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Mechanism Design

Mechanism design
• how can we aggregate individual preferences into a collective decision?
• especially if individuals’ preferences are private information

Compared to the screening problem, we now consider multiple agents
• interests may conflict with each other
• there is increased competition that a seller may exploit
• will ine�ciencies increase/decrease?
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Mechanism Design – General Setup

The Environment
• n agents
• each agent i has private information (his type) ◊i œ �i

• set of possible alternatives/outcomes x œ X

• each agent is expected-utility maximiser with vNM utility function
ui(◊, x) œ R, for ◊ œ � = �1 ◊ · · · ◊ �n and x œ X.

• the type profile ◊ = (◊1, . . . , ◊n) is distributed according to F with density f > 0
• notation: we write

◊≠i = (◊1, . . . , ◊i≠1, ◊i+1, . . . , ◊n) and (◊i, ◊≠i) = ◊
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Mechanism Design – Setup – some terminology

Private Values
• i’s preferences depend only on ◊i:

ui(◊, x) = ui(◊i, x)
• ’interdependent values’ otherwise

Independent Types
• ◊i’s distribution indep. of other types ◊≠i:

f(◊) =
rn

i=1 fi(◊i)
• ’correlated’ types otherwise

Quasi-linear Utilities
• outcomes X = K ◊ Rn, where

k œ K some physical allocation,
t = (t1, . . . , tn) œ Rn transfers

• i’s utility is linear in money (his transfer):
ui(◊, x) = vi(◊, k) + ti

Social Choice/Unrestricted Domain
• X = {a, b, . . . } finite set of alternatives
• ◊i gives ranking over alternatives:

a◊ib … a ºi b

• Unrestricted domain if
�i contains all possible rankings over X
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Mechanism Design – environment examples

Ex 1. Public good
• outcomes (k, t) œ X = {0, 1} ◊ Rn

k œ {0, 1} with k = 1 if bridge is built
ti œ R transfer to agent i

• ◊i is i’s willingness to pay for bridge
ui(◊, x) = ◊ik + ti

Ex. 2 Allocation with externalities
• outcomes (k, t) œ X = {0, 1, . . . , n} ◊ Rn

k =
I

0 if nobody gets object
i if agent i gets object

ti œ R transfer to agent i

• ◊i = (◊i

i
, ◊

x

i
) with utility

ui(◊, x) =

Y
__]

__[

ti if k = 0
◊

i
i + ti if k = i

≠◊
x
i + ti if k /œ {0, i}
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Mechanism Design – Social Choice Functions

Our goal is generally to choose a good outcome x œ X given the realised preferences ◊ œ �

Definition (Social Choice Function)
A social choice function (scf) › : � æ X assigns to each type profile ◊ œ � an alternative
›(◊) œ X.

The problem of the mechanism designer is not ’lack of power’

• if the designer knew ◊, she could always choose the ’optimal’ outcome

The problem is ’just’ the asymmetric information
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Mechanism Design – Mechanisms (general/indirect)

Typically, social (collective) outcomes are determined through interaction in some institution

Definition (Mechanism)
A mechanism � = (S1, . . . , Sn, g) consists of

• a strategy space Si for each agent i

• an outcome function g : S1 ◊ · · · ◊ Sn æ X.

A mechanism � = (S, g) together with the environment induces a Bayesian game:
G� = (n, {Si}iÆn, {ũi}iÆn, �, F ) , with payo�s ũi(◊, s1, . . . , sn) = ui(◊, g(s1, . . . , sn)).
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Mechanism Design – Incentive Compatibility

We have several solution concepts: Let (sú
i
)n

i=1 be a strategy profile, where ’i : si : �i æ Si

• Dominant strategy equilibrium: for all i, ◊i, si:
ui((◊i, ◊≠i), g(sú

i (◊i), s≠i)) Ø ui((◊i, ◊≠i), g(si, s≠i)) ’◊≠i, s≠i

• Ex-post equilibrium: for all i, ◊i, si:
ui((◊i, ◊≠i), g(sú

i (◊i), s
ú
≠i(◊≠i))) Ø ui((◊i, ◊≠i), g(si, s

ú
≠i(◊≠i))) ’◊≠i

• Bayes-Nash equilibrium: for all i, ◊i, si:⁄

�≠i

ui((◊i, ◊≠i), g(sú
i (◊i), s

ú
≠i(◊≠i))) dF≠i(◊≠i|◊i)

