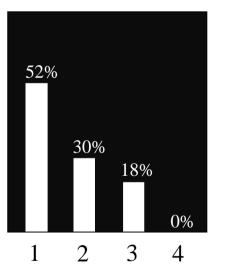
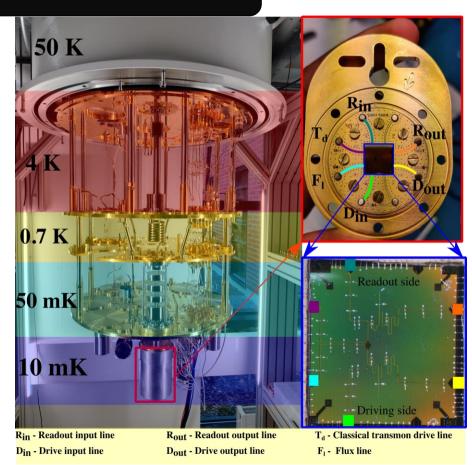

Lecture 4: Quantum circuits 09.03.2022

Introduction to simulation and Multiphysics problem with COMSOL

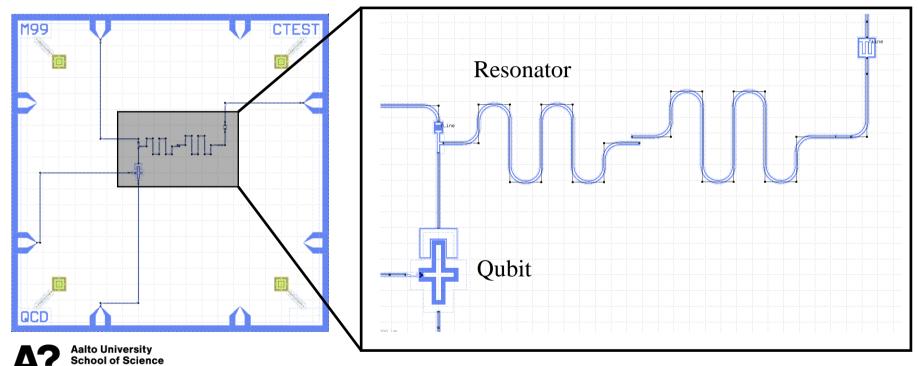

Your response

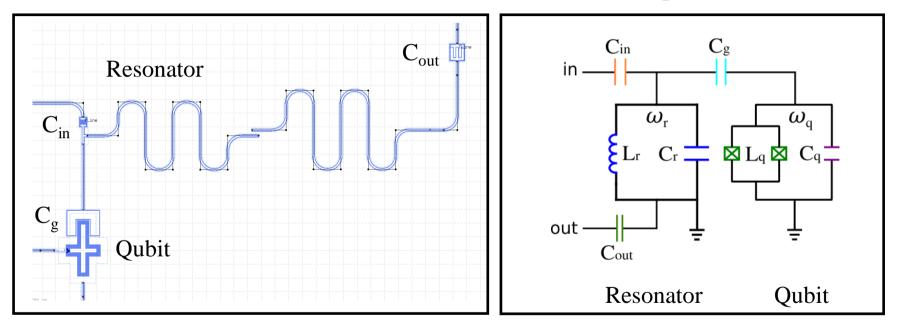
Familiarity with simulation


Familiarity with COMSOL

- 1. Have never heard of COMSOL
- 2. Have heard of COMSOL
- 3. Have some experience with COMSOL
- 4. Have used COMSOL extensively

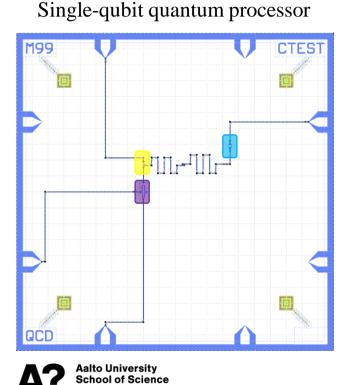
Need for simulation

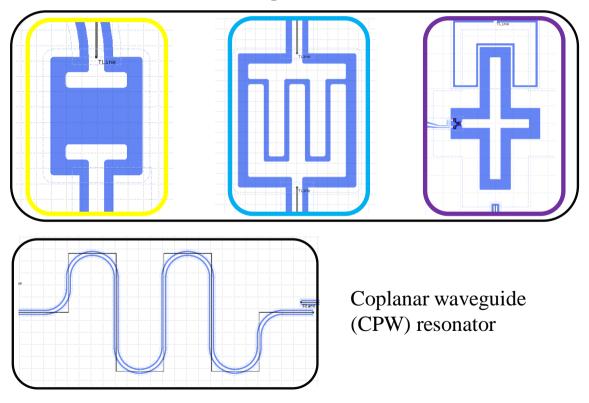

- Deeper understanding of the physical system
- Engineering qubits
- Investigating EM fields in quantum circuits
- Limitation to theoretical models


