21 - 3 - 22

lecture 03

last exture

- 1. Envelope Thm 2. Revenue equivalence 3. " IC charactification"
- $(q_{1}t) \text{ is IC}$   $(c) \quad q(.) \text{ increasing}$   $(i) \quad V(0) = V(0) + \int_{0}^{0} \frac{2}{30} u(s_{1}q(s)) ds$   $-H(0) = u(0, q(0)) \int_{0}^{0} \dots V(0)$

Today · Intro Kech. Design · Welfasc maximising mechanisms for additional material sec • Kailath p. 303 -> & p. 317 -> · Bargess p130-> & p. 113-> • KWG p. 858-> & p. 883->

### The Environment

- *n* agents
- each agent i has private information (his type)  $\theta_i \in \Theta_i$
- set of possible alternatives/outcomes  $x \in X$
- each agent is expected-utility maximiser with vNM utility function  $u_i(\theta, \underline{x}) \in \mathbb{R}, \qquad \text{for } \theta \in \Theta = \Theta_1 \times \cdots \times \Theta_n \text{ and } x \in X.$
- the type profile  $\theta = (\theta_1, \dots, \theta_n)$  is distributed according to F with density f > 0
- notation: we write

$$\begin{array}{c} \theta_{-i} = (\theta_1, \dots, \theta_{i-1}, \theta_{i+1}, \dots, \theta_n) \quad \text{ and } \quad (\theta_i, \theta_{-i}) = \theta \\ \downarrow \\ \theta_{\tilde{c}} \quad \text{is missing} \end{array}$$

# Mechanism Design – Setup – some terminology

### **Private Values**

- *i*'s preferences depend only on  $\theta_i$ :  $u_i(\theta, x) = u_i(\theta_i, x)$
- 'interdependent values' otherwise

# Independent Types

- $\theta_i$ 's distribution indep. of other types  $\theta_{-i}$ :  $f(\theta) = \prod_{i=1}^n f_i(\theta_i)$
- 'correlated' types otherwise
  IPV = independent
  Privat values

### Quasi-linear Utilities

- outcomes X = K × ℝ<sup>n</sup>, where k ∈ K some physical allocation, t = (t<sub>1</sub>,...,t<sub>n</sub>) ∈ ℝ<sup>n</sup> transfers
   i's utility is linear in money (bis tr
- *i*'s utility is linear in money (his transfer):

 $u_i(\theta, x) = \underbrace{v_i(\theta, k)}_{---} + t_i$ 

### Social Choice/Unrestricted Domain

- $X = \{a, b, \dots\}$  finite set of alternatives
- $\theta_i$  gives ranking over alternatives:  $a\theta_i b \Leftrightarrow a \succeq_i b$
- Unrestricted domain if
  - $\Theta_i$  contains all possible rankings over X

### Mechanism Design – environment examples

### Ex 1. Public good

- outcomes  $(k, t) \in X = \{0, 1\} \times \mathbb{R}^n$  $k \in \{0, 1\}$  with k = 1 if bridge is built  $t_i \in \mathbb{R}$  transfer to agent i
- $\theta_i$  is *i*'s willingness to pay for bridge  $u_i(\theta, x) = \theta_i k + t_i$

private values quasi-einear utilities

### Ex. 2 Allocation with externalities

• outcomes  $(\mathbf{k}, t) \in X = \{\mathbf{0}, \mathbf{1}, \dots, \mathbf{n}\} \times \mathbb{R}^n$  $\mathbf{k} = \begin{cases} 0 & \text{if nobody gets object} \\ i & \text{if agent } i \text{ gets object} \end{cases}$  $t_i \in \mathbb{R}$  transfer to agent i•  $\theta_i = (\theta_i^i, \theta_i^x)$  with utility  $u_i(\theta, x) = \begin{cases} t_i & \text{if } k = 0\\ \theta_i^i + t_i & \text{if } k = i\\ -\theta_i^x + t_i & \text{if } k \notin \{0, i\} \end{cases}$ guasi-Rinear utility Divate values

