Theory and Practice of Wet Spinning of Cellulose Solutions

Doctoral Course, Part 3

Herbert Sixta

March 10 – 11, 2022

Schedule

L1	Introduction, Raw material	March 10	9:00 – 9:45
L2	Raw materials. Cellulose solvent	March 10	10:00-10:45
L3	Cellulose solvents	March 10	11:00-11:45
L4	Cellulose solvents	March 10	12:00-12:45
	Break		
L5	Cellulose dissolution	March 10	14:00-14:45
L6	Rheology	March 10	15:00-15:45
L7	Cellulose dissolution/ Coagulation and Regeneration	March 10	16:00-16:45
L8	Coagulation and Regeneration	March 11	9:00 – 9:45
L9	Coagulation and Regeneration	March 11	10:00-10:45
L10	Filament breaches	March 11	11:00-11:45
L11	Types and properties of MMCFs	March 11	12:00-12:45
L12	Q&A	March 11	13:00 -

Outline

- 1. Introduction, history
- 2. Pulp as raw material
- 3. Cellulose solvents
- 4. Theoretical aspects of cellulose dissolution
- 5. Rheology of cellulose solutions
- 6. Coagulation and regeneration of cellulose
- 7. Filament breaches during spinning
- 8. Types of MMCFs
- 9. Properties of MMCFs

Cellulose solvents

- Overview
- Direct cellulose solvents
- Alkaline aqueous solutions with&without derivatization
- Assessment of solution state

3

Non-derivatizing

Cellulose solvents

Derivatizing

 $H_3PO_4 (> 85\%) + H_2O \rightarrow Cell - O - PO_3H_2$ $HCOOH + ZnCl_2 \rightarrow Cell - O - C(O)H$ $CF_3COOH + CF_3(CO)_2O \rightarrow Cell - O - CCF_3$ $N_2 O_4 \xrightarrow{DMF} Cell - O - N = O$ $\underline{Me_3SiCl} \xrightarrow{Pyridin} Cell - O - SiMe_3$ $\underline{HNO_{3}} \xrightarrow{\overline{H_{2}SO_{4}}} Cell - O - NO_{2}$ $SO_3 \xrightarrow{ClSO_3} Cell - O - SO_3H$ $CS_2 \xrightarrow{NaOH} Cell - O - CSS^-Na^+$ $CO_2(NH_2)_2 \xrightarrow{NaOH} Cell - O - C(O)NH_2$ $Ac_2O + HOAc \xrightarrow{H^+} Cell - O - C(O)CH_3$ $\underline{Me} - X \xrightarrow{NaOH} Cell - O - CH_3$ $ClCH_2COO^-Na^+ \xrightarrow{NaOH} Cell - O - CH_2COONa$ $(CH_2)_2 0 \xrightarrow{NaOH} Cell - 0 - CH_2 CH_2 0H$

Cellulose solvents

- Overview
- Direct cellulose solvents
- Alkaline aqueous solutions with&without derivatization
- Assessment of solution state

3

Direct Cellulose Solvents

NMMO Monohydrate

Ionic Liquids

NMMO and NMMO hydrates

Parameter	NMMO	NMMO*H ₂ 0	NMMO*2.5 H ₂ O
Formula	$C_5H_{11}NO_2$	C ₅ H ₁₃ NO ₃	$C_{10}H_{32}N_2O_9$
M (g/mol)	117,1	135,2	324,4
Density (g/cm ³)	1,25	1,28	1,33
Mp (°C)	184	77	39
Crystal form	Monoclinic, P2 ₁ /m	Monoclinic, P2 ₁ /c	Monoclinic, P2 ₁ /c

T. Rosenau et al.: Progr. Polym. Sci. 2001, 26 (9), 1763-1837.

Phase diagram NMMO and water

O. Biganska, P. Navard. Polymer 44(2003) 1035-1039

Chemistry of NMMO

Highly polar N-O group

- High hydrophilicity, hygroscopicity
- Strong oxidant: primary alkyl, benzyl to the corresponding aldehydes
- N-O bond able to form one or two H-bonds with water or cellulose
- NMMO dissolves cellulose up to a content of 17% water (w/w), corresponding to a 1.2 hydrate.
- The lower limit of water content is 4% as the dissolution temperature comes close to the decomposition point of NMMO

T. Rosenau et al.: Progr. Polym. Sci. 2001, 26 (9), 1763-1837.

LYOCELL • NMMO Chemistry

T. Rosenau et al.: Progr. Polym. Sci. 2001, 26 (9), 1763-1837. Rosenau et al.: Cellulose. 2002. 9. 283

⊢

4

Degradation pathways of NMMO

H. Firgo, M. Eibl, W. Kalt, G. Meister, Lenz, Ber. 74 (1994) 81-89

Homolytic reactions

- Activation by protonation or complexation with metal ions
- Cleavage via primary Aminyl radical

- Reactions to NMM, M and HCHO
- Transition metal ions, Cu, Fe ..., catalyse the decomposition of NMMO
- Aminyl radical can oxidize cellulose to 2-keto structures
- Presence of O₂ leads to peroxyl radicals which might affect carbohydrates

Heterolytic reactions

- Activation by protonation or O-alkylation
- Heterolytic deoxygenation of NMMO to NMM: reducing end groups are oxidized to carboxylic acids.
- Polonovski type of reactions: intramolecular redox processes cause degradation of NMMO to M and HCHO.
- N-(methylene)morpholinium ions (Mannich intermediates) decompose NMMO into M and HCHO in a heterolytic, autocatalytic process.
 - Autocatalytic decomposition is highly exothermic, quickly becomes explosion-like -> thermal runaway reactions

Heterolytic cleavage of N-O

T. Rosenau et al.: Progr. Polym. Sci. 2001, 26 (9), 1763-1837.

Thermal decomposition products

Gas phase O H H CO₂

Viscous, brown "organic phase"

+ highly condensed products

Rosenau, T. et al. Progress in Polymer Science, 2001, 26(9), 1763-1837.