Ø
⁄

�≠i

ui((◊i, ◊≠i), g(si, s
ú
≠i(◊≠i))) dF≠i(◊≠i|◊i) 33



Mechanism Design – Participation Constraints
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Mechanism Design – Implementation

Definition
We say that mechanism � = (S, g) [...]-implements scf ›

if there exists a [...]-equilibrium strategy profile (sú
i
)n

i=1 such that

g(sú
1(◊1), . . . , s

ú
n(◊n)) = ›(◊) for all ◊ œ �.

where [...]œ {dominant strategy, ex-post, Bayes}

• Full implementation: every equilibrium results in ›(◊)
• Partial implementation: there is an equilibrium that results in ›(◊)

We focus on partial implementation
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Mechanism Design – Revelation Principle (direct mechanisms)

Theorem (Revelation Principle)
For any mechanism � = (S, g) and [. . . ]-equilibrium strategy profile (sú

i
)n

i=1 that
implements scf ›, there exists a direct mechanism �̂ = (�, ›) such that
truthtelling is a [. . . ]equilibrium.

• Only ensures that there is AN equilibrium
• In di�erent (indirect) mechanisms sharing the same direct mechanism other equilibria

may arise
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Mechanism Design – Revelation Principle – proof

proof of revelation principle for dominant strategy case
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Mechanism Design – The Gibbard-Satterthwaite Theorem

Recall from micro 3:
Definition (Dictatorial)
An scf › : �1 ◊ · · · ◊ �n æ X is dictatorial if there is an agent d œ {1, . . . , n}
such that ›(◊d, ◊≠d) is always the favourite outcome of type ◊d.

Theorem (Gibbard-Satterthwaite)
Suppose |X| Ø 3 and for all i, �i contains all possible preference rankings over X.
If scf › with ›(�) = X is strategy proof, then it is dictatorial.

With unrestricted preferences, there is not a lot we can do...

Not hopeless if preferences are more restricted:
• voting/social-choice literature typically focuses on single-peaked preferences
• we will consider quasi-linear utilities and (mostly) private values
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Mechanism Design – quasi-linear utility and private value

• Outcomes: X = K ◊ Rn: k œ K allocation and (t1, . . . , tn) œ Rn transfers
• Utilities: ui(◊, x) = vi(◊i, k) + ti

Note:
• vi(◊i, k) measures the value of allocation k in terms of money
• Utility is transferable across agents through money
• Agents are risk-neutral with respect to money
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Mechanism Design – quasi-linear utilities and e�ciency

Definition (Pareto e�ciency)
An outcome x = (k, t1, . . . , tn) œ X is Pareto e�cient if there is no other
x

Õ = (kÕ
, t

Õ
1, . . . , t

Õ
n) œ X such that:

nÿ

i=1
t
Õ
i =

nÿ

i=1
ti and vi(◊i, k

Õ) + t
Õ
i Ø vi(◊i, k) + ti

for all i, with strict inequality for at lease one i.

Proposition
An scf › = (k, t) is Pareto e�cient if and only if for all ◊ œ �:

nÿ

i=1
vi(◊i, k(◊)) Ø

nÿ

i=1
vi(◊i, k

Õ) ’k
Õ
.
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Mechanism Design – VCG Mechanisms

Definition
A Vickrey-Clarke-Groves (VCG) mechanism is given by (kú

, t) where k
ú is e�cient and

ti(◊) =
ÿ

j ”=i

vj(◊j , k
ú(◊)) + hi(◊≠i),

for some collection of functions (hi)i
where each hi is independent of ◊i

Theorem
Truthtelling is a dominant-strategy equilibrium of any VCG mechanism.
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Mechanism Design – VCG Mechanism – proof

42



Mechanism Design – VCG Mechanisms

A special case of VCG mechanisms is the pivot mechanism (or Clarke mechanism):
Definition (pivot mechanism)
A pivot mechanism is a VCG mechanism with

hi(◊≠i) = ≠
ÿ

j ”=i

vj(◊j , k
ú
≠i(◊≠i)),

where k
ú
≠i

(◊≠i) is an e�cient alternative for the n ≠ 1 agents di�erent from i

• Each agent pays the externality imposed on other agents:

ti(◊) =
ÿ

j ”=i

vj(◊j , k
ú(◊)) ≠

ÿ

j ”=i

vj(◊j , k
ú
≠i(◊≠i)).

