19 Modelling Seasonality in Financial Data

19.1 Dummy Variables for Seasonality

Reading: Brooks (2019, Section 10.3)

In this subsection, we will test for the existence of a ‘January effect’ in the stock returns of Microsoft
using the ‘macro.RData’ workfile. In order to examine whether there is indeed a January effect in a
monthly time series regression, a dummy variable is created that takes the value one only in the months
of January. To create the dummy JANDUM, it is easiest to use the package lubridate and its function
month which extracts the month of a date variable. Then, we can set the value of JANDUM to the
integer representing the binary value of the month being January or not. Within R, this can be coded
as macro$JANDUM = as.integer(month(macro$Date) == 1). The new variable ‘JANDUM’
contains the binary value of the logical expression ‘month(macro$Date) == 1’, which is false (0) for all
months except January for which it is true and hence 1. We can now run the APT-style regression first
used in section 7 but this time including the new ‘JANDUM’ dummy variable. The command for this
regression is as follows:

summary(lm(ermsoft ~ ersandp + dprod + dcredit + dinflation + dmoney +

dspread + rterm + APR00DUM + DEC00DUM +JANDUM , data = macro))

The results of this regression are presented below.

78

As can be seen, the coefficient on the January dummy is statistically significant at the 10% level, and
it has the expected positive sign. The coefficient value of 3.139, suggests that on average and holding
everything else equal, Microsoft stock returns are around 3.1% higher in January than the average for
other months of the year.

19.2 Estimating Markov Switching Models

Reading: Brooks (2019, Sections 10.5–10.7)

In this subsection, we will be estimating a Markov switching model in R. The example that we will
consider relates to the changes in house prices series used previously. So we load ukhp.RData. Install
and load the package MSwM for Markov switching models in R. We will use the function msmFit to
model a Markov Switching model. However, for simplicity we do not include any exogenous variables,
such that we only allow for the intercept and variance to vary between the two states.

To allow for these features we need to specify the input for the function msmFit in the following
way.

msmodel = msmFit(lm(UKHP$dhp~1),k=2,sw=c(T,T))

The first argument is a linear model, in this case we regress the house price returns on only a constant.
After that, the number of regimes k=2 is defined. With the argument sw you can decide which
parameters are allowed to vary between the regimes. The input is a binary vector which starts with the
variable in the order of the regression and adds one more entry for the variance parameters. Since we
also want the variance parameters to vary across states, we specify sw as a binary vector of two times
TRUE.

After estimating the model, we print the results using summary. The output on the next page will
appear.

79

Examining the results, it is clear that the model has successfully captured the features of the data.
Two distinct regimes have been identified: regime 1 with a negative mean return (corresponding to a
price fall of 0.24% per month) and a relatively high volatility, whereas regime 2 has a high average price
increase of 0.77% per month and a much lower standard deviation. At the end of the output, we can
also see the transition probabilities. It appears that the regimes are fairly stable, with probabilities of
around 98% of remaining in a given regime next period.

Finally, we would like to predict the probabilities of being in one of the regimes. We have only two
regimes, and thus the probability of being in regime 1 tells us the probability of being in regime 2 at a
given point in time, since the two probabilities must sum to one. The state probabilities can be accessed
in the slot filtProb of the slot Fit of our model object. To obtain the probabilities for regime 2, we
choose the second column of this matrix. To plot the probabilities against the time-line, just type:

par(lwd=2,cex.axis = 2)

plot(UKHP$Month ,msmodel@Fit@filtProb[,2],type="l",xlab="",ylab="")

80

and you should obtain the graph in Figure 23.

Figure 23: State Probabilities Graph

Examining how the graph moves over time, the probability of being in regime 2 was close to one until
the mid-1990s, corresponding to a period of low or negative house price growth. The behaviour then
changed and the probability of being in the low and negative growth state (regime 2) fell to zero and
the housing market enjoyed a period of good performance until around 2005 when the regimes became
less stable but tending increasingly towards regime 2. Since early 2013, it is again much more likely to
be in regime 1. Note that the model object also contains a smoothed version of the state probabilities
that can be accessed via @Fit@smoProb.

81

20 Panel Data Models

Reading: Brooks (2019, Chapter 11)

The estimation of panel models, with either fixed and random effects, is very easy with R; the harder
part is organising the data so that the software can recognise that you have a panel of data and can apply
the techniques accordingly. The method that will be adopted in this example, is to use the following
three stages:

1. Set up your data in an Excel sheet so that it fits a panel setting, i.e., construct a variable that
identifies the cross-sectional component (e.g., a company’s CUSIP as identifier for different com-
panies, a country code to distinguish between different countries, etc.), and a time variable, and
stack the data for each company above each other. This is called the ‘long’ format.

2. Import the data into RStudio using any import function.

3. Declare the dataset to be panel data using the plm package.

The application to be considered here is that of a variant on an early test of the capital asset pricing
model due to Fama and MacBeth (1973). Their test involves a 2-step estimation procedure: first, the
betas are estimated in separate time-series regressions for each firm, and second, for each separate point
in time, a cross-sectional regression of the excess returns on the betas is conducted

Rit −Rft = λ0 + λmβPi + ui (14)

where the dependent variable, Rit−Rft, is the excess return of the stock i at time t and the independent
variable is the estimated beta for the portfolio (P) that the stock has been allocated to. The betas of
the firms themselves are not used on the RHS, but rather, the betas of portfolios formed on the basis
of firm size. If the CAPM holds, then λ0 should not be significantly different from zero and λm should
approximate the (time average) equity market risk premium, Rm − Rf . Fama and MacBeth (1973)
proposed estimating this second stage (cross-sectional) regression separately for each time period, and
then taking the average of the parameter estimates to conduct hypothesis tests. However, one could
also achieve a similar objective using a panel approach. We will use an example in the spirit of Fama–
MacBeth comprising the annual returns and ‘second pass betas’ for 11 years on 2,500 UK firms.32

To test this model, we will use the ‘panelx.xls’ workfile. Let us first have a look at the data in
Excel. We see that missing values for the ‘beta’ and ‘return’ series are indicated by a ‘NA’. To account
for this using the read excel function, set na = ‘NA’. Note that even forgetting about this, R will
treat the values as ‘NA’, but it will produce a warning for every ‘NA’ value that was expected to be a
numeric.

panelx <- read_excel("D:/ Programming Guide/data/panelx.xls",col_types = c("

numeric","numeric","numeric","numeric"),na = ’NA ’)

library(plm)

data = pdata.frame(panelx , index=c("firm_ident", "year"))

pdim(data)

32Source: computation by Keith Anderson and the author. There would be some significant limitations of this analysis
if it purported to be a piece of original research, but the range of freely available panel datasets is severely limited and so
hopefully it will suffice as an example of how to estimate panel models with R. No doubt readers, with access to a wider
range of data, will be able to think of much better applications.