Liquid "aqueous" phase

Solid residue:

Carbon, Highly condensed (aromatic) structures Direct Cellulose Solvents

NMMO Monohydrate

Ionic Liquids

Salt melts (> 100°C)

lonic Liquids (< 100°C)

Room temperature ionic liquids (RTIL)

First generation IL: Imidazolium-based halides

Ionic liquids tested

200 100°C, 3% cellulose 150 150 50 0 Pulp ABIM-CI AAIM-CI BMIM-CI AMIM-CI

Partial DP stabilization by exchange of anion (Cl⁻ by DMP⁻) or trapping the released acid by addition of methyl imidazole or partially by addition of GPE

Lenz. Ber. (2005), 84, 71-85. Lenz. Ber. (2006), 86, 154-161

Spinning:

Pulp: *E. urograndis* PHK; 11 wt% cellulose in dope, **GPE+NaOH** as stabilizer; dissolution at 100°C, 30 mbar in vertical kneader; dryjet wet monofilament spinning at 100°C

Solvent	Titre	Ten-cond	Elong- cond	Ten- wet	Elong wet
	dtex	cN/tex	%	cN/tex	%
[BMIM]CI	2.1	45.0	7.5	32.8	8.1
[AMIM]CI	2.2	41.6	12.2	33.4	17.6
NMMO Tencel™	1.3	37.0	15.0	31.0	17.0

Conclusions: No alternative to NMMO

PROS:

- Non-volatile solvent
- No exothermic events CONS:
- Nearly water-free
- Highly corrosive
- Severe cellulose degradation
- Potentially toxic

Good solvents, spinning after dope stabilization possible

[AAIM]CI [ABIM]CI

Can dissolve cellulose, but problems in spinning

Chlorides can be replaced by dimethylphosphates (DMP). Dissolution successfully tested, no spinning experiments.

Screening of Halide-free Ionic liquids

Excellent Cellulose Solvent [Emim][OAc], [Bmim][OAc] Good Cellulose Solvent

1-allyl-1-methylpyrrolidinium dimethyl phosphate

1-butyl-3-methyl-

imidazolium ethyl methyl phosphate

1-allyl-3-methyl-imidazolium dimethyl phosphate

1-butyl-3-methylimidazolium dimethylphosphate

Poor Cellulose Solvent

 N^{+} $H_{3}CO$ N^{-} N-methoxy-N-methylmorpholinium

1-allyl-3-butylimidazolium dimethylphosphate

1-(2-hydroxyethyl)-3-methylimidazolium dimethyl phosphate

No Cellulose Solvent

1-allyl-3-ethyl imidazolium acetate

1-(2-hydroxyethyl)-3methylimidazolium acetate

ACS Symposium Series, 2010. 1033(Cellulose Solvents): p. 229-259.

Screening of ionic liquids with asymmetric phosphate-derived anions

Aim: Stable ILs, with reduced viscosity and melting point:

Proposal: Reduced symmetry of the ions leads to lower melting points and viscosities of the IL Dimethyl phosphorothioate as asymmetric anion

Acceptable cellulose solubility & stability

R1: Pr, Bn R2: Me

Certain solubility but severe cellulose degradation

R1: All, Bu, Bn, (HOEt)

No cellulose dissolution

R1: All R2: Bu

R2: Me

Acceptable cellulose solubility & stability

Result:

Objective only partially achieved; no clear trend showing a reduced viscosity related to the asymmetry of the anions; partly strong cellulose degradation.

Overview on Imidazolium-based Ionic liquids tested

[Emim][OAc] shows excellent cellulose solubility, low viscosity and good thermal properties

Lenz. Ber (2005), 84:71-85

Lenz. Ber (2006), 86:154-161

Chemistry Letters (2012), 41(9), 945-946. Green Chem (2011), 13:2507

Polymers 2019, 11, 845

Chemical reactivity of imidazolium-based ILs

- Formation of carboxylic acids, HCOOH, as a result of pulp degradation
- Accumulation of inorganic salts from the pulp in the IL
- Limited thermal stability (~ 0.01%/h at 100 110°C)

Aqueous Onium Electrolytes

Phase-separable ILs

OH-

BioResources (2017), 12, 4515 Green Chem (2015), 17, 4432

Cellulose (**2017**), 24, 49-59 ACS Sustainable Chem Eng (**2018**), 6, 2898-2904

[P₈₈₈₁][OAc] + DMSO RSC Adv., (2017), 7, 17451

60:40 w/w mixture of IL and DMSO dissolved up to 8% cellulose:

60 wt% of the IL recovered via phase separation with a further of 37 wt% after EtOH washing.

Amino Acid Ionic Liquid

Dissolution of cellulose (MCC)

at 100°C, 10 min:

[N _{221ME}][Ala], KT-β = 1.041	12 wt%
[N _{221ME}][Lys],	11 wt%
[N _{221ME}][OAc],	7 wt%

N,*N*,-diethyl-*N*-(2-methoxyethyl)-*N*-methylammonium alanine

[N_{221ME}][Ala]: DMSO = 1:1 (w/w), χ_{IL} = 0.25 dissolves 22 wt% cellulose at RT

Amino group essential to realize high cellulose dissolution-> amino group may interact with certain parts of cellulose.

