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Mechanism Design – General Setup

The Environment
• n agents
• each agent i has private information (his type) ◊i œ �i

• set of possible alternatives/outcomes x œ X

• each agent is expected-utility maximiser with vNM utility function
ui(◊, x) œ R, for ◊ œ � = �1 ◊ · · · ◊ �n and x œ X.

• the type profile ◊ = (◊1, . . . , ◊n) is distributed according to F with density f > 0
• notation: we write

◊≠i = (◊1, . . . , ◊i≠1, ◊i+1, . . . , ◊n) and (◊i, ◊≠i) = ◊
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Mechanism Design – Setup – some terminology

Private Values
• i’s preferences depend only on ◊i:

ui(◊, x) = ui(◊i, x)
• ’interdependent values’ otherwise

Independent Types
• ◊i’s distribution indep. of other types ◊≠i:

f(◊) =
rn

i=1 fi(◊i)
• ’correlated’ types otherwise

Quasi-linear Utilities
• outcomes X = K ◊ Rn, where

k œ K some physical allocation,
t = (t1, . . . , tn) œ Rn transfers

• i’s utility is linear in money (his transfer):
ui(◊, x) = vi(◊, k) + ti

Social Choice/Unrestricted Domain
• X = {a, b, . . . } finite set of alternatives
• ◊i gives ranking over alternatives:

a◊ib … a ºi b

• Unrestricted domain if
�i contains all possible rankings over X
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Mechanism Design – environment examples

Ex 1. Public good
• outcomes (k, t) œ X = {0, 1} ◊ Rn

k œ {0, 1} with k = 1 if bridge is built
ti œ R transfer to agent i

• ◊i is i’s willingness to pay for bridge
ui(◊, x) = ◊ik + ti

Ex. 2 Allocation with externalities
• outcomes (k, t) œ X = {0, 1, . . . , n} ◊ Rn

k =
I

0 if nobody gets object
i if agent i gets object

ti œ R transfer to agent i

• ◊i = (◊i

i
, ◊

x

i
) with utility

ui(◊, x) =

Y
__]

__[

ti if k = 0
◊

i
i + ti if k = i

≠◊
x
i + ti if k /œ {0, i}
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Mechanism Design – Social Choice Functions

Our goal is generally to choose a good outcome x œ X given the realised preferences ◊ œ �

Definition (Social Choice Function)
A social choice function (scf) › : � æ X assigns to each type profile ◊ œ � an alternative
›(◊) œ X.

The problem of the mechanism designer is not ’lack of power’

• if the designer knew ◊, she could always choose the ’optimal’ outcome

The problem is ’just’ the asymmetric information
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Mechanism Design – Mechanisms (general/indirect)

Typically, social (collective) outcomes are determined through interaction in some institution

Definition (Mechanism)
A mechanism � = (S1, . . . , Sn, g) consists of

• a strategy space Si for each agent i

• an outcome function g : S1 ◊ · · · ◊ Sn æ X.

A mechanism � = (S, g) together with the environment induces a Bayesian game:
G� = (n, {Si}iÆn, {ũi}iÆn, �, F ) , with payo�s ũi(◊, s1, . . . , sn) = ui(◊, g(s1, . . . , sn)).
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Mechanism Design – Mechanisms (general/indirect)

Example for Mechanism: English auction (=ascending-clock auction)

• A price is publicly displayed
• Price increases continuously from p0 = 0
• Bidder i’s strategy: drop out when price reaches si(◊i)
• When i drops out (first), j ”= i wins and pays si
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Mechanism Design – Incentive Compatibility

We have several solution concepts: Let (sú
i
)n

i=1 be a strategy profile, where ’i : si : �i æ Si

• Dominant strategy equilibrium: for all i, ◊i, si:
ui((◊i, ◊≠i), g(sú

i (◊i), s≠i)) Ø ui((◊i, ◊≠i), g(si, s≠i)) ’◊≠i, s≠i
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Mechanism Design – Incentive Compatibility

We have several solution concepts: Let (sú
i
)n

i=1 be a strategy profile, where ’i : si : �i æ Si

• Dominant strategy equilibrium: for all i, ◊i, si:
ui((◊i, ◊≠i), g(sú

i (◊i), s≠i)) Ø ui((◊i, ◊≠i), g(si, s≠i)) ’◊≠i, s≠i

• Ex-post equilibrium: for all i, ◊i, si:
ui((◊i, ◊≠i), g(sú

i (◊i), s
ú
≠i(◊≠i))) Ø ui((◊i, ◊≠i), g(si, s

ú
≠i(◊≠i))) ’◊≠i
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Mechanism Design – Incentive Compatibility