# Mechanism Design – Social Choice Functions

Our goal is generally to choose a good outcome  $x \in X$  given the realised preferences  $\theta \in \Theta$ 



The problem of the mechanism designer is not 'lack of power'

• if the designer knew  $\theta,$  she could always choose the 'optimal' outcome

The problem is 'just' the asymmetric information

Typically, social (collective) outcomes are determined through interaction in some institution

#### **Definition (Mechanism)**

A mechanism  $\Gamma = (S_1, \ldots, S_n, g)$  consists of

- a strategy space  $S_i$  for each agent i
- an outcome function  $g: S_1 \times \cdots \times S_n \to X$ .

A mechanism  $\Gamma = (S, g)$  together with the environment induces a Bayesian game:  $G_{\Gamma} = (n, \{S_i\}_{i \leq n}, \{\tilde{u}_i\}_{i \leq n}, \Theta, F), \text{ with payoffs } \tilde{u}_i(\theta, s_1, \dots, s_n) = u_i(\theta, g(s_1, \dots, s_n)).$  Example for Mechanism: English auction (=ascending-clock auction) with n=2 sides

- A price is publicly displayed
- Price increases continuously from  $p_0 = 0$
- Bidder *i*'s strategy: drop out when price reaches  $s_i(\theta_i)$
- When i drops out (first),  $j \neq i$  wins and pays  $s_i$

with 
$$\mathcal{U}_i(\Theta_i(h_i, t)) = \begin{cases} \Theta_i + \frac{1}{2}\Theta_{-2} + t_i & \text{if } h = i \\ + t_i & \text{else} \end{cases}$$
  
Symmetric equilibrium  $S_i^{*}(\Theta_i) + (1 + \frac{1}{2})\Theta_i \end{cases}$  33

example: "wallet game"  $SGF = \begin{cases} (1, (-\lambda \theta_2, 0)) & 0_0 > 0_2 \\ \xi(0_0, \theta_2) = \\ (2, (0, -\lambda \theta_2)) & otherwse \end{cases}$ SGF  $m = 2 \quad players, \quad \Theta_i = value \quad of \quad wallet i \quad the players i \\ X = \left\{ 1, 2 \right\} + R^2$ both wallets and pays 2 O-i "i gets for some d>0 " k, (t, t2) 200 allocation + transfers  $\mathcal{V}_{i}\left(\left(\Theta_{i},\Theta_{i}\right),\lambda_{i}\left(t_{n},t_{n}\right)\right)=\begin{cases}\Theta_{i}+\frac{1}{2}\Theta_{i}+t_{i} & \text{if }\lambda_{i}\\ +t_{i} & \text{if }\lambda_{i}\end{cases}$ mechanism

### Mechanism Design – Incentive Compatibility

We have several solution concepts: Let  $(s_i^*)_{i=1}^n$  be a strategy profile, where  $\forall i: s_i: \Theta_i \to S_i$ 

• Dominant strategy equilibrium: for all i,  $\theta_i$ ,  $s_i$ :

 $u_i((\theta_i, \theta_{-i}), g(s_i^*(\theta_i), s_{-i})) \ge u_i((\theta_i, \theta_{-i}), g(s_i, s_{-i})) \quad \forall \theta_{-i}, s_{-i}$ 



### Mechanism Design – Incentive Compatibility

We have several solution concepts: Let  $(s_i^*)_{i=1}^n$  be a strategy profile, where  $\forall i: s_i: \Theta_i \to S_i$ 

• Dominant strategy equilibrium: for all i,  $\theta_i$ ,  $s_i$ :

 $u_i((\theta_i, \theta_{-i}), g(s_i^*(\theta_i), s_{-i})) \ge u_i((\theta_i, \theta_{-i}), g(s_i, s_{-i})) \quad \forall \theta_{-i}, s_{-i}$ 

