Sender-Receiver Games

Disclosure Games

Disclosure games

-Grossman (1981): The Informational Role of Warranties and Private Disclosure about Product Quality. *Journal of Law and Economics.*

-Milgrom (1981): Rational Expectations, Information Acquisition, and Competitive Bidding. Econometrica.

One Seller has a car of privately known quality type $\theta \in \{L, H\}$

Many Buyers with valuation v_{θ} , with $0 < v_L < v_H$

Game:

- 1. Seller sends one message from **type-dependent** message set: $m \in M(\theta) = \{\theta, \emptyset\}$
- 2. Buyers observe message m and form belief $\ \mu(m)$ over $\{L,H\}$
- 3. Seller gets market price $p = \mathbb{E}_{\theta \sim \mu(m)} [v_{\theta}]$ (=expected buyer value)

Disclosure games – Unravelling in the Milgrom-Grossman model

More than two types: Suppose $\Theta = \{\theta_1 < \cdots < \theta_n\}$ or $\Theta = \left[\underline{\theta}, \overline{\theta}\right]$ (with increasing $v(\theta)$)

Argument works with **other evidence structures:** e.g., $M(\theta) = \{ \text{any subset } m \subset \Theta \text{ with } \theta \in m \}$ $M(\theta) = \{ \theta' \in \Theta \text{ with } \theta' \leq \theta \}$

Disclosure games – Dye-evidence

-Dye (1984): Disclosure of nonproprietary Information. Journal of Accounting Research Suppose seller types are $\Theta = \left[\underline{\theta}, \overline{\theta}\right]$ with increasing v_{θ} and evidence $\left\{ \left\{ \theta, \theta \right\} \right\}$ with prob. γ

$$M(\theta) = \begin{cases} \{\theta, \emptyset\} & \text{ with prob. } \gamma \\ \{\emptyset\} & \text{ with prob. } 1 - \gamma \end{cases}$$

Disclosure games – Dye-evidence

-Dye (1984): Disclosure of nonproprietary Information. Journal of Accounting Research Suppose seller types are $\Theta = \left[\underline{\theta}, \overline{\theta}\right]$ with increasing v_{θ} and evidence

$$M(\theta) = \begin{cases} \{\theta, \emptyset\} & \text{ with prob. } \gamma \\ \{\emptyset\} & \text{ with prob. } 1 - \gamma \end{cases}$$

In equilibrium:

- seller-types in set $T \subset \Theta$ send message $m = \theta$ if they can other types, in $T^C = \Theta \setminus T$ send $m = \emptyset$ always
- **buyer**/market pays the seller the expected value
 - with message θ : $\mathbb{E}\left[v_{\tilde{\theta}} \mid m = \theta\right] = \mathbb{E}\left[v_{\tilde{\theta}} \mid \tilde{\theta} = \theta\right] = v_{\theta}$
 - with message \emptyset : $\mathbb{E}[v_{\tilde{\theta}} \mid m = \emptyset] = \mathbb{E}[v_{\tilde{\theta}} \mid \tilde{\theta} \text{ has no evidence } \bigcup \quad \tilde{\theta} \in T^C]$

Disclosure games – Dye-evidence

Disclosure games – Dye-evidence – Application to stock market

- Firm value $\theta \in \{5, 10\}$ with $\lambda = \mathbb{P}\left[\theta = 5\right]$
- Two periods:

t=1: With prob γ , manager learns θ and chooses to disclose $m = \theta$ or $m = \emptyset$

With prob $1-\gamma$, manager learns nothing and discloses $m=\emptyset$

- t=2: Firm value θ becomes public
- Share price $p_t =$ expected value conditional on all public information at (end of) period t.
- Manager wants to maximise share price

Exercise:

- a) What is the optimal choice for the manager in t = 1 conditional on θ ?
- b) What is the share price in t = 1 conditional on m?
- c) Consider the change from p_1 to p_2 . Are bad or good news followed by higher volatility?
- d) Suppose the manager's info is always public. How do answers to (b) and (c) change?