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Screening – some immediate extensions of example

Divisible quantity instead of single indivisible good:
• nothing changes
• interpret q œ [0, q̄] as quantity instead of probability q œ [0, 1]

Production costs for the seller:
• suppose seller incurs cost c(q) when producing quantity q

• seller’s objective is now ≠t(◊) ≠ c(q(◊))
• for buyer, nothing changes
• optimality condition for pointwise maximisation (if c convex increasing):

◊ ≠ 1 ≠ F (◊)
f(◊) ≠ c

Õ(q(◊)) = 0.
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Screening – incentive compatibility (formally)

We made our lives easy at several steps of the example:
1) did not proof formally that q must be increasing to fulfil IC
2) did not proof formally that V

Õ(◊) = q(◊) must hold to fulfil IC

(3) Buyer’s linear utility ◊q + t seems like (very simple) special case

Let’s provide complete proofs of (1) and (2) for more general case when buyer’s utility is

u(◊, q) + t.
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Screening – incentive compatibility – three results

We consider three fundamental results:
1. Envelope Theorem
2. Revenue Equivalence
3. ‘Incentive Compatibility Characterisation’
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Screening – Envelope Theorem

Theorem (Envelope Theorem)
Assume that X is compact, and � = [◊, ◊] and g : � ◊ X æ R is di�erentiable in ◊ with
uniformly bounded derivative. Suppose the selection x

ú(◊) solves

V (◊) = max
xœX

g(◊, x).

Then we have
V

Õ(◊) = ˆ

ˆ◊
g(◊, x

ú(◊)) a.e.

and
V (◊) = V (◊) +

⁄
◊

◊

ˆ

ˆ◊
g(s, x

ú(s)) ds.
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Screening – Envelope Theorem – proof
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Screening – Revenue Equivalence

Theorem (Revenue Equivalence)
Fix a function q : ◊ æ Q. Suppose that Q is compact and � = [◊, ◊].
Let the agent’s utility be u(◊, q) + t, where u is di�erentiable in ◊ with uniformly bounded
derivative. Any incentive compatible mechanism that implements q(◊) gives agent payo�

V (◊) = V (◊) +
⁄

◊

◊

ˆ

ˆ◊
u(s, q(s)) ds,

transfers must satisfy ≠t(◊) = u(◊, q(◊)) ≠ V (◊) ≠
⁄

◊

◊

ˆ

ˆ◊
u(s, q(s)) ds.

• By IC, the allocation rule almost completely pins down agent’s and principal’s payo�
• Only ’degree of freedom’ is the constant V (◊)
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Screening – characterisation of IC

The Revenue Equivalence Theorem provides a necessary condition:

’If mechanism is incentive compatible, then (q, t) satisfies...’

Two issues remain:

• (When) are these conditions su�cient for incentive compatibility?
• In our example we said q had to be increasing, where did that come from?

24



Screening – characterisation of IC

Theorem
Suppose that Q is compact and � = [◊, ◊]. Let the agent’s utility be u(◊, q) + t, where u is
di�erentiable in ◊ with uniformly bounded derivative.
If ˆ

2
u(◊,q)

ˆqˆ◊
> 0, then (q(◊), t(◊)) is IC if and only if

q(◊) is non-decreasing

and
≠t(◊) = u(◊, q(◊)) ≠ V (◊) ≠

⁄
◊

◊

ˆ

ˆ◊
u(s, q(s)) ds.
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Screening – characterisation of IC – proof
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Adverse Selection

Mechanism Design



Mechanism Design

Mechanism design
• how can we aggregate individual preferences into a collective decision?
• especially if individuals’ preferences are private information

Compared to the screening problem, we now consider multiple agents
• interests may conflict with each other
• there is increased competition that a seller may exploit
• will ine�ciencies increase/decrease?
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Mechanism Design – General Setup

The Environment
• n agents
• each agent i has private information (his type) ◊i œ �i

• set of possible alternatives/outcomes x œ X

• each agent is expected-utility maximiser with vNM utility function
ui(◊, x) œ R, for ◊ œ � = �1 ◊ · · · ◊ �n and x œ X.