82

After importing the data set, we transform it to a panel data set using the function pdata.frame which
only needs the imported set panelx and the argument index to identify firm-year observations. With
the command pdim(data) we can check whether the panel is balanced and it will answer the following.

Now our dataset is ready to be used for panel data analysis. Let us have a look at the summary statistics
for the two main variables by applying the summary function.

This is always a good way to check whether data was imported correctly. However, our primary aim is
to estimate the CAPM-style model in a panel setting. Let us first estimate a simple pooled regression
with neither fixed nor random effects. Note that in this specification we are basically ignoring the
panel structure of our data and assuming that there is no dependence across observations (which is very
unlikely for a panel dataset). We can use the standard lm function to estimate the model, but let us
introduce the plm function from the plm package. It works in similar fashion to lm, but needs a panel
data set as input, which is why we created the panel data set data. Specifying the formula to regress
returns on betas is the first input. After that, we need to tell plm what kind of regression is to be
estimated since the function can also estimate random and fixed effects. For a pooled regression, set
model=“pooling”. Finally, we put the code together as follows

pooled = plm(return~beta , model="pooling", data=data)

summary(pooled)

and after running the two lines above, we should find the output on the next page.
We can see that neither the intercept nor the slope is statistically significant. The returns in this

regression are in proportion terms rather than percentages, so the slope estimate of 0.000454 corresponds
to a risk premium of 0.0454% per month, or around 0.5% per year, whereas the average excess return
across all firms in the sample is around 2.2% per year.

83

But this pooled regression assumes that the intercepts are the same for each firm and for each year. This
may be an inappropriate assumption. Thus, next we (separately) introduce fixed and random effects to
the model. The only aspect to change is the argument model to “within” in the above specification.

We can see that the estimate on the beta parameter is negative and statistically significant here. An
intercept is not reported as there are 1734 groups (firms), each with different intercepts (fixed effects).

We now estimate a random effects model. For this, we simply change the argument model to
“random” in the plm function. We leave all other specifications unchanged and press Enter to

84

generate the regression output.
The slope estimate is again of a different order of magnitude compared to both the pooled and the

fixed effects regressions. As the results for the fixed effects and random effects models are quite different,
it is of interest to determine which model is more suitable for our setting. To check this, we use the
Hausman test. The null hypothesis of the Hausman test is that the random effects (RE) estimator is
indeed an efficient (and consistent) estimator of the true parameters. If this is the case, there should be
no systematic difference between the RE and FE estimators and the RE estimator would be preferred
as the more efficient technique. In contrast, if the null is rejected, the fixed effect estimator needs to be
applied.

To run the Hausman test, we use the function phtest which only needs the two models as inputs. As
we have stored the two models before, it is sufficient to run the test by typing phtest(fixed, random).
The output with the Hausman test results should appear as below.

85

The χ2 value for the Hausman test is 12.804 with a corresponding p-value of 0.0003. Thus, the null
hypothesis that the difference in the coefficients is not systematic is rejected at the 1% level, implying
that the random effects model is not appropriate and that the fixed effects specification is to be preferred.

86

21 Limited Dependent Variable Models

Reading: Brooks (2019, Chapter 12)

Estimating limited dependent variable models in R is very simple. The example that will be considered
here concerns whether it is possible to determine the factors that affect the likelihood that a student will
fail his/her MSc. The data comprise a sample from the actual records of failure rates for five years of
MSc students at the ICMA Centre, University of Reading, contained in the spreadsheet ‘MSc fail.xls’.
While the values in the spreadsheet are all genuine, only a sample of 100 students is included for each
of the five years who completed (or not as the case may be!) their degrees in the years 2003 to 2007
inclusive. Therefore, the data should not be used to infer actual failure rates on these programmes. The
idea for this is taken from a study by Heslop and Varotto (2007), which seeks to propose an approach
to prevent systematic biases in admissions decisions.33

The objective here is to analyse the factors that affect the probability of failure of the MSc. The
dependent variable (‘fail’) is binary and takes the value 1 if that particular candidate failed at first
attempt in terms of his/her overall grade and 0 elsewhere. Therefore, a model that is suitable for
limited dependent variables is required, such as a logit or probit.

The other information in the spreadsheet that will be used includes the age of the student, a dummy
variable taking the value 1 if the student is female, a dummy variable taking the value 1 if the student
has work experience, a dummy variable taking the value 1 if the student’s first language is English, a
country code variable that takes values from 1 to 10,34 a dummy that takes the value 1 if the student
already has a postgraduate degree, a dummy variable that takes the value 1 if the student achieved
an A-grade at the undergraduate level (i.e., a first-class honours degree or equivalent), and a dummy
variable that takes the value 1 if the undergraduate grade was less than a B-grade (i.e., the student
received the equivalent of a lower second-class degree). The B-grade (or upper second-class degree)
is the omitted dummy variable and this will then become the reference point against which the other
grades are compared.

The reason why these variables ought to be useful predictors of the probability of failure should be
fairly obvious and is therefore not discussed. To allow for differences in examination rules and in average
student quality across the five-year period, year dummies for 2004, 2005, 2006 and 2007 are created and
thus the year 2003 dummy will be omitted from the regression model.

First, we import the dataset into R. All variables should be in the numeric format and overall there
should be 500 observations in the dataset for each series with no missing observations.

To begin with, suppose that we estimate a linear probability model of Fail on a constant, Age, English,
Female, Work experience, A-Grade, Below-B-Grade, PG-Grade and the year dummies. Running the lm
method for this would yield the following results.

33Note that since this example only uses a subset of their sample and variables in the analysis, the results presented
below may differ from theirs. Since the number of fails is relatively small, I deliberately retained as many fail observations
in the sample as possible, which will bias the estimated failure rate upwards relative to the true rate.

34The exact identities of the countries involved are not revealed in order to avoid any embarrassment for students from
countries with high relative failure rates, except that Country 8 is the UK!

87

While this model has a number of very undesirable features as discussed in Brooks (2019), it would
nonetheless provide a useful benchmark with which to compare the more appropriate models estimated
below. Next, we estimate a logit model and a probit model using the same dependent and independent
variables as above. Both models can be estimated using the generalised linear modelling function glm.
We begin with the logit model by specifying the argument family in glm as binmoial(“logit”), keeping
everything else as before.

88

Next, we estimate the above specification as a probit model. We input the same model specifications as
in the logit case and change the family argument tobinomial(“probit”).

89

Turning to the parameter estimates on the explanatory variables, we find that only the work experience
and A-grade variables and two of the year dummies have parameters that are statistically significant,
and the Below B-grade dummy is almost significant at the 10% level in the probit specification (although
less so in the logit model). However, the proportion of fails in this sample is quite small (13.4%), which
makes it harder to fit a good model than if the proportion of passes and fails had been more evenly
balanced.

A test on model adequacy is to produce a set of in-sample forecasts – in other words, to look at the
fitted values. To visually inspect the fitted values, we plot them as they are a variable of the model
object. The following two lines of code are sufficient to do so.

par(cex.axis=1.5)

plot(probit$fitted.values ,type="l",xlab="",ylab="")

The resulting plot should resemble that in Figure 24.