• If adding agent i with type ◊i does not change allocation, then ti = 0
• The second-price auction is a pivot mechanism 43



Mechanism Design – VCG Mechanisms

• Is there an ex-post e�cient mechanism that is DIC but not a VCG mechanism?
• If the environment is ‘rich’ enough, the answer is no:

Let V denote the set of all possible functions from K to R

Theorem
If for all agents i, the set of preferences is such that {vi(◊i, ·)}◊iœ�i

= V, then every direct
mechanism in which truthtelling is a dominant strategy is a VCG-mechanism.
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Mechanism Design – DIC and e�ciency

Ex post e�ciency and DIC is ’almost equivalent’ to VCG mechanism

That is great because...
• these are simple to characterise
• we can simply check for the best VCG mechanism in each situation

However,...
• they potentially require large transfers
• we have ignored participation constraints
• they are generally not budget balanced:

q
i
ti(◊) ”= 0
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Mechanism Design – Bayesian incentive compatibility

What if we weaken our solution concept and look at Bayesian Mechanism Design?

• We will focus in the independent case: f(◊) = r
i
fi(◊i)

Recall: truthtelling is a Bayes-Nash equilibrium if for all i and all ◊i:

E◊≠i
[vi(◊i, k(◊i, ◊≠i)) + ti(◊i, ◊≠i)] Ø E◊≠i

Ë
vi(◊i, k(◊̂i, ◊≠i)) + ti(◊̂i, ◊≠i)

È
’◊̂i (BIC)

We hope that we can exploit weakened IC requirement (now only in expectation over ◊≠i) to
eliminate some undesirable features of VCG mechanisms.

• ...and indeed we can
• ...at first sight
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Mechanism Design – Expected Externality Mechanism

• Let k
ú be an ex-post e�cient allocation rule

• Consider the following transfers:

ti(◊i, ◊≠i) = E
◊̃≠i

S

U
ÿ

j ”=i

vj(◊̃j , k
ú(◊i, ◊̃≠i))

T

V + hi(◊≠i),

with

hi(◊≠i) = ≠ 1
n ≠ 1

ÿ

j ”=i

E
◊̃≠j

S

U
ÿ

”̧=j

v¸(◊̃¸, k
ú(◊j , ◊̃≠j))

------
◊j

T

V .

Definition (Expected Externality Mechanism)
The mechanism (kú

, t) defined above is called Expected Externality Mechanism.
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Mechanism Design – Expected Externality Mechanism

Proposition
The Expected Externality Mechanism is budget balanced and truthtelling is BIC.

That is
nÿ

i=1
ti(◊)

=
nÿ

i=1
E

◊̃≠i

S

U
ÿ

j ”=i

vj(◊̃j , k
ú(◊i, ◊̃≠i))

T

V ≠ 1
n ≠ 1

nÿ

i=1

ÿ

j ”=i

E
◊̃≠j

S

U
ÿ

¸”=j

v¸(◊̃¸, k
ú(◊j , ◊̃≠j))

T

V

= 0.
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Mechanism Design – Expected Externality Mechanism

• Expected Externality mechanism achieves budget balance
• but did we really gain that much?

the following result suggests no:

Theorem
Fix an ex-post e�cient allocation rule k

ú and a BIC mechanism that implements k
ú. Then

there exist constants hi such that the VCG mechanism with transfer rule

ti(◊) =
ÿ

j ”=i

vj(◊j , k
ú(◊)) + hi

gives each player the same interim payo�.
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Mechanism Design – BIC and E�ciency

To sum up:
• VCG mechanisms give us a pretty complete picture of the expected utilities that can be

achieved in incentive compatible and e�cient mechanisms
• With expected externality mechanism we can achieve budget balance ex post

But...
• We still completely ignored participation constraints
• ...and that is generally problematic as we see now
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Mechanism Design – Bilateral Trade

Question: Is e�cient trade possible when both sides have private information?

