$4-4-22$

- If effort is asservable principal can implement any effst choice with Iforcing contract'
- (f agent is rich neutral and wages unrestricted, then first lest can be implemented (even with unossouasle efort) by " selling the firm to agent".

Today , Salanié p. $138 \rightarrow$

- Risc neutral agent and united liability
- Risk averse agent
rarlath p. $348 \rightarrow$
MWG p.483 \rightarrow

Moral Hazard - Limited Liability (and risk-neutral agent)

Suppose

- continuum of effort choices $e \in E=[0,1]$
- two possible outputs $\pi \in\{0, \bar{\pi}\}$ with $\mathbb{P}[\pi=\bar{\pi} \mid e]=e \quad$ and $\mathbb{P}[\pi=0 \mid e]=1-e$
- risk-neutral agent: $v(w)=w$
- limited liability: $w(\pi) \geq 0$

The principal solves

$$
\begin{align*}
& \max _{e, w(0), w(\bar{\pi})}\{e(\bar{\pi}-w(\bar{\pi}))+(1-e)(0-w(0))\} \quad \text { such that } \\
& e \in \underset{e^{\prime}}{\operatorname{argmax}}\left\{e^{\prime} w(\bar{\pi})+\left(1-e^{\prime}\right) w(0)-c\left(e^{\prime}\right)\right\} \tag{IC}\\
& e w(\bar{\pi})+(1-e) w(0)-c(e) \geq 0, \tag{IR}\\
& w(\bar{\pi}) \geq 0, w(0) \geq 0<\text { eimited liasility } \tag{LL}
\end{align*}
$$

Moral Hazard - Limited Liability (and risk-neutral agent)
2-step-procedere: (7) Ta he any effort level e, what is the optimal wage pair $\left(\omega_{d}(0), \omega_{e}(\pi)\right)$ to implement e ?
(2) What is the optimal effort level e?
(1) Agent is willing to choose c^{\prime} if it maximises

IC:

$$
e^{\prime} \cdot w(\pi)+\left(1-e^{\prime}\right) w(0)-c\left(e^{\prime}\right)
$$

\rightarrow (i) choose wool as low as possible $\omega_{e}(0)=0$
(ii) $\omega_{e}(\pi)$ from agents $F O C$ (of IC)

$$
w(i \pi)-c^{\prime}(e)=0 \quad \Rightarrow \quad w_{e}(\bar{T})=c^{\prime}(e)
$$

(2) optimal effort level

$$
\max _{e}^{\text {optimal effort level }}\left\{e \cdot\left(\bar{\pi}-w_{e}(\pi)\right)+(1-c)\left(0-w_{e}(0)\right)\right\} \quad \stackrel{\text { from }}{=} \max _{e}^{=}\left\{e\left(\pi-c^{\prime}(e)\right)+0\right\}
$$

FOL: $\quad \pi-c^{\prime}(e)-e c^{\prime \prime}(e) \stackrel{!}{=} 0 \Rightarrow$ solution $e^{*}<e^{F B}$
\rightarrow because

$$
e^{F B} \text { solves } \bar{\pi}-c^{\prime}(e)=0
$$

\Rightarrow with limited liability, effort is distorted downward even if the agent is risk neutral.
here: $e \bar{\pi}=\mathbb{E}[\pi \mid e]$

Moral Hazard - Risk sharing

Suppose FOSD

- binary effort choice $e \in E=\left\{e_{L}, e_{H}\right\}$ with $e_{L}<e_{H}$
- output $\pi \in[\underline{\pi}, \bar{\pi}]$ with distribution $F(\cdot \mid e)$ satisfying $F\left(\pi \mid e_{H}\right) \leq F\left(\pi \mid e_{L}\right)$ for all π
- risk-averse agent: $v(w)$ increasing and strictly concave
- effort cost $c\left(e_{L}\right)=0$ and $c\left(e_{H}\right)=c_{H}>0$

Principal solves

$$
\begin{align*}
\max _{e \in\left\{e_{L}, e_{H}\right\}, w(\cdot)} & \int_{\underline{\pi}}^{\bar{\pi}}(\pi-w(\pi)) f(\pi \mid e) \mathrm{d} \pi \quad \text { such that } \\
e & =\underset{e^{\prime} \in\left\{e_{L}, e_{H}\right\}}{\operatorname{argmax}} \int_{\underline{\pi}}^{\bar{\pi}} v(w(\pi)) f\left(\pi \mid e^{\prime}\right) \mathrm{d} \pi-c\left(e^{\prime}\right), \tag{IC}\\
& \int_{\underline{\pi}}^{\bar{\pi}} v(w(\pi)) f(\pi \mid e) \mathrm{d} \pi-c(e) \geq 0 \tag{IR}
\end{align*}
$$

Principal solves

$$
\begin{aligned}
& \max _{e \in\left\{e_{L}, e_{H}\right\}, w(\cdot)} \int_{\underline{\pi}}^{\pi}(\pi-w(\pi)) f(\pi \mid e) \mathrm{d} \pi \quad \text { such that } \\
& \text { IC } \quad e=\underset{e^{\prime} \in\left\{e_{L}, e_{H}\right\}}{\operatorname{argmax}} \int_{\underline{\pi}}^{\bar{\pi}} v(w(\pi)) f\left(\pi \mid e^{\prime}\right) \mathrm{d} \pi-c\left(e^{\prime}\right), \\
& \text { IR } \quad \int_{\underline{\pi}}^{\bar{\pi}} v(w(\pi)) f(\pi \mid e) \mathrm{d} \pi-c(e) \geq 0
\end{aligned}
$$