• Ex-post equilibrium: for all i,  $\theta_i$ ,  $s_i$ :

 $u_i((\theta_i, \theta_{-i}), g(s_i^*(\theta_i), \underline{s_{-i}^*}(\theta_{-i}))) \ge u_i((\theta_i, \theta_{-i}), g(s_i, \underline{s_{-i}^*}(\theta_{-i}))) \quad \forall \theta_{-i}$ 

### Mechanism Design – Incentive Compatibility

We have several solution concepts: Let  $(s_i^*)_{i=1}^n$  be a strategy profile, where  $\forall i: s_i: \Theta_i \to S_i$ 

• Dominant strategy equilibrium: for all i,  $\theta_i$ ,  $s_i$ :

• Bayes-Nash equilibrium: for all i,  $\theta_i$ ,  $s_i$ :

$$\int_{\Theta_{-i}} u_i((\theta_i, \theta_{-i}), g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i}))) \, \mathrm{d}F_{-i}(\theta_{-i}|\theta_i)$$

$$\geq \int_{\Theta_{-i}} u_i((\theta_i, \theta_{-i}), g(s_i, s_{-i}^*(\theta_{-i}))) \, \mathrm{d}F_{-i}(\theta_{-i}|\theta_i)$$

Mechanism Design - Participation Constraints =" in dividual rationality" (IR Timing of participation decision matters •  $E \times -post IR$ :  $\mathcal{U}_{i}(\mathcal{O}_{i}, \mathcal{O}_{-i}); g(s^{*}(\mathcal{O}))) \geq \mathcal{O} \quad \forall \mathcal{O}_{i}, \mathcal{O}_{-i}$ Is agent could drop out at any time. • <u>Ex-intoin</u> IR:  $\mathbb{E}_{\Theta_{i}}\left[\mathcal{U}_{i}\left(\left(\Theta_{i}, \Theta_{i}\right)_{i}\right)_{i}g(S_{i}^{*}(\Theta_{i}), S_{i}^{*}(\Theta_{i}))\right] \quad \Theta_{i} \neq 0 \quad \forall \Theta_{i}$ La agent à docides whether to pasticipate after Coasning own type Di Lut Jefore classing others types D-à • Ex-ante IR:  $\mathbb{E}_{(i_1, 0-i_1)} \left[ \mathcal{U}_i((\theta_i, \theta_{-i_1}); g(s_i^*(\theta_i), s_c^*(\theta_{-i_2}))) \right] \ge 0$ Ly agent decides whether to participate befose knowing own type or others' types

### Mechanism Design – Implementation

#### Definition

We say that mechanism  $\Gamma = (S, g)$  [...]-implements scf  $\xi$ if there exists a [...]-equilibrium strategy profile  $(s_i^*)_{i=1}^n$  such that

$$g(s_1^*(\theta_1), \dots, s_n^*(\theta_n)) = \xi(\theta) \quad \text{for all } \theta \in \Theta.$$

where  $[...] \in \{\text{dominant strategy, ex-post, Bayes}\}$ 

- Full implementation: every equilibrium results in  $\xi(\theta)$
- Partial implementation: there is an equilibrium that results in  $\xi(\theta)$

We focus on partial implementation

# Mechanism Design – Revelation Principle (direct mechanisms)

Continant, ex-post, Bayesian

#### Theorem (Revelation Principle)

For any mechanism  $\Gamma = (S, g)$  and  $[\dots]$ -equilibrium strategy profile  $(s_i^*)_{i=1}^n$  that implements scf  $\xi$ , there exists a **direct** mechanism  $\hat{\Gamma} = (\Theta, \xi)$  such that **truthtelling** is a  $[\dots]$ equilibrium.