• single indivisible good
• one buyer with ◊ œ [◊, ◊̄] drawn from F

• one seller with production cost c œ [c, c̄] drawn from G

• trade is e�cient sometimes: c < ◊̄ but not always: ◊ < c̄

Theorem (Myerson-Satterthwaite)
There is no ex-post e�cient, budget balanced, BIC mechanism that satisfies interim IR for
buyer and seller.
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Mechanism Design – Bilateral Trade – proof of Myerson Satterthwaite

Direct Mechanism:
• q(◊, c) œ [0, 1] = prob. of trade
• tB(◊, c) transfer to buyer tS(◊, c) transfer to seller

The buyer’s expected utility from report ◊̂ is
⁄

c̄

c

1
◊q(◊̂, c) + tB(◊̂, c)

2
dG(c)

Define:
• QB(◊̂) =

s
c̄

c
q(◊̂, c) dG(c) and TB(◊̂) =

s
c̄

c
tB(◊̂, c) dG(c) for buyer

• QS(ĉ) =
s

◊̄

◊
q(◊, ĉ) dF (◊) and TS(ĉ) =

s
◊̄

◊
tS(◊, ĉ) dF (◊) for seller
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Mechanism Design – Bilateral Trade – proof of Myerson Satterthwaite

Incentive compatibility (Bayesian):

◊QB(◊) + TB(◊) Ø ◊QB(◊̂) + TB(◊̂) (BICbuyer)
TS(c) ≠ cQS(c) Ø TS(ĉ) ≠ cQS(ĉ) (BICseller)

Individual rationality (interim): ◊QB(◊) + TB(◊) Ø 0 (IRbuyer)
TS(c) ≠ cQS(c) Ø 0 (IRseller)

Budget Balance holds if tB(◊, c) + tS(◊, c) Æ 0, we will require a weaker condition:
⁄

◊̄

◊

⁄
c̄

c

(tB(◊, c) + tS(◊, c)) dF (◊) dG(c) Æ 0 (BB)

no mechanism with ex-post e�cient trade (q(◊, c) = {◊>c}) satisfies these conditions
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Mechanism Design – Bilateral Trade – proof of Myerson Satterthwaite

We can apply screening results to expected terms Q and T to conclude

Lemma
Suppose (q, tB, tS) satisfies BICbuyer and BICseller, then

1. QB(◊) is non-decreasing
2. QS(c) is non-increasing
3. VB(◊) = VB(◊) +

s
◊

◊
QB(s) ds

4. VS(c) = Vs(c̄) +
s

c̄

c
QS(s) ds

54



Mechanism Design – Bilateral Trade – proof of Myerson Satterthwaite

Since we are interested in ex-post e�cient allocations: recall the following theorem:

With constants hB and hS , VCG implies the following transfer rules:

tB(◊, c) =

Y
]

[
≠c + hB if ◊ > c

hB otherwise
and tS(◊, c) =

Y
]

[
◊ + hS if ◊ > c

hS otherwise.

The (interim) expected utility of the buyer is then

VB(◊) =
⁄

c̄

c

1
(◊ ≠ c) {◊>c} +hB

2
dG(c) =

⁄
c̄

c

(◊ ≠ c) {◊>c} dG(c) + hB
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Mechanism Design – Bilateral Trade – proof of Myerson Satterthwaite

Considering the ex-ante expected utility of the buyer
⁄

◊̄

◊

VB(◊) dF (◊) =
⁄

◊̄

◊

⁄
c̄

c

(◊ ≠ c) {◊>c} dG(c) dF (◊)
¸ ˚˙ ˝

=ex-ante surplus from e�cient trade ©S

+hB = S + hB.

Same steps for the seller
⁄

c̄

c

VS(c) dG(c) = S + hS .