90

Figure 24: Graph of the Fitted Values from the Failure Probit Regression

It is important to note that we cannot interpret the parameter estimates in the usual way (see discussion
in Brooks (2019)). In order to be able to do this, we need to calculate the marginal effects. For this
purpose, the margins package is very helpful. After installing and including it, we simply apply the
function margins on the two model objects and R should generate the table of marginal effects and
corresponding statistics as shown below.

Looking at the results, we find that not only are the marginal effects for the probit and logit models quite
similar in value, they also closely resemble the coefficient estimates obtained from the linear probability
model estimated earlier in the section.

Now that we have calculated the marginal effects, these values can be intuitively interpreted in terms
of how the variables affect the probability of failure. For example, an age parameter value of around
0.0012 implies that an increase in the age of the student by one year would increase the probability of
failure by 0.12%, holding everything else equal, while a female student is around 3.5% less likely than
a male student with otherwise identical characteristics to fail. Having an A-grade (first class) in the
bachelor’s degree makes a candidate around 11% less likely to fail than an otherwise identical student
with a B-grade (upper second-class degree). Finally since the year 2003 dummy has been omitted from

91

the equations, this becomes the reference point. So students were more likely in 2004, 2006 and 2007,
but less likely in 2005, to fail the MSc than in 2003.

92

22 Simulation Methods

22.1 Deriving Critical Values for a Dickey–Fuller Test Using Simulation

Reading: Brooks (2019, Sections 13.1–13.7)

In this and the following subsections we will use simulation techniques in order to model the behaviour
of financial series. In this first example, our aim is to develop a set of critical values for Dickey-Fuller
test regressions. Under the null hypothesis of a unit root, the test statistic does not follow a standard
distribution, and therefore a simulation would be required to obtain the relevant critical values. Ob-
viously, these critical values are well documented, but it is of interest to see how one could generate
them. A very similar approach could then potentially be adopted for situations where there has been
less research and where the results are relatively less well known.

The simulation would be conducted in the following four steps:

1. Construct the data generating process under the null hypothesis – that is obtain a series for y that
follows a unit root process. This would be done by:

• Drawing a series of length T , the required number of observations, from a normal distribution.
This will be the error series, so that ut ∼ N(0, 1).

• Assuming a first value for y, i.e., a value for y at time t = 1.

• Constructing the series for y recursively, starting with y2, y3, and so on

y2 = y1 + u2

y3 = y2 + u3
...

yT = yT−1 + uT

2. Calculate the test statistic, τ .

3. Repeat steps 1 and 2 N times to obtain N replications of the experiment. A distribution of values
for τ will be obtained across the replications.

4. Order the set of N values of τ from the lowest to the highest. The relevant 5% critical value will
be the 5th percentile of this distribution.

Some R code for conducting such a simulation is given below. The simulation framework considers
a sample of 1,000 observations and Dickey–Fuller regressions with no constant or trend, a constant but
no trend, and a constant and a trend. 50,000 replications are used in each case, and the critical values
for a one-sided test at the 1%, 5% and 10% levels are determined. The code can be found pre-written
in R script entitled ‘dickey fuller simulation.R’.

The R script is a list of commands that could be typed into the Console in the same way, hence it is
just a way of saving your code in a file. In RStudio, you can easily open the file by clicking File/Open
File. . . in the main menu. To run the script, you can either press the Run button in the top line in
RStudio or use the Main menu option Code/ and then choose to run selected lines, the whole code, or
even sections of it. The quickest way however, is to mark the code and press Ctrl + Enter. In this
way, you can also go through the code line by line, which is sometimes helpful for debugging.

The appearance of the code in the Source window and Console can be changed within RStudio by
clicking Tool/Global Options. . . . In the pop up window, choose the tab Appearance as shown in

93

Figure 25 and you will find several editor themes. While the default scheme does only use blue and
green colours to highlight different parts of code, the reader might find it easier to read code using a
different style. However, within this guide the default option will be kept.

Figure 25: Changing the Way Code is Displayed in RStudio

The different colours indicate different characteristics of the instructions. In the default theme, blue
represents the main key words for loops (for, while), if-else statements and the definition of functions.
Also, any numbers are displayed in blue as are key words such as (TRUE, FALSE, NULL or NA).
Expressions in green mark comments preceded by a hash tag (#) as well as strings between double
(“ ”) or single quote marks (‘ ’). Comments are not part of the actual instructions but rather serve to
explain and describe the code.

The lines of code on the next page are taken from the R script ‘dickey fuller simulation.R’ which
creates critical values for the Dickey–Fuller test. The discussion below explains the functions of each
command line.

The first line is a simple comment that explains the purpose and contents of the do-file.35 The lines
that follow contain the actual commands that perform the manipulations of the data. The first couple
of lines are mere preparation for the main simulation but are a necessary to access the simulated critical
values later on.

Line 2, ‘set.seed(123456)’, sets the so-called random number seed. This is necessary to be able to
replicate the exact t-values created with this program on any other computer at a later time and the
command serves to define the starting value for draws from a standard normal distribution which are
necessary in later stages to create variables that follow a standard normal distribution. Line 3 creates
the three variables in which we will store the t-statistics and sets them to NULL. Note that the names
already reveal which model is used. It is very helpful to use explanatory variable names instead of
generic names such as t1, to improve the readability of the code.

35Adding comments to your do-files is a useful practice and proves to be particularly useful if others will use your code,
or if you revisit analyses that you have first carried out some time ago, as they help you to recall the logic of the commands
and steps.

94

1 # Script to generate critical values for Dickey Fuller test

2 set.seed(123456)

3 tnone = tconst = ttrend = NULL

4
5 for (i in 1:50000){

6 y = c(0, cumsum(rnorm(1199)))

7 dy = c(NA,diff(y))

8 lagy = c(NA,y[1:1199])

9 # Model with no intercept

10 lmnone = lm(dy[-(1:200)] ~ 0 + lagy[-(1:200)])

11 tnone = c(tnone , coef(summary(lmnone))[1]/coef(summary(lmnone))[2])

12 # Model with intercept , no trend

13 lmconst = lm(dy[-(1:200)] ~ 1 + lagy[-(1:200)])

14 tconst = c(tconst ,coef(summary(lmconst))[2,1]/coef(summary(lmconst))[2,2])

15 # Model with intercept and trend

16 lmtrend = lm(dy[-(1:200)] ~ 1 + lagy[-(1:200)] + c(1:1000))

17 ttrend = c(ttrend ,coef(summary(lmtrend))[2,1]/coef(summary(lmtrend))[2,2])

18 }

19 quantile(tnone ,c(0.01,0.05,0.1))

20 quantile(tconst ,c(0.01,0.05,0.1))

21 quantile(ttrend ,c(0.01,0.05,0.1))

Line 5 sets up the conditions for the loop, i.e., the number of repetitions N that will be performed. Loops
are always indicated by braces; the set of commands over which the loop is performed is contained within
the curly brackets ({ }). For example, in our command the loop ends in line 18.