- Only ensures that there is AN equilibrium
- In different (indirect) mechanisms sharing the same direct mechanism other equilibria may arise

### Mechanism Design – Revelation Principle – proof

#### proof of revelation principle for dominant strategy case

### Mechanism Design – The Gibbard-Satterthwaite Theorem

#### Recall from micro 3:

#### **Definition (Dictatorial)**

An scf  $\xi: \Theta_1 \times \cdots \times \Theta_n \to X$  is **dictatorial** if there is an agent  $d \in \{1, \ldots, n\}$ 

such that  $\xi(\theta_d, \theta_{-d})$  is always the favourite outcome of type  $\theta_d$ .

#### Theorem (Gibbard-Satterthwaite)

Suppose  $|X| \ge 3$  and for all i,  $\Theta_i$  contains all possible preference rankings over X. If scf  $\xi$  with  $\xi(\Theta) = X$  is strategy proof, then it is dictatorial.

With unrestricted preferences, there is not a lot we can do...

Not hopeless if preferences are more restricted:

- voting/social-choice literature typically focuses on single-peaked preferences
- we will consider quasi-linear utilities and (mostly) private values

- Outcomes:  $X = \underline{K} \times \underline{\mathbb{R}}^n$ :  $\underline{k} \in K$  allocation and  $(t_1, \dots, t_n) \in \mathbb{R}^n$  transfers
- Utilities:  $u_i(\theta, x) = v_i(\theta_i, k) + t_i$

Note:

- $v_i(\theta_i,k)$  measures the value of allocation k in terms of money
- Utility is transferable across agents through money
- Agents are risk-neutral with respect to money

## Mechanism Design – quasi-linear utilities and efficiency

#### Definition (Pareto efficiency)

An outcome  $x = (k, t_1, \dots, t_n) \in X$  is Pareto efficient if there is no other  $x' = (k', t'_1, \dots, t'_n) \in X$  such that:

$$\sum_{i=1}^{n} t'_i = \sum_{i=1}^{n} t_i \qquad \text{and} \qquad v_i(\theta_i, k') + t'_i \ge v_i(\theta_i, k) + t_i$$

for all i, with strict inequality for at lease one i.

#### Proposition

An scf  $\boldsymbol{\xi} = (k, t)$  is Pareto efficient if and only if for all  $\theta \in \Theta$ :

$$\sum_{i=1}^{n} v_i(\theta_i, k(\theta)) \ge \sum_{i=1}^{n} v_i(\theta_i, \underline{k'}) \quad \forall \underline{k'}.$$

#### Definition

A Vickrey-Clarke-Groves (VCG) mechanism is given by  $(k^*, t)$  where  $k^*$  is efficient and

$$t_i(\theta) = \sum_{j \neq i} v_j(\theta_j, k^*(\theta)) + h_i(\theta_{-i}),$$

for some collection of functions  $(h_i)_i$  where each  $\underline{h_i}$  is independent of  $\underline{\theta_i}$ 

#### Theorem

Truthtelling is a dominant-strategy equilibrium of any VCG mechanism.

### Mechanism Design – VCG Mechanism – proof

Take agent i with type Qi. Truth telling is optimal  

$$V_{i}(\Theta_{i}, k^{*}(\Theta_{i}, \Theta_{-i})) + t_{i}(\Theta_{i}, \Theta_{-i}) \geq V_{i}(\Theta_{i}, k^{*}(\Theta_{i}, \Theta_{-i})) + t_{i}(\Theta_{i}, \Theta_{-i}) \quad \forall \Theta_{i} + \Theta_{i}$$
(insert tos ti from definition of VCG  

$$t_{i}(\Theta) = \sum_{j \neq i} v_{j}(\Theta_{j}, k^{*}(\Theta)) + h_{i}(\Theta_{-i}),$$

$$t_{i}(\Theta_{i}, h^{*}(\Theta_{i}, \Theta_{-i})) + h_{i}(\Theta_{-i}) + h_$$