Chem. Lett. 2012, 41, 987-989; ChemSusChem 2012, 5, 388-391

PROTIC IONIC LIQUIDS (PILS)

Superbase-based ionic liquids, new generation IL: joint findings of HU and AALTO

 $[DBUH]^{+}[CO_{2}Et]^{-} \hookrightarrow DBU_{(l)} + HCO_{2}Et_{(l)}$ $\approx DBU_{(g)} + HCO_{2}Et_{(g)}$

Stoichiometric reactions between Brönsted acids and bases. Stable salts require a complete transfer of the proton from the acid to the base is key! Aqueous pK_a values of precursor acids and bases are regarded as predictive: $\Delta pK_a = pK_{a,base} - pK_{a,acid} > 8 - 10$

Angew. Chem. Int. Ed. **2011**, 50, 6301-6305 Ananda S. Amarasekara. *Chem. Rev.* **2016**, 116, 6133–6183 Org.Process.Res.Dev. **2019**, 23, 1860-1871 Croatica Chemica Acta **2014**, 87 (4), 385-395 Parviainen, A. et al. ChemSusChem **2013**, 6, 2161-2169

Acid Superbase Conjugates

1,5-diazabicyclo[4.3.0] non-5-ene (DBN) SOLVENT-1

7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene (mTBD) SOLVENT-2

1,8-diazabicyclo[5.4.0] undec-7-ene (**DBU**) SOLVENT-3

N,N,N,N,N,N,-hexamethylphosphorimide triamide (HMPI)

N,N,N,N,-tetramethyl guanidinium (TMG)

1,2-dimethyl-1,4,5,6tetrahydropyrimidine (**DMP**)

Croat. Chem. Acta 2014, 87, 385-395

Parviainen, A. et al. ChemSusChem 2013, 6, 2161-2169

Degree of Proton Transfer in BAILs

 $\begin{array}{cccc} Mim &+ & AcOH &\rightleftharpoons [MimH][OAc] \\ x_{Mim} & & x_{AcOH} & & 0 \\ x_{Mim} - x_{[MimH]} & & x_{AcOH} - x_{[MimH]} & & x_{[MimH]} \end{array}$

Chemical shift in ¹H-NMR: $\delta = \delta_{AcOH} \cdot (x_{AcOH} - x_{[MimH]}) + \delta_{[MimH]} \cdot x_{[MimH]}$

$$K_{eq} = \frac{x_{[MimH]}^2}{\left(x_{Mim} - x_{[MimH]}\right)\left(x_{AcOH} - x_{[MimH]}\right)}$$

Proton transfer,
$$\% = \frac{\sqrt{K_{eq}}}{\sqrt{K_{eq}} + 1}$$

$$Ionicity = \frac{\sqrt{165}}{\sqrt{165} + 1} = 93\%$$

J. Phys. Chem. B 2018, 122, 309-315

Green solvents

Ionic Liquids, liquid at <100°C

1,5-diaza-bicyclo[4.3.0]non-5enium acetate

7-methyl-1,5,7triazabicyclo[4.4.0] dec-5-enium acetate

1,8-Diazabicyclo[5.4.0]undec-7-enium acetate

Parviainen, A. et al. ChemSusChem 2013, 6, 2161-2169 Haslinger, S.; Schlapp-Hackl, I. (2020), unpublished

Schlapp-Hackl, I. et al. Ind. Eng. Chem. Res. (2022), 61, 259-268

Hydrolytic instability of Superbases in the Presence of Water

Mechanism of hydrolysis of superbases

reaction rate constant $(k_1 = \Sigma(k_1 + k'_1); k_2 = \Sigma(k_2 + k'_2),$

initial concentration of B in mol/L

[B]t, [C]t, [D]t concentration of B, C, D in (mol*s)/L

Model 2: Consecutive reaction with a reversible hydrolysis reaction:

$$BA + W \stackrel{k_1}{\rightleftharpoons} C + W \stackrel{k_3}{\to} D + W$$
$$k_2$$

$$\begin{bmatrix} B \end{bmatrix}_{t} = \frac{[mTBD]_{0}}{\gamma_{2} - \gamma_{1}} [(k_{2} + k_{3} - \gamma_{1})e^{-\gamma_{1}t} - (k_{2} + k_{3} - \gamma_{2})e^{-\gamma_{2}t}] \\ \begin{bmatrix} C \end{bmatrix}_{t} = \frac{k_{1}[B]_{0}}{\gamma_{2} - \gamma_{1}} [e^{-\gamma_{1}t} - e^{-\gamma_{2}t}] \\ \begin{bmatrix} D \end{bmatrix}_{t} = \begin{bmatrix} B \end{bmatrix}_{0} \left[1 + \frac{k_{1}k_{3}}{\gamma_{1}(\gamma_{1} - \gamma_{2})}e^{-\gamma_{1}t} + \frac{k_{1}k_{3}}{\gamma_{2}(\gamma_{2} - \gamma_{1})}e^{-\gamma_{2}t} \right] \end{bmatrix}$$

With

$$\gamma_1 \gamma_2 = k_1 k_3; \quad \gamma_1 + \gamma_2 = k_1 + k_2 + k_3$$
$$\gamma_2 = 0.5 \cdot \left(k_1 + k_2 + k_3 \pm \sqrt{k_1^2 + 2k_1(k_2 - k_3) + (k_2 + k_3)^2} \right)$$

t

[B]₀

k

time in h.