Before turning to the specific conditions of the loop, let us have a look at the set of commands that
we want to perform the loop over, i.e., the commands that generate the t-values for the Dickey–Fuller
regressions. They are stated in lines 6 to 17. Line 6 creates a random series of 1199 numbers with
a standard normal distribution rnorm(1199) of which we write the cumulated sums into a vector y
starting with 0. Hence, we end up with a vector comprising 1200 entries that resembles a random walk-
series that follows a unit root process. Recall that a random walk process is defined as the past value of
the variable plus a standard normal error term. The next lines, 7 and 8, write the first differences and
lagged values of y into the variables dy and lagy, adding an ’NA’ value at the start to keep the same
length.

Lines 9 to 16 are commands to run linear regressions and compute the t-statistics. They are separated
into three blocks for each model consisting of two lines. In the first line, respectively, 10, 13 or 16, the
linear model is estimated. The second line, respectively, 11, 14 or 17, computes the t-statistic and
appends it to the corresponding vector.

Note that when generating random draws, it sometimes takes a while before the constructed series
have the properties that they should, and therefore, when generating the regressions, we exclude the first
200 observations. Therefore the dependent variable is always dy[-(1:200)], so the series comprises the
first differences without the first 200 observations. The independent variables change for the different
models. In line 10, only the lagged values of y, hence the values starting at 200, are used. To avoid an
intercept, we need to specify the model as dy[-(1:200)] ∼ 0 + lagy[-(1:200)]. In line 13, we change
this to include an intercept and write 1 instead of 0. Note that this is only to emphasise the difference
between the lines, since the intercept is included by default anyway. Lastly, in line 16, the model includes
an intercept and a time trend, which is incorporated by adding the simple vector c(1:1000).

Lines 11, 14 and 17 generate the t-values corresponding to the particular models. It is the formula

95

for computing the t-value, namely the coefficient estimate on ‘lagy’ divided by the standard error of
the coefficient. We can extract these coefficients using the function coef applied to the summary of the
linear model. Note that for the multiple variable models lmconst and lmtrend, you need to also specify
the column, since the output is a coefficient matrix, while for lmnone there is only one coefficient.

If we were to execute this set of commands one time, we would generate one t-value for each of the
models. However, our aim is to get a large number of t-statistics in order to have a distribution of values.
Thus, we need to repeat the set of commands for the desired number of repetitions. This is done by the
loop command for in line 5. It states that the set of commands included in the braces will be executed
50,000 times (‘i in 1:50000’). Note that, for each of these 50,000 repetitions, a new set of t-values will
be generated and added to the vectors tnone, tconst and ttrend.

Finally, after the last repetition of the commands loop has been executed, in lines 19 to 21, we
compute the 1st, 5th and 10th percentile for the three variables ‘tnone’, ‘tconst’, ‘ttrend’ using the
quantile function.

The critical values obtained by running the above program, which are virtually identical to those
found in the statistical tables in Brooks (2019), are presented in the output below. This is to be expected,
for the use of 50,000 replications should ensure that an approximation to the asymptotic behaviour is
obtained. For example, the 5% critical value for a test regression with no constant or trend and 500
observations is −1.93 in this simulation, and −1.95 in Fuller (1976).

Although the Dickey–Fuller simulation was unnecessary in the sense that the critical values for the
resulting test statistics are already well known and documented, a very similar procedure could be
adopted for a variety of problems. For example, a similar approach could be used for constructing
critical values or for evaluating the performance of statistical tests in various situations.

96

22.2 Pricing Asian Options

Reading: Brooks (2019, Section 13.8)

In this subsection, we will apply Monte Carlo simulations to price Asian options. The steps involved
are:

1. Specify a data generating process for the underlying asset. A random walk with drift model is
usually assumed. Specify also the assumed size of the drift component and the assumed size of
the volatility parameter. Specify also a strike price K, and a time to maturity, T.

2. Draw a series of length T, the required number of observations for the life of the option, from a
normal distribution. This will be the error series, so that εt ∼ N(0, 1).

3. Form a series of observations of length T on the underlying asset.

4. Observe the price of the underlying asset at maturity observation T. For a call option, if the value
of the underlying asset on maturity date Pt ≤ K, the option expires worthless for this replication.
If the value of the underlying asset on maturity date Pt > K, the option expires in the money, and
has a value on that date equal to PT −K, which should be discounted back to the present using
the risk-free rate.

5. Repeat steps 1 to 4 a total of N times, and take the average value of the option over N replications.
This average will be the price of the option.

A sample of R code for determining the value of an Asian option is given below. The example is in the
context of an arithmetic Asian option on the FTSE 100, and two simulations will be undertaken with
different strike prices (one that is out of the money forward and one that is in the money forward). In
each case, the life of the option is six months, with daily averaging commencing immediately, and the
option value is given for both calls and puts in terms of index options. The parameters are given as
follows, with dividend yield and risk-free rates expressed as percentages:

Simulation 1: Strike = 6500 Simulation 2: Strike = 5500
Spot FTSE = 6,289.70 Spot FTSE = 6,289.70
Risk-free rate = 6.24 Risk-free rate = 6.24
Dividend yield = 2.42 Dividend yield = 2.42
Implied Volatility = 26.52 Implied Volatility = 34.33

All experiments are based on 25,000 replications and their antithetic variates (total: 50,000 sets of
draws) to reduce Monte Carlo sampling error. Some sample code for pricing an Asian option for
normally distributed errors is given on the next page.

Some parts of the program use identical instructions to those given for the Dickey–Fuller critical value
simulation, and so annotation will now focus on the construction of the program and on previously unseen
commands. As with the R script for the DF critical value simulation, you can open (and run) the program
to price Asian options by clicking File/Open File. . . , choosing the R file ‘asian option pricing.R’
then pressing the Run button in RStudio. You should then be able to inspect the set of commands and
identify commands, comments and other operational variables based on the colouring system described
in the previous subsection.

The first lines set the random seed number and the values for the simulation that were given, i.e.,
spot price at t = 0 (s0), the risk-free rate (rf), the dividend yield (dy) and the number of observations
(obs). For a specific scenario, there is also the strike price (K) and the implied volatility (iv) given.
Note that scenario 2 is in a comment line and would not be executed, as this code would run for scenario

97

1. To change this, just remove the hash tag in line 5 and add one at the beginning of line 4. It can be
helpful to use the semicolon here, to write multiple commands in one line and as for line 6, this saves
a bit of space to improve the overview of the program. However, avoid the use of a semicolon between
two meaningful operations.