• the type profile ◊ = (◊1, . . . , ◊n) is distributed according to F with density f > 0
• notation: we write

◊≠i = (◊1, . . . , ◊i≠1, ◊i+1, . . . , ◊n) and (◊i, ◊≠i) = ◊
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Mechanism Design – Setup – some terminology

Private Values
• i’s preferences depend only on ◊i:

ui(◊, x) = ui(◊i, x)
• ’interdependent values’ otherwise

Independent Types
• ◊i’s distribution indep. of other types ◊≠i:

f(◊) =
rn

i=1 fi(◊i)
• ’correlated’ types otherwise

Quasi-linear Utilities
• outcomes X = K ◊ Rn, where

k œ K some physical allocation,
t = (t1, . . . , tn) œ Rn transfers

• i’s utility is linear in money (his transfer):
ui(◊, x) = vi(◊, k) + ti

Social Choice/Unrestricted Domain
• X = {a, b, . . . } finite set of alternatives
• ◊i gives ranking over alternatives:

a◊ib … a ºi b

• Unrestricted domain if
�i contains all possible rankings over X

29
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Mechanism Design – environment examples

Ex 1. Public good
• outcomes (k, t) œ X = {0, 1} ◊ Rn

k œ {0, 1} with k = 1 if bridge is built
ti œ R transfer to agent i

• ◊i is i’s willingness to pay for bridge
ui(◊, x) = ◊ik + ti

Ex. 2 Allocation with externalities
• outcomes (k, t) œ X = {0, 1, . . . , n} ◊ Rn

k =
I

0 if nobody gets object
i if agent i gets object

ti œ R transfer to agent i

• ◊i = (◊i

i
, ◊

x

i
) with utility

ui(◊, x) =

Y
__]

__[

ti if k = 0
◊

i
i + ti if k = i

≠◊
x
i + ti if k /œ {0, i}
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Mechanism Design – Social Choice Functions

Our goal is generally to choose a good outcome x œ X given the realised preferences ◊ œ �

Definition (Social Choice Function)
A social choice function (scf) › : � æ X assigns to each type profile ◊ œ � an alternative
›(◊) œ X.

The problem of the mechanism designer is not ’lack of power’

• if the designer knew ◊, she could always choose the ’optimal’ outcome

The problem is ’just’ the asymmetric information
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Mechanism Design – Mechanisms (general/indirect)

Typically, social (collective) outcomes are determined through interaction in some institution

Definition (Mechanism)
A mechanism � = (S1, . . . , Sn, g) consists of

• a strategy space Si for each agent i

• an outcome function g : S1 ◊ · · · ◊ Sn æ X.

A mechanism � = (S, g) together with the environment induces a Bayesian game:
G� = (n, {Si}iÆn, {ũi}iÆn, �, F ) , with payo�s ũi(◊, s1, . . . , sn) = ui(◊, g(s1, . . . , sn)).
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Mechanism Design – Incentive Compatibility

We have several solution concepts: Let (sú
i
)n

i=1 be a strategy profile, where ’i : si : �i æ Si

• Dominant strategy equilibrium: for all i, ◊i, si:
ui((◊i, ◊≠i), g(sú

i (◊i), s≠i)) Ø ui((◊i, ◊≠i), g(si, s≠i)) ’◊≠i, s≠i

• Ex-post equilibrium: for all i, ◊i, si:
ui((◊i, ◊≠i), g(sú

i (◊i), s
ú
≠i(◊≠i))) Ø ui((◊i, ◊≠i), g(si, s

ú
≠i(◊≠i))) ’◊≠i

• Bayes-Nash equilibrium: for all i, ◊i, si:⁄

�≠i

ui((◊i, ◊≠i), g(sú
i (◊i), s

ú
≠i(◊≠i))) dF≠i(◊≠i|◊i)

Ø
⁄

�≠i

ui((◊i, ◊≠i), g(si, s
ú
≠i(◊≠i))) dF≠i(◊≠i|◊i)
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Mechanism Design – Participation Constraints
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Mechanism Design – Implementation

Definition
We say that mechanism � = (S, g) [...]-implements scf ›

if there exists a [...]-equilibrium strategy profile (sú
i
)n

i=1 such that

g(sú
1(◊1), . . . , s

ú
n(◊n)) = ›(◊) for all ◊ œ �.

where [...]œ {dominant strategy, ex-post, Bayes}

• Full implementation: every equilibrium results in ›(◊)
• Partial implementation: there is an equilibrium that results in ›(◊)

We focus on partial implementation
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Mechanism Design – example second-price auction
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Mechanism Design – Revelation Principle (direct mechanisms)

Theorem (Revelation Principle)
For any mechanism � = (S, g) and [. . . ]-equilibrium strategy profile (sú

i
)n

i=1 that
implements scf ›, there exists a direct mechanism �̂ = (�, ›) such that
truthtelling is a [. . . ]equilibrium.

• Only ensures that there is AN equilibrium
• In di�erent (indirect) mechanisms sharing the same direct mechanism other equilibria

may arise
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