25-04-22

Lecture 11

Last lectures

· Aheslof Remon's mashet

· Jos market signaling

Today Disclosure / evidence games

Sender-Receiver Games

Disclosure Games

Disclosure games

-Grossman (1981): The Informational Role of Warranties and Private Disclosure about Product Quality. Journal of Law and Economics. -Milgrom (1981): Rational Expectations, Information Acquisition, and Competitive Bidding. Econometrica.

One Seller has a car of privately known quality type $\theta \in \{L, H\}$

Many Buyers with valuation v_{θ} , with $0 < v_L < v_H$

Game:

- i ame:
 e_{M} idence
 f_{θ} f_{θ}
- 3. Seller gets market price $p = \mathbb{E}_{\theta \sim u(m)} [v_{\theta}]$ (=expected buyer value)

type

Disclosure games

· If selles sends message m=0, buyers must know that 0 is true type => $P(m=0) = \mathbb{E}_{\mathcal{S}} \left[V_{\mathcal{S}} \mid m=0 \right] = V_{\mathcal{O}}$ · For type H it is cominant strategy to reveal the fruth. · If It always sends m= It, then in equilibrium 19(m) for any m + It must place prod. 1 on G=L. -H gets VH => only equilibrium is full separation: - L gets V2 Othes form of "evidence" in practice : warranty. O secomes observable to surger after purchase, H-seller can affer sale at p= VH with buy-back option. 88 (L-type sellers will not se willing to do flat).

Disclosure games – Unravelling in the Milgrom-Grossman model

More than two types: Suppose $\Theta = \{\theta_1 < \cdots < \theta_n\}$ or $\Theta = \left[\underline{\theta}, \overline{\theta}\right]$ (with increasing $v(\theta)$) · For highest type, revealing own type is dominant strategy · Griven that highest type separates, 2nd highest type also prefers to reparate "unravelling" until fall separation Argument works with other evidence structures: e.g., $M(\theta) = \{ \text{any subset } m \subset \Theta \text{ with } \theta \in m \}$ - any five statement can be sent $M(\theta) = \{ \theta' \in \Theta \text{ with } \theta' \leq \theta \} - only understatements are freehold.$

Disclosure games – Dye-evidence

-Dye (1984): Disclosure of nonproprietary Information. Journal of Accounting Research Suppose seller types are $\Theta = \begin{bmatrix} \underline{\theta}, \overline{\theta} \end{bmatrix}$ with increasing v_{θ} and evidence $\underline{M(\theta)} = \begin{cases} \{\theta, \emptyset\} & \text{with prob. } \gamma \\ \{\emptyset\} & \text{with prob. } 1 - \gamma \end{cases}$

Disclosure games – Dye-evidence

-Dye (1984): Disclosure of nonproprietary Information. Journal of Accounting Research Suppose seller types are $\Theta = \left[\underline{\theta}, \overline{\theta}\right]$ with increasing v_{θ} and evidence

In equilibrium:

- seller-types in set $T \subset \Theta$ send message $m = \theta$ if they can other types, in $T^C = \Theta \setminus T$ send $m = \emptyset$ always
- buyer/market pays the seller the expected value
 - with message θ ; $\mathbb{E}[v_{\tilde{\theta}} \mid m = \theta] = \mathbb{E}[v_{\tilde{\theta}} \mid \tilde{\theta} = \theta] = v_{\theta}$
 - with message \emptyset : $\mathbb{E}\left[v_{\tilde{\theta}} \mid m = \emptyset\right] = \mathbb{E}\left[v_{\tilde{\theta}} \mid \hat{\theta} \text{ has no evidence } \bigcup \tilde{\theta} \in T^{C}\right]$

Disclosure games – Dye-evidence

Equilibrium • Higher types reveal @ hf they can)
• Lower types pool with "no-evidence" types
(some of which are high)
• After sending m=0*, get Vor
• After sending m=0, gets
$$E_{\widetilde{O}} \left[V_{\widetilde{O}} \left| \left\{ no evidence \right\} \cup \left\{ \widetilde{O} \leq O^{*} \right\} \right] = E_{\widetilde{O}} V_{\widetilde{O}} \left| \left\{ no evidence \right\} \cup \left\{ \widetilde{O} \leq O^{*} \right\} \right]$$