 $k_{3} = \Sigma(k_{3} + k'_{3}))$

Schlapp-Hackl, I. et al. Ind. Eng. Chem. Res. (2022), 61, 259-268

Hydrolytic instabilities of superbases

- Bicyclic guanidine-based IL, [mTBDH][OAc], exhibits a central CN3 core.
- Delocalized e⁻ overlap with the empty π-orbital of the centered sp²-carbon.
- With HOAc, protonation occurs forming a rigid N-H bond.
- Stabilization ensured by generation of intermolecular H bond.
- In the presence of H₂O, ring opening to cyclic urea occurs
- Stability towards hydrolysis: mTBD > DBU >> DBN

A:B stoichiometry

Effect of water content

Superstoichiometric amounts of HOAc stabilize mTBD towards hydrolysis

Stability of mTBD as a function of water content expressed by the equilibrium

Max. hydrolysis tendency in 10-20 wt% water occurs at **high combined water and mTBD activity**. Available amount of [OH⁻] increases up to a water content of 20 wt% before it decreases to almost = at H_2O content > 70 wt%

Cellulose solvents

- Overview
- Direct cellulose solvents
- Alkaline aqueous solutions with&without derivatization
- Assessment of solution state

3

Aqueous solutions

without derivatization

with derivatization

Wet Spinning-1

Take-up	p godet PROCESS	Dissolution	Regeneration	Reference
Stra Stra Cut Aft	retch bath retch unit (trio) itter ter-treatment	Urea/thiourea, NaOH, (LiOH), ZnO,	H ₂ SO ₄ /Na ₂ SO ₄ / NH ₄ Cl Phytic acid	Journal of Polymer Science: Part B: Polymer Physics, Vol 40, 1521- 1529 (2002); Fibers and Polymers (200), 10, 34-39 ACS Sustainable Chem.Eng.(2018), 6, 5314-5321
Spin bath	TreeToText	ile NaOH, ZnO	a) H_2SO_4 , Na_2SO_4 , ZnSO ₄ b) Na_2CO_3 , NaOH	WO 2020 251463 EP 3231899A1 WO 2020 171767 WO 2020 231315
Cellulose solution Regeneration	Biocelsol (NeoCel)	Enzyme, NaOH, ZnO, Additives, Enzymes	a) H_2SO_4 , Na_2SO_4 , ZnSO ₄ b) Na_2CO_3 , CaO (causticizing)	Cellulose (2020) 27:8681– 8693; Chemical Fibers International 2020, 70, 128- 130

•••O

`O'

0-

Cellulose dissolution in NaOH_{ag}

Phase diagram of ternary system cellulose / NaOH / water

- Na⁺ have polar interactions only with O2 and O3
- No intersheet H-bonds as large Na⁺ & H₂O molecules separate the chains

- A. Sarko et al., In ACS Series 340, edited by R.H. Atalla, p169pp
- B. Zugenmaier, P. Progress in Polymer Science (2001), 26(9), 1341-1417

Sobue, H.; Kiessig, H.; Hess,K. Z. Phys. Chem. 1939, 43, 309

Steps of Cellulose Dissolution (1)

- 1. Cellulose is amphiphilic: dissolution requires both the elimination of H-bonding and the elimination of hydrophobic interactions.
- 2. Cellulose dissolution governed by the free energy of mixing.
- 3. NaOH forms hydrates with H₂O capable of breaking inter-, intramolecular H-bonds.
- 4. NaOH shows a narrow concentration range where it acts as a solvent due to the concentration-dependent size of the NaOH_xH₂O hydrates.

Steps of Cellulose Dissolution (2)

- 5. Hydroxyl groups (C2, C3) are deprotonated→dissociated counterions strongly contribute to the translational entropy of mixing.
- 6. Dissolution governed by Molar Mass: the higher, the weaker the entropic driving force.
- 7. Polymer dissolution often controlled by kinetics rather than by thermodynamics.
- Dissolution ability of NaOH/water can be improved by addition of ZnO, urea & thiourea: ZnO-> Zn(OH)₄²⁻: forms H-bonds with cellulose
Cause of low temperature demand (3)

- 9. Breaking of H-bonds in crystalline regions is endothermic.
- 10. All other interactions between cellulose OH groups and the solvent system are exothermic→Overall exothermic.
- 11. High temperature induces conformational changes of cellulose, making cellulose less polar
- 12. Therefore, attractive interactions with polar solvent are reduced at higher temperatures

B. Medronho, B. Lindman / Advances in Colloid and Interface Science 222 (2015) 502–508

Solubility of Cellulose in NaOH_{aq}

 \oplus \oplus Solvated Hydrated Hydrated Separated hydrated dipole ions ions dipole 10-15 Å 5-8 Å 15-20 Å 8-10 Å C_{NaOH} I 9% (7-10) 20% **Mercerization** dissolution (Cell-Na crystal)

6% NaOH at -15°C followed by adding a 14 wt% NaOH solution \rightarrow Change in C_{NaOH} leads to cellulose dissolution (**turn point is at 9%**): NaOH hydrates penetrate into cellulose and detach individual chains into solution.

Low T favors strong network of NaOH hydrates, while, upon heating cellulose chains crosslink and form gels.

Ying Wang, PhD thesis, Georgia Institute of Technology, 2008

Ionization & Mechanism of Cellulose dissolution

2 dissociation steps at pH 12 (hemiacetal OH) and pH 13.5 (OH on C2 of NREG), the latter more relevant for cellulose dissolution.