We have several solution concepts: Let (sú
i
)n

i=1 be a strategy profile, where ’i : si : �i æ Si

• Dominant strategy equilibrium: for all i, ◊i, si:
ui((◊i, ◊≠i), g(sú

i (◊i), s≠i)) Ø ui((◊i, ◊≠i), g(si, s≠i)) ’◊≠i, s≠i

• Ex-post equilibrium: for all i, ◊i, si:
ui((◊i, ◊≠i), g(sú

i (◊i), s
ú
≠i(◊≠i))) Ø ui((◊i, ◊≠i), g(si, s

ú
≠i(◊≠i))) ’◊≠i

• Bayes-Nash equilibrium: for all i, ◊i, si:⁄

�≠i

ui((◊i, ◊≠i), g(sú
i (◊i), s

ú
≠i(◊≠i))) dF≠i(◊≠i|◊i)

Ø
⁄

�≠i

ui((◊i, ◊≠i), g(si, s
ú
≠i(◊≠i))) dF≠i(◊≠i|◊i) 34
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Mechanism Design – Participation Constraints
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Mechanism Design – Implementation

Definition
We say that mechanism � = (S, g) [...]-implements scf ›

if there exists a [...]-equilibrium strategy profile (sú
i
)n

i=1 such that

g(sú
1(◊1), . . . , s

ú
n(◊n)) = ›(◊) for all ◊ œ �.

where [...]œ {dominant strategy, ex-post, Bayes}

• Full implementation: every equilibrium results in ›(◊)
• Partial implementation: there is an equilibrium that results in ›(◊)

We focus on partial implementation
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Mechanism Design – Revelation Principle (direct mechanisms)

Theorem (Revelation Principle)
For any mechanism � = (S, g) and [. . . ]-equilibrium strategy profile (sú

i
)n

i=1 that
implements scf ›, there exists a direct mechanism �̂ = (�, ›) such that
truthtelling is a [. . . ]equilibrium.

• Only ensures that there is AN equilibrium
• In di�erent (indirect) mechanisms sharing the same direct mechanism other equilibria

may arise
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Mechanism Design – Revelation Principle – proof

proof of revelation principle for dominant strategy case
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Mechanism Design – The Gibbard-Satterthwaite Theorem

Recall from micro 3:
Definition (Dictatorial)
An scf › : �1 ◊ · · · ◊ �n æ X is dictatorial if there is an agent d œ {1, . . . , n}
such that ›(◊d, ◊≠d) is always the favourite outcome of type ◊d.

Theorem (Gibbard-Satterthwaite)
Suppose |X| Ø 3 and for all i, �i contains all possible preference rankings over X.
If scf › with ›(�) = X is strategy proof, then it is dictatorial.

With unrestricted preferences, there is not a lot we can do...

Not hopeless if preferences are more restricted:
• voting/social-choice literature typically focuses on single-peaked preferences
• we will consider quasi-linear utilities and (mostly) private values
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Mechanism Design – quasi-linear utility and private value

• Outcomes: X = K ◊ Rn: k œ K allocation and (t1, . . . , tn) œ Rn transfers
• Utilities: ui(◊, x) = vi(◊i, k) + ti

Note:
• vi(◊i, k) measures the value of allocation k in terms of money
• Utility is transferable across agents through money
• Agents are risk-neutral with respect to money
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Mechanism Design – quasi-linear utilities and e�ciency

Definition (Pareto e�ciency)
An outcome x = (k, t1, . . . , tn) œ X is Pareto e�cient if there is no other
x

Õ = (kÕ
, t

Õ
1, . . . , t

Õ
n) œ X such that:

nÿ

i=1
t
Õ
i =

nÿ

i=1
ti and vi(◊i, k

Õ) + t
Õ
i Ø vi(◊i, k) + ti

for all i, with strict inequality for at lease one i.

Proposition
An scf › = (k, t) is Pareto e�cient if and only if for all ◊ œ �:

nÿ

i=1
vi(◊i, k(◊)) Ø

nÿ

i=1
vi(◊i, k

Õ) ’k
Õ
.
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Mechanism Design – VCG Mechanisms

Definition
A Vickrey-Clarke-Groves (VCG) mechanism is given by (kú

, t) where k
ú is e�cient and

ti(◊) =
ÿ

j ”=i

vj(◊j , k
ú(◊)) + hi(◊≠i),

for some collection of functions (hi)i
where each hi is independent of ◊i

Theorem
Truthtelling is a dominant-strategy equilibrium of any VCG mechanism.
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Mechanism Design – VCG Mechanism – proof
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