= $E_{\widetilde{O}} V_{\widetilde{O}} \left| \left\{ no evidence \right\} \cup \left\{ \widetilde{O} \leq O^{*} \right\} \right]$
= $E_{\widetilde{O}} V_{\widetilde{O}} \left| \left\{ no evidence \right\} \cup \left\{ \widetilde{O} \leq O^{*} \right\} \right]$
= $E_{\widetilde{O}} V_{\widetilde{O}} \left| \left\{ no evidence \right\} \cup \left\{ \widetilde{O} \leq O^{*} \right\} \cap \left\{ evidence \right\} \right]$
= $E_{\widetilde{O}} V_{\widetilde{O}} \left| \left\{ no evidence \right\} \cup \left\{ \widetilde{O} \leq O^{*} \right\} \cap \left\{ evidence \right\} \right]$
= $E_{\widetilde{O}} V_{\widetilde{O}} \left| \left\{ no evidence \right\} \cup \left\{ \widetilde{O} \leq O^{*} \right\} \cap \left\{ evidence \right\} \right]$
= $V_{O^{*}} = E_{\widetilde{O}} V_{\widetilde{O}} \left| \left\{ no evidence \right\} \cup \left\{ \widetilde{O} \leq O^{*} \right\} \cap \left\{ evidence \right\} \right]$
= $O^{*} E \left((Q, \overline{O}) \right)$ for any
 $\mathcal{F} = \mathcal{F} \left[V_{\widetilde{O}} \right] \left| \mathcal{F} = \mathcal{F} \left[V_{\widetilde{O}} \right] = \mathcal{F} \left[V_{\widetilde{O}} \right]$
= $V_{O^{*}} = V_{O^{*}} E \left(2 \right) \left| \mathcal{F} = E_{\widetilde{O}} \left[V_{\widetilde{O}} \right] = E_{\widetilde{O}} \left[V_{\widetilde{O}} \right]$

Disclosure games – Dye-evidence – Application to stock market

- Firm value $\theta \in \{5, 10\}$ with $\lambda = \mathbb{P}[\theta = 5]$ based on Shin (2003) Econometrica:
- Two periods:

Retword

t=1: With prob $\gamma,$ manager learns θ and chooses to disclose $m=\theta$ or $m=\emptyset$

With prob $1-\gamma$, manager learns nothing and discloses $m=\emptyset$

- t=2: Firm value θ becomes public
- Share price $p_t =$ expected value conditional on all public information at (end of) period t.
- Manager wants to maximise share price

Exercise:

- a) What is the optimal choice for the manager in t = 1 conditional on θ ?
- b) What is the share price in t = 1 conditional on m?
- c) Consider the change from p_1 to p_2 . Are bad or good news followed by higher volatility?
- d) Suppose the manager's info is always public. How do answers to (b) and (c) change?

a)
$$(p_{1}, p_{2}) = p_{2}$$

 $(p_{2}, p_{3}) = p_{2}$ ($p_{1}, p_{2}, p_{3} = p_{3}$)
 $(p_{2}, p_{3}) = p_{3}$ ($p_{1}, p_{2} = p_{3}$)
 $(p_{2}, p_{3}) = p_{3}$ ($p_{1}, p_{2} = p_{3}$)
 $(p_{1}, p_{2}) = p_{3}$ ($p_{2}, p_{3} = p_{3}$)
 $(p_{2}, p_{3}) = p_{3}$ ($p_{2}, p_{3} = p_{3}$)
 $(p_{1}, p_{2}) = p_{3}$ ($p_{2}, p_{3} = p_{3}$)
 $(p_{1}, p_{2}) = p_{3}$ ($p_{2}, p_{3} = p_{3}$)
 $(p_{1}, p_{2}) = p_{3}$ ($p_{2}, p_{3} = p_{3}$)
 $(p_{1}, p_{2}) = p_{3}$ ($p_{2}, p_{3} = p_{3}$)
 $(p_{1}, p_{3}) = p_{3}$ ($p_{2}, p_{3} = p_{3}$)
 $(p_{1}, p_{3}) = p_{3}$ ($p_{3}, p_{3} = p_{3}$)
 $(p_{1}, p_{3}) = p_{3}$ ($p_{3}, p_{3} = p_{3}$)
 $(p_{1}, p_{3}) = p_{3}$ ($p_{3}, p_{3} = p_{3}$)
 $(p_{1}, p_{3}) = p_{3}$ ($p_{3}, p_{3} = p_{3}$)
 $(p_{1}, p_{3}) = p_{3}$ ($p_{3}, p_{3} = p_{3}$)
 $(p_{1}, p_{3}) = p_{3}$ ($p_{3}, p_{3} = p_{3}$)
 $(p_{1}, p_{3}) = p_{3}$ ($p_{3}, p_{3} = p_{3}$)
 $(p_{1}, p_{3}) = p_{3}$ ($p_{3}, p_{3} = p_{3}$)
 $(p_{1}, p_{3}) = p_{3}$ ($p_{3}, p_{3} = p_{3}$)
 $(p_{1}, p_{3}) = p_{3}$ ($p_{3}, p_{3} = p_{3}$)
 $(p_{1}, p_{3}) = p_{3}$ ($p_{1}, p_{3})$)

c) change from
$$p_1$$
 to p_2 : Sased on Shin (2003) Economethica
In eq. only $m=10$ and $m=0$ will be sent (clearly $n=10$ ingood news
 $m=0$ is soil news)
if $m=10 \implies p_1 = 10$ $p_2 = 10$ wp1 \longrightarrow no volatility from $t=1$ to $t=2$
 $m=0 \implies p_1 = p_1(0)$ $p_2 = 10$ wp1 \longrightarrow no volatility after
 $m=0 \implies p_1 = p_1(0)$ $p_2 = 10$ more volatility after
bad news
d) will public info
 $m=5 \implies p_1 = p_2 = 5$ no systematic
 $m=0 \implies p_1 = h5 + (1-h) 10 \implies p_1$ in p_1 in p_1 after good os
 $m=10 \implies p_1 = p_2 = 10$