J. Phys. Chem. Lett. 2016, 7, 5044-5048

According to MD simulation, aggregation is suppressed upon charging cellulose in solution \rightarrow Crucial for solubilization

Translational entropy very much higher for ionic polymers with dissociating counterions than for non-ionic polymers

Structure of cellulose-NaOH solutions

Roy, C.; et al. Biomacromolecules 2001, 2, 687-693

Number of H₂O bound to NaOH, $X = (N_{H_2O}/N_{NaOH}) = F_{bound} \frac{(100 - C_{NaOH})}{18} \frac{40}{C_{NaOH}}$ $C_{NaOH} = 5\% \rightarrow X = 0.45 \cdot \frac{95}{18} \cdot \frac{40}{5} = 19$ $C_{NaOH} = 20\% \rightarrow X = 1 \cdot \frac{80}{18} \cdot \frac{40}{20} = 9$

NaOH hydrates are composed of a core bound with 9 H₂O/NaOH

Fraction of bound water: $F_{bound} = (1 - F_{free})$ $F_{free,5\% NaOH} = \frac{200 J/g}{365 J/g} = 0.55; F_{bound} = 0.45$

 F_{free} is the same in NaOH+H₂O and Cellulose+NaOH+H₂O

Effect of DP on cellulose dissolution

Dissolution procedure:

Cellulose/NaOH/H₂O suspension at RT Suspension cooled to -20°C until frozen. Thawing to RT, adding H₂O until clear: **Solution: 2% Cellulose in 5% NaOH**

Effect of DP on solubility clearly visible

Summary

- MCC completely soluble, independent of pre-treatments
- · Mercerization does not improve solubility
- Amorphization improves solubility
- Delignification improves accessibility and thus solubility

Limit of cellulose dissolution

Dissolution procedure:

NaOH dissolved in water in ~ 12%, cooled to -6°C; Avicel PH-101 (DP = 170) mixed with water at +5°C, 2h, separately. Cold NaOH/water added to swollen MCC. Preparation of **0.5-7.6 % MCC** and **7.6-8.0 % NaOH** at -6°C, stirred for 2 h, stored at +5°C.

- 1. Cellulose/NaOH/Water phase diagram: detailed DSC experiments on MCC/NaOH/water
- DSC: Eutectic mixture, NaOHx5 H₂O & 4 H₂O, melts at ~ -34°C
- 3. When $\Delta H_{eut}/\Delta H_{eut,0} \rightarrow 0$ all NaOH molecules are linked with cellulose
- 4. Eutectic peak disappears at m_{cellulose}/m_{NaOH} = 1, which translates to 4 moles NaOH per mol AGU (6% NaOH*162g/mol/6% cellulose*40 g/mol)
- NaOH as cellulose solvent in the range of 6-8%: Thus, 6-8 wt% of cellulose is the maximum that can be dissolved in NaOH/water

Egal, M.; Budtova, T.; Navard, P. Biomacromolecules (2007), 8, 2282-2287

Gelation of cellulose-NaOH_{aq} solutions

Dissolution procedure:

Avicel PH-101 mixed with 6% NaOH at -6°C, stirred; then an amount of 15% NaOH added to reach a total **NaOH concentration of 9%** at a **5 % cellulose** concentration; final mixture stirred at -6°C

- 1. Independence of E_A (~ 20 kJ/mol) of a 9% NaOH solution on [Cellulose] \rightarrow Cell/NaOH/H₂O mixtures are no real solutions
- At T>20°C, [η] decreases→ compaction of hydrophobic interaction
- Gelation not reversible→local chain segregation

H-bonding vs hydrophobic interactions

(A) H-bonded molecular sheet(B) Van der Waals-associated sheet

Phys. Chem. Chem. Phys., 2017, 19, 23704—23718 Carbohydr. Res., 2009, 344(9), 1085-1094 Warwicker, J.O.; Wright, A.C. J. Appl. Polym. Sci., (1967), 11, 659-671 Cellulose chains stack via hydrophobic interactions and form sheet-like structures

Any solvent needs to break both the

- intermolecular H-bonds in one plane
- the hydrophobic interaction forces between the C-H direction in the perpendicular direction

Dissolution kinetics

$\Delta H_{Dissolution} = \Delta H_{fusion} + \Delta H_{transition} + \Delta H_{interaction} + \Delta H_{mixing}$

- ΔH_{fusion} disintegration of crystalline domains (endothermic)
- $\Delta H_{transition}$ transition of amorphous regions from glas to a elastic state (exothermic)
- $\Delta H_{interaction}$ solvation of macromolecules (exothermic)
- ΔH_{mixing} mixing of solvated molecules with solvent to give an infinitely diluted solution (exothermic)

Eyring-Polany equation (1935): activated-complex theory

$$k = \frac{k_B T}{h} e^{-\frac{\Delta G^{\#}}{RT}}$$

$$k = \left(\frac{k_B T}{h}\right) Exp\left(\frac{\Delta S^{\#}}{R}\right) Exp\left(-\frac{\Delta H^{\#}}{RT}\right)$$

$$ln\frac{k}{T} = \frac{-\Delta H^{\#}}{R} \cdot \frac{1}{T} + ln\frac{k_B}{h} + \frac{\Delta S^{\#}}{R}$$
Slope: $-\Delta H^{\#}/R$
Intercept: $\ln\left(\frac{k_B}{h}\right) + \frac{\Delta S^{\#}}{R}$

- *k* reaction rate constant
- T absolute temperature
- $\Delta H^{\#}$ enthalpy of activation
- $\Delta S^{\#}$ entropy of activation
- k_B Boltzmann constant (1.38065*10⁻²³ J/K
- *h* Planck's constant (6.62607*10⁻³⁴ J/Hz)
- **R** gas constant

Ying Wang, PhD thesis, Georgia Institute of Technology, 2008

Dissolution kinetics

EXPERIMENTAL

2.5% Cotton linter, DP_v 800 (SCAN 565 mL/g), in
6% NaOH in
6% NaOH / 4% urea
No stirring!