However, by Budget Balance (we don’t inject money from outside) it must be that
⁄

◊̄

◊

VB(◊) dF (◊) +
⁄

c̄

c

VS(c) dG(c) Æ S.
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Mechanism Design – Bilateral Trade – proof of Myerson Satterthwaite
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Mechanism Design – Bilateral Trade – Recap

• Ex-post e�cient trade is not feasible
• Note: what we showed implies that trade is ex-post ine�cient in every equilibrium of

any bargaining game with voluntary particiation
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Mechanism Design – Revenue Maximisation

The auction problem:
• single indivisible object
• seller cost c

• n potential buyers with type ◊i

• utility ◊iqi + ti

• types are independently distributed on [◊i, ◊̄i] according to Fi with density fi > 0
• feasible allocation probabilities: qi(◊) œ [0, 1] with

q
n

i=1 qi(◊) Æ 1

Seller commits to mechanism (q, t) : � æ [0, 1]n ◊ Rn to maximise revenue
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Mechanism Design – Revenue Maximisation – Optimal Auctions

Let’s compare di�erent auction formats for the example n = 2, ◊i

iid≥ U([0, 1]), c = 0
1. First-price auction

• Each bidder makes a bid b = —(◊i). The highest bid wins. The winner pays his bid.
• Find the symmetric equilibrium bid function —

ú (hint: linear function)

2. English auction (=ascending-clock auction)
• A price is publicly displayed.

It increases continuously from p0 = 0. Bidder i drops out when the price reaches fl(◊i).
When i drops out (first), j ”= i wins and pays fli.

• What is the weakly dominant stopping strategy fl(◊i)

3. All-pay auction (=contest)
• Each bidder makes a bid b = –(◊i). The highest bid wins. Each bidder pays his bid.
• Find the symmetric equilibrium bid function –

ú

All: What is the expected revenue of the seller?
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Mechanism Design – Revenue Maximisation – Optimal Auctions

Theorem
In the auction problem, any Bayesian incentive compatible mechanism that implements
q(◊) = (q1(◊), . . . , qn(◊)) gives each agent i payo�

Vi(◊i) = Vi(◊i) +
⁄

◊i

◊
i

⁄

�≠i

qi(s, ◊≠i) dF≠i(◊≠i) ds,

and expected transfer
≠Ti(◊i) = ◊iQi(◊i) ≠ Vi(◊i).

• In any BIC mechanism, the allocation rule almost pins down the transfers
(up the constants Vi(◊i))
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Mechanism Design – Revenue Maximisation – Optimal Auctions

The seller’s expected revenue from mechanism (q, t) is
⁄

�

C
nÿ

i=1
(≠ti(◊) ≠ cqi(◊))

D

dF (◊) =
nÿ

i=1

⁄

�i

(≠Ti(◊i) ≠ cQi(◊i)) dFi(◊i).

It follows from previous result that:
Theorem (Revenue Equivalence)
Any two equilibria of any two auctions that yield (i) identical allocation probabilities qi(·)
and (ii) identical interim utility for type ◊i of each bidder i give the seller the same
expected revenue.
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Mechanism Design – Revenue Maximisation – Optimal Auctions

Were the three auctions optimal for the seller?

What constitutes an optimal auction?
Theorem (Optimal auction)
Suppose n Ø 2 and each bidder’s virtual valuation Ji is increasing in ◊i. Any alloaction rule
q

ú : � æ [0, 1]n satisfying

q
ú
i (◊) > 0 only if Ji(◊i) = max

j

Jj(◊j) > c,

nÿ

i=1
q

ú
i (◊) < 1 only if max

j

Jj(◊j) Æ c

and the implied transfers with Ti(◊i) = ◊iQ
ú
i
(◊i) (i.e. Vi(◊i) = 0) is an

incentive-compatible individually-rational mechanism that maximises revenue.
proof: exercise 63



Mechanism Design – Further Topics

Some issues that we have not covered:
• Collusion
• Interdependent valuations (for example, common-value auctions)
• Correlated types
• Evidence / Verification
• Dynamic problems (multiple stages)
• Limited commitment for principal
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