Aalto University School of Science

Single-qubit quantum processor

Single-qubit quantum processor


Lumped model



Aalto University School of Science

Bare minimum for a single-qubit quantum processor!

Capacitors

Capacitors

Partial differential equation (PDE) $\blacktriangle \text{ Laplace equation } \nabla^2 V = \frac{d^2 V}{dx^2} + \frac{d^2 V}{dy^2} + \frac{d^2 V}{dz^2} = 0$ $\blacksquare \text{ Boundary value problem } \begin{cases} V(z=d) = V_0 \\ V(z=0) = 0 \end{cases}$

$$\varepsilon = \varepsilon_{
m r} \varepsilon_0$$

 $\frac{d^2 V}{dz^2} = 0 \implies V(z) = \frac{V_0}{d}z$

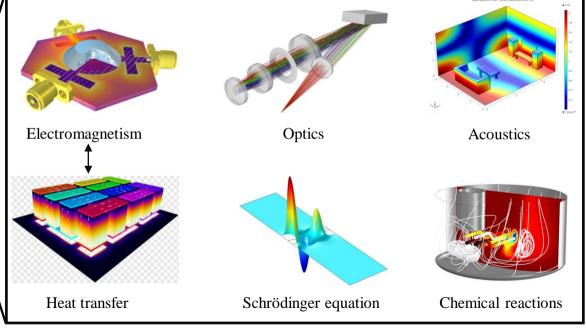
Aalto University School of Science

$$\vec{E} = -\nabla V = -\frac{V_0}{d}\hat{z}$$
$$\oint \vec{E} \cdot d\vec{S} = \frac{1}{\varepsilon} \iint \rho \, dA$$

$$\bullet \qquad C = \varepsilon \frac{A}{d}$$

Nice closed form solution!

Capacitors


Туре	Capacitance	Comment
Parallel-plate capacitor	arepsilon A/d	d t ε : Permittivity
Concentric cylinders	$\frac{2\pi \varepsilon \ell}{\ln(R_2/R_1)}$	ε: Permittivity
Pair of parallel wires ^[13]	$rac{\piarepsilon\ell}{\mathrm{arcosh}\Big(rac{d}{2a}\Big)} = rac{\piarepsilon\ell}{\mathrm{ln}\Big(rac{d}{2a}+\sqrt{rac{d^2}{4a^2}-1}\Big)}$	
Wire parallel to wall ^[13]	$rac{2\piarepsilon\ell}{\mathrm{arcosh}\!\left(rac{d}{a} ight)} = rac{2\piarepsilon\ell}{\mathrm{ln}\!\left(rac{d}{a}+\sqrt{rac{d^2}{a^2}-1} ight)}$	a: Wire radius d: Distance, d > a l: Wire length
Two parallel coplanar strips ^[14]	$arepsilon \ell rac{K\left(\sqrt{1-k^2} ight)}{K(k)}$	d: Distance w_1, w_2 : Strip width k_m : $d/(2w_m+d)$ k^2 : k_1k_2 K: Complete elliptic integral of the first kind t: Length
Concentric spheres	$\frac{4\pi\varepsilon}{\frac{1}{R_1}-\frac{1}{R_2}}$	ε : Permittivity

Aalto University School of Science

@ wikipedia

COMSOL Multiphysics

@ Comsol

COMSOL Multiphysics

Physics modules

Electromagnetics

Fluid Dynamics

Solid Mechanics

Mathematical models

Partial Differential Equations (PDEs)

Ordinary Differential Equations (ODEs)

Differential-Algebraic Equations (DAEs)

Numerical models

Finite Element Method (FEM)

Boundary Element Method (BEM)

Finite Difference Method (FDM)

COMSOL Workshop

You can download the software from https://download.aalto.fi

Check out the installation instruction from mycourses webpage *Announcement* forum