Change in cellulose crystallinity of undissolved cellulose is an indicator the extent of dissolution

- 15° (*II*)

$$I_{cw} = \frac{m_t}{m_0} \cdot \left(1 - \frac{I_{min}}{I_{max}}\right)$$
$$I_{min} 2\theta \sim 17 - 18^{\circ} (I), 14$$

$$I_{max} 2\theta \sim 20 - 22^{\circ} (I (200), II (020))$$

$$-\frac{dI_{cw}}{dt} = k_{obs} \cdot I_{cw}$$
$$ln\frac{k_{obs}}{T} = \frac{-\Delta H^{\#}}{R} \cdot \frac{1}{T} + ln\frac{k_B}{h} + \frac{\Delta S^{\#}}{R}$$

Ying Wang, PhD thesis, Georgia Institute of Technology, 2008

Role of urea

Role of $Zn(OH)_4^{2-}$

7 wt% NaOH / 12 wt% Urea, precooled to -12°C. 4-5 wt% Cellulose with $M_{\eta} \le 120$ kDa can be fully dissolved within 2-5 min.

Urea hydrates cannot associate directly with cellulose, but can self-assemble at the surface of NaOH H-bonded Cellulose \rightarrow worm-like inclusion complex

Solid-state NMR: In the presence of urea, C4 peak resonates in amorphous zone

Rheology: presence of urea delays gelation of cellulose, T_g shifted to higher temperature

The addition of 0.5% ZnO improved cellulose solubility strongly, while higher ZnO dosage impairs cellulose dissolution

Cellulose solubility dependent on molar mass.

Increased cellulose solubility as a result of stronger interaction between $Zn(OH)_4^{2-}$ and cellulose; it breaks intermolecular H-bonds of cellulose and acts as a spacer between cellulose sheets

Yang, Q.; Zhang, L.; et al. Carbohydrate Polymers 83 (2011) 1185-1191

Luis Alves, et al. Björn Lindman. Gels 2018, 4, 87

Urea vs thiourea

Jiang Z.; Zhang, L. et al. The Journal of Physical Chemistry B, (2017), 121, 1793-1801

Cotton linters pulp: $[\eta]_{cuen} \sim 250 \text{ mL/g}$

Dissolution of 4 wt% cotton linters

- -10°C: 7.0 wt% NaOH / 12 wt% urea
- ii. 5°C: 9.5 wt% NaOH / 4.5 wt% thiourea
- iii. + 8°C: 9.3 wt% NaOH / 7.4 wt% thiourea

Thiourea vs Urea:

- Rheology: COP (G'=G") shifted from 41°C to 45°C
- Thiourea higher acidity, generates stronger interactions with anions \rightarrow stronger dissolving capacity
- Strength of H-bond in thiourea....OH- stronger than in urea....OH-→ reduces the probability of self association of cellulose chains:
- NaOH(H₂O)₇.thiourea cluster is the most stable cluster and forms a cage

Aqueous solutions

without derivatization

with derivatization

Wet Spinning-2

VISCOSE Process Schemes

VISCOSE

- Steeping
- Alkalicellulose
- Ageing

Sixta, H (2000), Lenz Ber Sawada, D.; Toivari T. (2019) unpublished

Alkalization - Steeping

Pulp slurry in aqueous 18 wt% NaOH in L:S ratio of 18:1. Release of 130 kJ/kg cell heat: wetting, swelling, lattice transformation,etc.

 $Cell - OH + NaOH \rightarrow Cell - O^-Na^+ + H_2O$

Alkali Cellulose

Alkali-		molar
Cellulose	wt%	ratio
Cellulose	34	1
NaOH	16	2
Water	50	13

²³Na-MAS T1 relaxation shows two Na⁺ components

P. Kosma, W. Binder (2002), unpublished Fink, H-P. et al. Polymer (1986), 27(6), 944-948

DP-adjustment by Ageing

Entwistle, D. et al. Textile Research Journal, 19, 527-546 (1949); Sixta, H. et al. (2006) unpublished

Chemistry of ageing

Combined heterolytic and homolytic degradation

Entwistle, D. et al. Textile Research Journal, 19, 527-546 (1949)

Ageing - Effect on REGs

Preparation of Viscose

Xanthogenation reaction VISCOSE gt 0-Hu 1. alkalization tg Omme H шÒ O 18 wt% NaOH Xanthogenation Ò⁻Na⁺ 2. xanthation (CS₂) 0 Ò—н.....0-3. dissolution in NaOH tg Viscose ln cellulose-l cellulose xanthate Xanthate dissolved in 5 – 8 wt% NaOH **Xanthation** Gas phase reaction starts rapidly 008 mbar at the surface of the AC crumbs and slowly diffuses into the 600 discharge pressure, forming lumps. 400 CV DS target is 0.5-0.7 ($\gamma = 50-70$) 8.9% cellulose 200 5.3% NaOH 26-36% CS₂ on Cell High strength fibers require 2.0% S < 32°in vacuum 0 xanthation to higher γ values! 01:00 00:30 00:45 00:00 00:15 CMD time, h:m 6.0% cellulose 6.0% NaOH Sixta H. unpublished results 1.6% S Prepared viscose is homogenized, dissolved in 5 - 8 % NaOH at ~2°C, filtered and dearated.