1 # Script for Monte -Carlo Simulation of Asian Option

2 set.seed(123456)

3 # Initial values and derived constants

4 K = 6500; iv = 0.2652 # Simulation one

5 # K = 5500; iv = 0.3433 # Simulation two

6 s0 = 6289.7; rf = 0.0624; dy = 0.0242; ttm = 0.5; obs = 125

7 dt = ttm/obs

8 drift = (rf-dy-iv^2/2)*dt

9 vsqrdt = iv*dt^0.5

10
11 putval = callval = NULL

12 for (i in 1:25000){

13 random = rnorm(obs) # create cumulative sum of random numbers

14 # Spot price evolution for positive and negative random numbers

15 spot = s0*exp(drift*c(1:obs)+vsqrdt*cumsum(random))

16 spot_neg = s0*exp(drift*c(1:obs)+vsqrdt*cumsum(-random))

17 # Compute call values

18 callval = c(callval , max(mean(spot)-K,0)*exp(-rf*ttm))

19 callval = c(callval , max(mean(spot_neg)-K,0)*exp(-rf*ttm))

20 # Compute Put values

21 putval = c(putval , max(K-mean(spot),0)*exp(-rf*ttm))

22 putval = c(putval , max(K-mean(spot_neg),0)*exp(-rf*ttm))

23 }

24 mean(callval)

25 mean(putval)

Line 12 indicates that we will be performing N=25,000 repetitions of the set of commands (i.e., simu-
lations). However, we will still generate 50,000 values for the put and call options each by using a ‘trick’,
i.e., using the antithetic variates. This will be explained in more detail once we get to this command.
Overall, each simulation will be performed for a set of 125 observations (see variable obs in line 6).

The model assumes, under a risk-neutral measure, that the underlying asset price follows a geometric
Brownian motion, which is given by

dS = (rf− dy)Sdt+ σdz, (15)

where dz is the increment of a Brownian motion. The discrete time approximation to this for a time
step of one can be written as

St = St−1 exp

[(
rf− dy− 1

2
σ2

)
dt+ σ

√
dtut

]
(16)

where ut is a white noise error process.
Lines 13 and 15 generate the path of the underlying asset. First, 125 random N (0, 1) draws are

made and written to the variable random. In line 15, the complete path for the next 125 observations
is computed. The code makes use of ability of R to vectorise many functions, i.e., they can be applied
to every entry of vector instead of running through a loop for every entry. This makes the code much
more time efficient.

98

Instead of defining every one of the 125 steps recursively, we use the whole vector random. With
the cumulative sum cumsum, we add up the exponents in random and multiplying drift with a vector
from 1 to 125 adds a drift to the exponent for every step. The process then repeats using the antithetic
variates, constructed using -random. The spot price series based on the antithetic variates is written
to spot neg. This way we can double the ‘simulated’ values for the put and call options without having
to draw further random variates and run double the number of loop iterations.

Finally, lines 18 and 19 (21 and 22) compute the value of the call (put). For an Asian option, this
equals the average underlying price less the strike price, if the average is greater than the strike (i.e., if
the option expires in the money), and zero otherwise. Vice versa for the put. The payoff at expiry is
discounted back to the present based on the risk-free rate (using the expression exp(-rf∗ttm)). This is
done for the paths derived from the positive and negative random draws and appended to the vectors
callval and putval, respectively.

This completes one cycle of the loop, which will then be repeated for further 24,999 times and overall
creates 50,000 values for each of the call and put options. Once the loop has finished, the option prices
are calculated as the averages over the 50,000 replications in lines 24 and 25.
For the specifics stated above, the call price is approximately 204.68 and the put price lies around 349.62.
Note that both call values and put values can be calculated easily from a given simulation, since the
most computationally expensive step is in deriving the path of simulated prices for the underlying asset.
In the following table, we compare the simulated call and put prices for different implied volatilities and
strike prices along with the values derived from an analytical approximation to the option price, derived
by Levy, and estimated using VBA code in Haug (1998), pp. 97–100.

Table 2: Simulated Asian Option Prices

Simulation 1: Strike = 6500, IV = 26.52% Simulation 2: Strike = 5500, IV = 34.33%
Call Price Call Price
Analytical Approximation 203.45 Analytical Approximation 888.55
Monte Carlo Normal 204.68 Monte Carlo Normal 886.03

Put Price Put Price
Analytical Approximation 348.70 Analytical Approximation 64.52
Monte Carlo Normal 349.62 Monte Carlo Normal 61.81

In both cases, the simulated option prices are quite close to the analytical approximations, although the
Monte Carlo seems to overvalue the out-of-the-money call and to undervalue the out-of-the-money put.
Some of the errors in the simulated prices relative to the analytical approximation may result from the
use of a discrete-time averaging process using only 125 data points.

99

23 Value at Risk

23.1 Extreme Value Theory

Reading: Brooks (2019, Section 14.3)

In this section, we are interested in extreme and rare events such as stock price crashes. Therefore, we
will look into the left tail of the distribution of returns. We will use the data set provided in ‘sp500.xlsx’,
which contains daily returns on the S&P500 index from January 1950 until July 2018. From the price
series, we generate log returns by typing

sp500$ret = c(NA ,diff(log(sp500$sp500)))

sp500 = sp500[-1,]

and delete the first row from the data set. As we are focused on the lower tail, the 1%, 5% and 10%
percentiles are of interest. They tell us, assuming the historical distribution of returns, what is the
maximum loss to expect, with probability 1,5 or 10%. These quantiles can be easily computed with the
function quantile, which also allows for a list of quantiles. Hence we type

quantile(sp500$ret ,c(0.01,0.05,0.1))

In finance, we also call them Value at Risk (VaR) estimates, e.g., a 1%–VaR of –0.026, as in our case,
means that the maximum loss for a day that we can expect equals 2.6%. Since this estimate is derived
directly from the historical data, we will also refer to it as the historical VaR. If we were to assume that
the returns follow a normal distribution, we can compute the 1%–VaR from the mean (µ) and standard
deviation (σ) using the ‘delta-normal’ approach. The α-percentile of a normal distribution is then given
as

V aRα
normal = µ− Φ−1(1− α)σ (17)

In R, we simply use the qnorm function for this purpose, which will return the requested quantiles for
a normal distribution with specific mean and standard deviation. The line of code would be as below.

qnorm(c(0.01,0.05,0.1),mean = mean(sp500$ret), sd = sd(sp500$ret))

We would then obtain the following output.

We can see that the value V aR1%
normal = −0.022 is smaller in absolute value than the one obtained from

the historical distribution. Hence, assuming a normal distribution would lead to the assumption that the
maximal loss to expect is only 2.2% but the empirical quantile is further from zero (i.e., more negative,
indicating that a larger loss is likely than suggested by the delta-normal approach). However, this is not
true for the 5% and 10% quantiles.

100

23.2 The Hill Estimator for Extreme Value Distributions

Reading: Brooks (2019, Section 14.3)

In the next step, we want to look into the tail of the distribution to estimate the VaR using the Hill
estimator for the shape parameter ξ of an extreme value distribution. Below is a short script showing
how to create this Hill plot for the VaR, and you can also find the code in the file ‘Var hill plot.R’.