(1) optimal wage function for each effort
(2) optimal effort level
(1) (i) Suppose principal wants to implement $c=e_{L}$

$$
\begin{aligned}
& \mathbb{I}_{e_{L}>e_{H}}: \mathbb{E}_{\pi}\left[V(\omega(\pi)) \mid e=e_{L}\right]-0 \geqslant \mathbb{E}_{\pi}\left[V(\omega(\pi)) \mid e=e_{H}\right]-c_{H} \\
& \mathbb{R}_{e_{L}}: \mathbb{E}_{\pi}\left[V\left(\omega(\pi) \mid e=e_{L}\right]-0 \geqslant 0\right.
\end{aligned}
$$

Note: with a constant wage function $\omega(\pi)=\bar{\omega}$ for all π, then
ICecreH holds always because erne $=$ \square
\rightarrow to implement lowest effort e_{L}, choose lowest wage to satisfy IR constraint

$$
W_{C_{L}}(\Psi)=\bar{W}_{e_{L}}: \quad v\left(\bar{W}_{e_{L}}\right)=0
$$

(1)(i) Suppose the principal wants to implement $e=e_{H}$ $\max _{\omega(\cdot)}\left\{\int_{\pi}^{\pi}-\omega(\pi) f\left(\pi \mid e_{H}\right)\right\}$ such that

$\left(V^{\prime}\right) \mathbb{R}_{e_{H}}$

$$
\int_{\pi}^{\pi} \underbrace{V(w(\pi))}_{u(\pi)} f\left(\pi\left(e_{H}\right) d \pi-c_{H} \geqslant 0\right.
$$

Problem: in this formulation both sides of the IC constraint are concave in $w(\pi)$ \Rightarrow Not clear whether FOC are sufficient for optimum.

Solution: Transformation of variable: $\quad u(\pi)=V C w(\pi)$, then $w(\pi)=V^{-1}(\mu(\pi))$
\Rightarrow now have $\max _{u(I)}$ concave function with linear constraints

Principal's $F O C$ wit $w(\pi)$

$$
\begin{aligned}
& 0=-f\left(\pi \mid e_{H}\right)+\rho v^{\prime}(\omega(\pi)) f\left(\pi \mid e_{H}\right)-\rho v^{\prime}(\omega(\pi)) f\left(\pi / e_{L}\right)+\gamma v^{\prime}(\omega(\pi)) f\left(\pi / e_{H}\right) \\
& \frac{1}{f\left(\pi \mid e_{H}\right)} \frac{1}{v^{\prime}(\omega(\pi)} \\
& \Leftrightarrow \frac{1}{v^{\prime}(\omega(\pi))}=\rho\left(1-\frac{f\left(\mu \mid e_{L}\right)}{f\left(\pi \mid e_{H}\right)}\right)+\gamma^{-}
\end{aligned}
$$

which constraints bind? IC constraint must $\operatorname{sind}(\mu>0)$ (if $\rho=0$ then wage wald be constant) IR constraint also bind $(\gamma \times 0)$ (if $\gamma=0$, then would have

$$
\frac{1}{U^{\prime}(\omega(\pi))}=\mu\left(1-\frac{f\left(\pi \mid e_{L}\right)-}{f\left(\pi \mid c_{H}\right)}\right)+\gamma
$$

Is $\underset{e_{H}}{\omega}(\pi)$ increasing in π generally?
Not generally, only if $\frac{f\left(\pi / c_{H}\right)}{f(\pi)}$ is creasing in $\pi \hat{=}$ monotone likelihood $\left.f(\pi) e_{2}\right)$ is increasing ratio property (MLRR)

Note: MLRP is stronger than FOSD
i.e. $\quad \pi \angle \Omega P \Rightarrow F O S D$ but not vice versa (exercise).

Moral Hazard - Risk sharing - example with binary effort

Example:

$$
c_{L}=0
$$

- $[\underline{\pi}, \bar{\pi}]=[0,1]$ with distribution $f\left(\pi \mid e_{L}\right)=2-2 \pi \quad$ and $f\left(\pi \mid e_{H}\right)=1$ for all π
- $v(w)=\log (w)$

What is the optimal wage rule $w(\pi)$ to implement e_{L} ?

$$
w_{c_{L}}\left((\pi)=\bar{\omega}: \quad V(\bar{\omega})=\log (\bar{\omega})=\frac{0}{c_{L}} \quad \bar{\omega}=V^{-1}(\overline{0})=1 .\right.
$$

What is the optimal wage rule $w(\pi)$ to implement $e_{H} ? \rightarrow$ as a function of π, N, γ^{\prime}

$$
\begin{aligned}
& \frac{1}{v^{\prime}(\omega(\pi))}=\rho\left(1-\frac{f\left(\pi / e_{L}\right)}{f\left(\gamma / e_{H}\right)}\right)+\gamma^{\mu} \\
& =\omega_{e_{H}(\pi)}=v\left(1-\frac{2-2 \pi}{1}\right)+\gamma=\gamma+\rho(2 \pi-1)
\end{aligned}
$$

\rightarrow wage is linearly increasing in output.