Side reactions during viscose preparation

Side product formation:

 $\begin{aligned} Cell &- 0 - (C = S) - SNa \xrightarrow{H_2O} Cell - 0 - (C = S) - SH + NaOH \\ Cell &- 0 - (C = S) - SH \rightarrow Cell - 0 - H + CS_2 \\ \textbf{2CS}_2 &+ \textbf{6NaOH} \rightarrow Na_2CS_3 + Na_2CO_3 + Na_2S + 3H_2O \\ Na_2CS_3 + 3 NaOH \rightarrow Na_2CO_3 + 3NaHS \\ CS_2 &+ 2 NaHS \rightarrow Na_2CS_3 + H_2S \\ H_2S + 2 NaOH \rightarrow Na_2S + 2H_2O \end{aligned}$

Xanthogenate decomposition and side reactions increase the electrolyte content during ripening; this affects the structural properties of the viscose. Elastic properties of the viscose increase Trithiocarbonate provides the orange color of the viscose

Effect of CS₂ charge on Viscose Quality

Only CS_2 -charge modified. Alkali ratio constant (0.6)

High-purity pulps allow a lower CS_2 charge

Viscose Composition & Quality

Sixta, H. (2006) unpublished

Modal Viscose (CMD)

Parameter	Unit	CMD_{fresh} stdev		$\mathbf{CMD}_{\mathrm{spin}}$	stdev
Cellulose	%	5.75	0.19	6.08	0.05
Alkali	%	6.08	0.06	6.10	0.04
Sulfur	%	1.72	0.07	1.85	0.06
$ \boldsymbol{\eta}^*_{0} _{20^\circ \mathbb{C}}$	Pa.s			14.7	
$tan\delta_{1rad/s}$				8.5	
γ -value	%	66.5	1.8	62	1
Ball fall	S	133		121	
Filterability	PVC	305		440	
Particles	ppm	39.2		5	
NaOH	%	4.65	0.08	4.65	0.04
Na ₂ CO ₃	%	0.25	0.04	0.31	0.03
Na ₂ S	%	0.16	0.02	0.26	0.01
Na ₂ CS ₃	%	0.32	0.05	0.43	0.03

Regular Viscose (CV)

Parameter		Unit	CV	stdev
Cellulose	spin	%	8.77	0.15
Alkali	spin	%	5.26	0.12
Sulfur	spin	%	2.41	0.04
$ \boldsymbol{\eta}^*_{0} _{20^\circ \mathrm{C}}$	spin	Pa.s	8.6	1.4
$tan \delta_{1 rad/s}$	spin		16.3	5.2
γ -value	fresh	%	50	1
Ball fall	spin	S	69	6
Filterability	spin	PVC	156	22
Particles	spin	ppm	12	1
NaOH	fresh	%	2.89	0.03
Na ₂ CO ₃	fresh	%	0.56	0.02
Na ₂ S	fresh	%	0.45	0.09
Na ₂ CS ₃	fresh	%	0.68	0.03

Rheology: frequency sweep

Relaxation time spectrum

Ripening

After first filtration ripening starts; viscose is stored in ripening containers for hours at lower temperature.

Purpose: Improvement of coagulability and achievement of colloidal chemical maturity

With increasing ripening time, the readiness for coagulation improves \rightarrow increase in adhesion points, size of dispersed particles due to association and aggregation

Ability to coagulate the viscose determined by the amount of electrolyte solution (NH_4CI) necessary to coagulate viscose

Colloid chemical ripening is clearly controlled by the course of chemical ripening, i.e., **the degree of xanthogenate group cleavage.**

Ripening

Target γ -value for regular viscose = 50-70 to achieve the colloid chemical ripeness (°H = 11-15)

Schweighofer, A. et al. Anal Bioanal Chem (2011) 400: 2449-2456

Ripening: colloidchemical changes

Deaeration, Filtration

Viscose flash deaerator to remove air removal: boiling under vacuum. $v_{dearation} \propto g \cdot \rho \cdot d^2/12\eta$ (Pakschwer and & Kamyshan). d... air bubble diameter

Viscose filtration: particle removal by means of depth filtration with reject removal in three sequential stages

Depth filtration: KKF Filters

Lenzing Technik, Filtration and Separation Technology

DP profile of cellulose

Significant DP degradation (wanted) during aging and xanthate dissolution in case of Modal (unwanted)

Wet Spinning-2

Cellulose Carbamate

- 1. Environmentally friendly alternative to Viscose technology (end of 1970s)
- Pioneers: Hill, J.W. and A. Jacobson, DuPont (1937)¹: Cellulose dissolved with a N-content of 1-3.5%
- **3. Segal, L; Eggerton, F.V**²: first describes the reaction product with urea cellulose carbamate
- 4. Neste Oy (Kemira Sateri Oy): Successful laboratory trials 1982³
- 5. Challenge: Impregnation, activation NH_{3, liquid} (Cellca); super-criticalCO₂, alkali-cellulose; mechanical activation (ball mill, hammer mill); enzymatic activation; reactions in organic media, e.g., xylene at 80°C-140°C (CarbaCell); microwave heating, Conventional heating ~170°C, 2h.

¹US2,134,825; US2,134,825 ²Segal, L.; Eggerton, F.V. Text. Res. J. (1961), 31, 460 ³Finnish Patent 61,033 (1982), Lenz. Ber. (1984), 57, 38-40; Lenz. Ber. (1985), 59, 111-117

Chemistry of urea and carbamate

Cellca Process from Neste Oy

DP adjustment bei EBeam

• DP adjustment is important because the DP strongly influence the rheology.

• E-beam treatment is simple and cost-effective and is suitable for recycling white cotton waste (hospital linen).

Impregnation of DP adj. pulp:

Liquid ammonia at -35°C, immersion with a 10% (w/w) urea solution \rightarrow drained \rightarrow dried first RT, then at 100°C

Reaction rate

155°C, 1 to 3 hours, with varying molar ratios of **urea: cellulose: 0.5-1.0**.

Reactions are first order & endothermic: **80 kJ** per substituted carbamate group Biuret formation with

increasing T $DS = \frac{162 \cdot N\%}{(14 - 43 \cdot N\%)}$

DS of 0.15 to 0.25 is sufficient to obtain a good spinning solution

Ekman, K.; et al, Modification and Hydrolysis, John Wiley & Sons: New York, 1986; pp 131_148.