1 # Script to compute hill plot for value -at-risk

2 load("D:/ Programming Guide/R Guide/code/sp500.RData")

3 library(extremefit)

4 U=-0.025; alpha=0.01;

5
6 y = abs(sp500$ret[sp500$ret <U])

7 hill = hill(y)

8 var = sort(-y)*(nrow(sp500)*alpha/length(y))^(- hill$hill)

9
10 # Hill plot of Value -at-Risk

11 par(lwd=2,cex.axis = 2, cex.lab =1.5)

12 plot(var ,pch="+",xlab="Order Statistic",ylab="VaR")

13 title("Hill Plot")

In the first lines, we import the data set and include the package extremefit, which provides a function
for the Hill estimates (hill). We set the threshold below which we consider returns for the estimation
(U) and the confidence level alpha in line 4. In line 6, we generate the data series ỹ, which comprises
the absolute value (abs()) of all returns below the threshold U . For the Hill estimation, we only need to
feed hill with this vector and it will return a list of four variables for all order statistics of the input. In
this case, the vector y has 197 entries. Finally, we compute the VaR in line 8 following Brooks (2019):

VaRhill,k = ỹ(k)

[
Nα

NU

]−ξ̂k
, (18)

where we again make use of vectorisation. Note that we sort the negative values of y since we took
absolute values before. Applying the whole vector hill$hill in the exponents will calculate the VaR for
the respective order statistic using the Hill estimator in one step and will write it to the vector var.

In lines 11 to 13, we specify the options for the graphic in Figure 26.

101

Figure 26: Hill Plot for Value at Risk

Looking at the Hill plot, we can see that the estimated Value-at-Risk is much higher in absolute value.
Using all observations, we obtain V aRhill = −0.032, which means that the expected maximum is 3.2%.

23.3 VaR Estimation Using Bootstrapping

Reading: Brooks (2019, Section 13.9)

The following R code can be used to calculate the minimum capital risk requirement (MCRR) for a ten-
day holding period (the length that regulators require banks to employ) using daily S&P500 data, which
is found in the file ‘sp500.xlsx’. The code is presented on the following page followed by comments on
some of the key lines.

Again, annotation of the R code will concentrate on commands that have not been discussed previ-
ously. The first lines of commands load the dataset and the rugarch package necessary for the estimation
of univariate GARCH models. In lines 6 and 7, a GARCH(1,1) model with only an intercept in the
mean equation is fitted to the return series. The estimated coefficients are written to the variables mu,
omega, alpha and beta in lines 8 and 9. Line 11 saves the fitted conditional variances in the series h.
The two lines 12 and 13 will construct a set of standardised residuals sres.

Next follows the core of the program, which involves the bootstrap loop (lines 18 to 32). The
number of replications has been defined as 10,000. What we want to achieve is to re-sample the series of
standardised residuals (‘sres’) by drawing randomly with replacement from the existing dataset. After
defining the three series for the forecasted values for the variance h fc, returns ret fc and the price
series sp500 fc, in line 19 we use the simple function sample to draw a sample of 10 observations with
replacement. Although this is a kind of bootstrapping, we do not need to use the R package boot,
which includes a lot of bootstrapping tools.

Within the next block of commands, the future path of the S&P500 return and price series as well as
the conditional variance over the ten-day holding period are computed. This is done in two steps. The
first three lines (22 to 24) create the one-step ahead forecasts, before the loop in lines 26 to 30 creates
the next nine steps-ahead forecasts.

1 # VaR estimation using bootstrapping

2 load("D:/ Programming Guide/R Guide/code/sp500.RData")

102

3 library(rugarch)

4
5 set.seed(12345)

6 spec = ugarchspec(mean.model = list(armaOrder=c(0,0)),variance.model = list(

garchOrder=c(1,1),model="sGARCH"))

7 garch11 = ugarchfit(spec ,data = sp500$ret)

8 mu = garch11@fit$coef["mu"]; omega = garch11@fit$coef["omega"]

9 alpha = garch11@fit$coef["alpha1"]; beta = garch11@fit$coef["beta1"]

10
11 h = garch11@fit$var

12 resid = (garch11@fit$residuals - mu)

13 sres = resid/h^0.5

14
15 N = length(h)

16 mcrr = NULL

17
18 for (n in 1:1000) {

19 h_fc = ret_fc = sp500_fc = NULL

20 random = sample(sres ,size = 10,replace = T)

21 # Constructing one ste ahead forecast

22 h_fc = omega + alpha*resid[N]^2 + beta*h[N]

23 ret_fc = mu + sqrt(h_fc[1])*random[1]

24 sp500_fc = sp500$sp500[N]*exp(ret_fc)

25 # Loop for the next 9 step ahead forecasts

26 for (i in 1:9){

27 h_fc = c(h_fc , omega+(alpha+beta)*h_fc[i])

28 ret_fc = c(ret_fc ,mu+sqrt(h_fc[i+1])*random[i+1])

29 sp500_fc = c(sp500_fc ,sp500_fc[i]*exp(ret_fc[i+1]))

30 }

31 mcrr = rbind(mcrr , log(c(min(sp500_fc),max(sp500_fc))/sp500$sp500[N]))

32 }

33
34 mcrrl = 1 - exp(mean(mcrr[,1]) - 1.645*sd(mcrr[,1]))

35 mcrrs = exp(mean(mcrr[,2]) + 1.645*sd(mcrr[,2])) - 1

Recall from Brooks (2019) that the one-step-ahead forecast of the conditional variance is

hf1,T = α0 + α1u
2
T + βhT , (19)

where hT is the conditional variance at time T , i.e., the end of the in-sample period, and uT is the
squared disturbance term at time T , and α0, α1 and β are the coefficient estimates obtained from the
GARCH(1,1) model estimated over the observations 2 to T . The s-step-ahead forecast can be produced
by iterating

hfs,T = α0 + (α1 + β)hfs−1,T s ≥ 2. (20)

Following the above formula in Equation (19), we compute the one-step ahead forecast for the variance in
line 22. From this, we obtain a return forecast by multiplying the square root (sqrt) of the variance with
the error drawn from the standardised residuals and adding the mean intercept. Finally, with the return
forecast we can determine the respective price forecast by compounding. Once we have determined the
one-step ahead forecasts, the next steps are obtained recursively. Therefore, we use the loop in line 26

103

to 30 and consecutively update the variance, return and price series.36 Finally, we obtain the minimum
and maximum values of the S&P500 series over the ten days and compute the holding period return as
the log of the fraction with the last price and post them into the ‘mcrr’ file.

This set of commands is then repeated 10,000 times so that after the final repetition there will be
10,000 minimum and maximum returns for the S&P500. The final block of commands generates the
MCRR for a long and a short position in the S&P500. We now want to find the 5th percentile of
the empirical distribution of maximum losses for the long and short positions. Under the assumption
that the statistics are normally distributed across the replications, the MCRR can be calculated by the
commands in lines 34 and 35, respectively. The results generated by running the above program should
be displayed in the Console window and should approximate to

mcrrl = 0.03467963 for the long position, and

mcrrs = 0.03281008 for the short position.

These figures represent the minimum capital risk requirement for long and short positions, respec-
tively, as percentages of the initial value of the position for 95% coverage over a 10-day horizon. This
means that, for example, approximately 3.5% of the value of a long position held as liquid capital will be
sufficient to cover losses on 95% of days if the position is held for 10 days. The required capital to cover
95% of losses over a 10-day holding period for a short position in the S&P500 index would be around
3.3%. Higher capital requirements are thus necessary for a long position since a loss is more likely than
for a short position of the same magnitude.37

36Note that the order of the commands is important as the newly assigned conditional variance h in line 27 is used in
line 28 to update the return series, which then is used to update the index level in line 29.

37Note that the estimation can be quite different depending on the software package used, since from the outset the
GARCH(1,1) coefficient estimates can differ and hence will influence the whole result.

104

24 The Fama–MacBeth Procedure

Reading: Brooks (2019, Section 14.2)

In this section, we will perform the two-stage procedure by Fama and MacBeth (1973). The Fama–
MacBeth procedure, as well as related asset pricing tests, are described in detail in Brooks (2019).
There is nothing particularly complex about the two-stage procedure – it only involves two sets of
standard linear regressions. The hard part is really in collecting and organising the data. If we wished
to do a more sophisticated study – for example, using a bootstrapping procedure or using the Shanken
(1992) correction, this would require more analysis then is conducted in the illustration below. However,
hopefully the R code and the explanations will be sufficient to demonstrate how to apply the procedures
to any set of data.

The example employed here is taken from the study by Gregory et al. (2013) that examines the
performance of several different variants of the Fama and French (1992) and Carhart (1997) models
using the Fama–MacBeth methodology in the UK following several earlier studies showing that these
approaches appear to work far less well for the UK than the US. The data required are provided by
Gregory et al. (2013) on their web site.38 Note that their data have been refined and further cleaned
since their paper was written (i.e., the web site data are not identical to those used in the paper) and as
a result, the parameter estimates presented here deviate slightly from theirs. However, given that the
motivation for this exercise is to demonstrate how the Fama–MacBeth approach can be used in R, this
difference should not be consequential.

The two data files used are ‘monthlyfactors.xlsx’ and ‘vw sizebm 25groups.xslx’. The former
file includes the time series of returns on all of the factors (smb, hml, umd, rmrf), the return on
the market portfolio (rm) and the return on the risk-free asset (rf)), while the latter includes the time
series of returns on 25 value-weighted portfolios formed from a large universe of stocks, two-way sorted
according to their sizes and book-to-market ratios.

The steps to obtain the market prices of risk and the respective t-statistics is set out in the R script
fama macbeth.R and are displayed on the next page. The first step in this analysis for conducting the
Fama–French or Carhart procedures using the methodology developed by Fama and MacBeth (1973) is
to create a joint data set form the two files. The data in both cases run from October 1980 to December
2017, making a total of 447 data points. However, in order to obtain results as close as possible to those
of the original paper, when running the regressions, the period is from October 1980 to December 2010
(363 data points).

We need to transform all of the raw portfolio returns into excess returns, which are required to
compute the betas in the first stage of Fama–MacBeth. This is fairly simple to do and we just write over
the original series with their excess return counterparts in line 6. Note that we have to exlude the date
variable though, and therefore add the [,-1] after the portfolios. After putting both datasets into a joint
data frame called data, we adjust this data frame to include only the first 363 observations in order to
ensure that the same sample period as the paper by Gregory et al. (2013) is employed throughout.

Next, we run the first stage of the Fama–MacBeth procedure, i.e., we run a set of time-series regres-
sions to estimate the betas. We want to run the Carhart (1997) 4-factor model separately for each of
the twenty-five portfolios. A Carhart 4-factor model regresses the portfolio returns on the excess market
returns (‘rmrf’), the size factor (‘smb’), the value factor (‘hml’) and the momentum factor (‘umd’).

Since the independent variables remain the same across the set of regressions and we only change
the dependent variable, i.e., the excess return of one of the 25 portfolios, we can set this first stage up
as a loop. Lines 12 to 16 specify this loop, while we initialise the variable betas in line 12 to store the β
estimates in later. To run through all the portfolios, set the loop up to run from 2 to 26, which denote

38http://business-school.exeter.ac.uk/research/centres/xfi/famafrench/files/

105

http://business-school.exeter.ac.uk/research/centres/xfi/famafrench/files/

the 25 columns containing the portfolios in the new dataset data. The time-series regressions in line 14
then always consist of the same independent variables from the dataset and changing portfolios on the
left hand side. In line 15, coefficients 2 to 5 are extracted and appended to the variable beta. Note that
we do not need to save the intercepts and hence exclude the first entry.

1 # Fama MacBeth two stage procedure

2 library(readxl)

3 # Read data and create joint data set

4 monthlyfactors <- read_excel("D:/ Programming Guide/data/monthlyfactors.xlsx"

)

5 vw_sizebm_25groups <- read_excel("D:/ Programming Guide/data/vw_sizebm_25

groups.xlsx")

6 vw_sizebm_25groups[,-1] = vw_sizebm_25groups[,-1] - monthlyfactors$rf

7 data = data.frame(vw_sizebm_25groups ,monthlyfactors[,2:7])

8 data = data[1:363,] # Adjust data set to Gregory et al. period

9
10 # First stage regressions

11 betas = NULL

12 for (var in 2:26) {

13 lr = lm(data[,var] ~ rmrf + smb + hml + umd , data = data)

14 betas = rbind(betas ,lr$coefficients[2:5])

15
16 }

17
18 # Second stage regressions

19 lambdas = Rsq = NULL

20 for (t in 1:nrow(data)) {

21 lr = lm(t(data[t,2:26]) ~ betas)

22 lambdas = rbind(lambdas , lr$coefficients)

23 Rsq = c(Rsq ,summary(lr)$r.squared)

24 }

25
26 # Compute market prices of risk and t-statistics

27 colMeans(lambdas)*100

28 nrow(data)^0.5*colMeans(lambdas)/apply(lambdas , 2, sd)

29 mean(Rsq)

Having run the first step of the Fama–MacBeth methodology – we have estimated the betas, also known
as the factor exposures. The slope parameter estimates for the regression of a given portfolio will show
how sensitive the returns on that portfolio are to the corresponding factors. We did not save them
here, but the intercepts (‘lr$coefficients[1]’) would be the Jensen’s alpha estimates. These intercept
estimates should be comparable to those in the second panel of Table 6 in Gregory et al. (2013) –
their column headed ‘Simple 4F ’. Since the parameter estimates in all of their tables are expressed as
percentages, we need to multiply the figures by 100 for comparison.

If the 4-factor model is a good one, we should find that all of these alphas are statistically insignificant.
We could test them individually, if we wished, by adding an additional line of code in the loop to save
the t-ratio in the regressions. However, we avoid this here, since we will be working with the β estimates
only.

For the second stage regressions, we set up a similar loop from line 20 to 24, again initialising the
variable lambdas for storing the results as before. Since these will be cross-sectional regressions, the

106

loop variable t is now running through the rows of the dataset (from 1 to 363 for the adjusted dataset).
The statements also again only change in the dependent variable between the loops, as we always use
the same betas for the regressions. Since the matrix betas include all necessary independent variables,
we do not need to split them up, but R does this automatically if we provide a matrix as an independent
variable.

The second stage cross-sectional regressions correspond to the following equation

R̄i = α + λMβi,M + λSβi,S + λV βi,V + λUβi,U + ei (21)

This is performed in line 21. We also collect the R2 values for each regression in the list Rsq as it is
of interest to examine the cross-sectional average. We store all coefficients in the lambdas and the R2

values in Rsq. Note that the R2 can only be accessed after applying the summary function to the
linear model.

The final stage of the Fama–MacBeth procedure is to compute the averages, standard deviations
and t-ratios from the series of estimates from the second stage. For every factor j, we compute the
time-series averages and standard deviations of the estimates λ̂j,t as follows

λ̂j =
1

T

T∑
t=1

λ̂j,t, σ̂j =

√√√√ 1

T

T∑
t=1

(λ̂j,t − λ̂j)2 and tλj =
√
T
λ̂j
σ̂j

(22)

To compute the means, we can use the function colMeans which is a vectorisation of mean to be
applied to the columns of a matrix. Unfortunately, there is no such function for the standard deviation,
but we can create it directly using apply. The command apply(lambdas,2,sd) applies the function
sd to the second dimension, i.e., the columns of the matrix of lambdas. In this way, we obtain the
column-wise standard deviations and can compute the t-statistics as given in Equation (22) directly in
one line.

The lambda parameter estimates should be comparable to the results in the columns headed ‘Simple
4F Single’ from Panel A of Table 9 in Gregory et al. (2013). Note that they use γ to denote the
parameters which have been called λ in this guide and in Brooks (2019). The parameter estimates
obtained from this simulation and their corresponding t-ratios are given in the table below. Note that
the latter do not use the Shanken (1992) correction as Gregory et al. (2013) do. These parameter
estimates are the prices of risk for each of the factors, and interestingly only the price of risk for value
is significantly different from zero.

Table 3: Fama–MacBeth Market Prices of Risk

Parameter Estimate t-ratio
λC 0.50 1.33
λRMRF 0.07 0.15
λSMB 0.09 0.51
λHML 0.39 2.08
λUMD 0.41 0.78
Mean R2 0.39

107

References

Anscombe, F. J. and Glynn, W. J. (1983). Distribution of the kurtosis statistic b 2 for normal samples.
Biometrika, 70(1):227–234.

Brooks, C. (2019). Introductory Econometrics for Finance. Cambridge University Press, Cambridge,
UK, 4th edition.

Carhart, M. M. (1997). On persistence in mutual fund performance. Journal of Finance, 52(1):57–82.

D’Agostino, R. B. (1970). Transformation to normality of the null distribution of g1. Biometrika,
57(3):679–681.

Durbin, J. and Watson, G. S. (1951). Testing for serial correlation in least squares regression. ii.
Biometrika, 38(1/2):159–177.

Elliot, B., Rothenberg, T., and Stock, J. (1996). Efficient tests of the unit root hypothesis. Econometrica,
64(8):13–36.

Fama, E. F. and French, K. R. (1992). The cross-section of expected stock returns. Journal of Finance,
47(2):427–465.

Fama, E. F. and MacBeth, J. D. (1973). Risk, return, and equilibrium: Empirical tests. Journal of
Political Economy, 81(3):607–636.

Fuller, W. A. (1976). Introduction to Statistical Time Series, volume 428. John Wiley and Sons.

Gregory, A., Tharyan, R., and Christidis, A. (2013). Constructing and testing alternative versions of
the fama–french and carhart models in the uk. Journal of Business Finance and Accounting, 40(1-
2):172–214.

Haug, E. G. (1998). The Complete Guide to Option Pricing Formulas. McGraw-Hill New York.

Heslop, S. and Varotto, S. (2007). Admissions of international graduate students: Art or science? a
business school experience. ICMA Centre Discussion Papers in Finance, 8.

Koenker, R. (1994). Confidence intervals for regression quantiles. In Asymptotic statistics, pages 349–
359. Springer.

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica,
59(2):347–370.

Shanken, J. (1992). On the estimation of beta-pricing models. Review of Financial Studies, 5(1):1–33.

White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for
heteroskedasticity. Econometrica, 48(4):817–838.

108

	Introduction to R and RStudio
	What Are R and RStudio?
	What Does RStudio Look Like?

	Getting Started
	Packages
	Importing Data
	Data Description
	Changing and Creating Data
	Graphics and Plots
	Keeping Track of Your Work

	Linear Regression – Estimation of an Optimal Hedge Ratio
	Hypothesis Testing – Example 1: Hedging Revisited
	Hypothesis Testing – Example 2: The CAPM
	Sample Output for Multiple Hypothesis Tests
	Multiple Regression Using an APT-Style Model
	Stepwise Regression

	Quantile Regression
	Calculating Principal Components
	Diagnostic Testing
	Testing for Heteroscedasticity
	Using White's Modified Standard Error Estimates
	The Newey–West Procedure for Estimating Standard Errors
	Autocorrelation and Dynamic Models
	Testing for Non-Normality
	Dummy Variable Construction and Application
	Multicollinearity
	The RESET Test for Functional Form
	Stability Tests
	Recursive Estimation

	Constructing ARMA Models
	Estimating Autocorrelation Coefficients
	Using Information Criteria to Decide on Model Orders

	Forecasting Using ARMA Models
	Estimating Exponential Smoothing Models
	Simultaneous Equations Modelling
	Vector Autoregressive (VAR) Models
	Testing for Unit Roots
	Cointegration Tests and Modelling Cointegrated Systems
	The Johansen Test for Cointegration

	Volatility Modelling
	Estimating GARCH Models
	EGARCH and GJR Models
	GARCH-M Estimation
	Forecasting from GARCH Models
	Estimation of Multivariate GARCH Models

	Modelling Seasonality in Financial Data
	Dummy Variables for Seasonality
	Estimating Markov Switching Models

	Panel Data Models
	Limited Dependent Variable Models
	Simulation Methods
	Deriving Critical Values for a Dickey–Fuller Test Using Simulation
	Pricing Asian Options

	Value at Risk
	Extreme Value Theory
	The Hill Estimator for Extreme Value Distributions
	VaR Estimation Using Bootstrapping

	The Fama–MacBeth Procedure
	References