Cellca Process from Neste Oy

Effect of ZnO

Addition of zincate (ZnO) enhances dissolution and filterability of the CC solution and retards gelation

Spinning dope

Typical composition: 5-7 wt% CC; 7-9 wt% NaOH, ZnO 1-1.6 wt%, DP = 400 - 600, DS 0.15-0.25

Spinning

Diameter of spinneret orifices 50-80 μ m; spin bath: H₂SO₄ / Na₂SO₄ preferred; DS of the fibres halved due to hydrolysis in the dope.

Carbamate analysis

IR: λ at 1715 cm⁻¹ $\rightarrow \nu_{stretch}C = 0$; $\frac{\nu_{1715}}{\nu_{1315}} \propto with N\%$ ¹³**C-NMR:** 168.5 ppm, C6 is shifted downfield

FIBER	Stretch			
Property		50%	75%	100%
Titer	dtex	1.8	1.8	1.9
Tenacity-cond	cN/tex	20	25	30
Tenacity-wet	cN/tex	11	15	17
Wet modulus	cN/tex	60	80	120
Elongation-cond	%	20	17	15
Elongation-wet	%	19	16	12

Carbamate stability

Quite stable under acidic conditions Alkaline hydrolysis efficient:

Cell−O−C−NH₂ + OH−→ Cell−OH + NCO⁻+ H₂O NCO⁻ + H₂O + OH−→ NH₃+CO₃²⁻

FIBER		3min NaOH treatment				
Property		NO	0.75%	3%	4%	
Tenacity cond	cN/tex	24.0	24.0	23.0	22.0	
Tenacity-wet	cN/tex	9.0	12.0	12.0	11.0	
Elong-cond	%	10	11	15	15	
Elong-wet	%	15	15	14	14	
Nitrogen	%	1.2	0.4	0.18	0.14	
DS	%	0.14	0.05	0.02	0.02	
DP Fiber		310		305		

Ekman, K.; et al, Modification and Hydrolysis, John Wiley & Sons: New York, 1986; pp 131_148.

Crystalline structure of Cellulose

CC showed unchanged Cellulose Iβ crystalline form.

- Chemical derivatization did not change the lattice of cellulose Iβ
- A slight decrease in crystallinity, χ_c , from 72% (CL) to 65% in CC was observed \rightarrow partial decrystallization
- During subsequent dope preparation and cellulose regeneration into fibers, the crystal structure changes to cellulose II

ACS Sustainable Chem. Eng. 2014, 2, 2363–2370
Fiber Post-Treatment

Spinning in salt solutions

About half of the original carbamate groups are retained in the fibers after treatment in sulfuric acid spinbath

Carbamate groups hydrolyse more easily in alkaline media, e.g., **NaOH**_{aq} **in a subsequent step:**

- Wet tenacity and conditioned elongation increase
- Wet elongation decreases
- With the removal of the carbamate groups to a N content of 0.2%

Additives to the spin bath seem to affect the fiber properties significantly:

Substrate	Titer	σ	3	Wet modulus
In spinbath	dtex	cN/tex	%	cN/tex
NaHSO ₃	2.8	21	4	140
$Al_2(SO_4)_2$	2.7	20	14	40
Na ₂ CO ₃	2.7	21	7	80
70 MeOH 30 Water	2.6	23	4	170

Lenz. Ber. (1985), 59, 111-118

Influence on Cellca Fiber Properties

Composition of spin bath similar as for viscose spinning: H_2SO_4 / Na_2SO_4

High H_2SO_4 : stable spinning, but stiff fibers

Addition of $Al_2(SO_4)_2$

Both stress & strain increase as the AI salt conc is raised.

The cross-section changes from circular to starshaped.

Stretchability

Stretch of CC solution in hot water, 85 - 95°C, to > 110%; tenacity increased up to 30-32 cN/tex.

Use of modifiers as used in viscose spinning had **no effect** on fiber properties

Ekman, K.; et al, Modification and Hydrolysis, John Wiley & Sons: New York, 1986; pp 131_148.

Lenz. Ber. (1985), 59, 111-118

Cellulose Carbamate Solubility

Effect of Temperature

The addition of ZnO to the aqueous NaOH solution decisively increases the solubility of CC

Effect of [NaOH]

With lower DP of CC, e.g., 400, the solubility increases up to 90% even without ZnO

Use of Never-dried pulp (Stora)

Infinited CC Fiber Process

Cellulose solvents

- Overview
- Direct cellulose solvents
- Alkaline aqueous solutions with&without derivatization
- Assessment of solution state

3

Assessment of dissolution by Image analysis

Example cellulose/IL solution

$$dissolution(\%) = 100 \left(1 - \frac{\sum_{i} \sum_{j} M}{255 N}\right)$$

M: matrix of pixels N: number of pixels

Microscope set to cross-polarized light mode ; glass plates heated to 80°C with 20°C/min; images analyses (5/sample) by **ImageJ software** of by detecting the ratio of the bright (undissolved) to the black (dissolved) areas.

Ind. Eng. Chem. Res. 2020, 59, 20211-20220

Static light scattering (SLS) of viscose

Viscose solution, diluted 1:9 with water subjected to SLS: Mw = $4.3x10^6$ g/mol, R_G=227 nm

At an average DP of 470 and a DS of 1, it can be estimated that 35 cellulose molecules form one aggregate

Suggested structure for viscose: Loose network with gel particles

Lenz Ber, 82 (2003), 118-127

Solution structure in technical viscose Dynamic light scattering

0.4 0.3 0.2 0.1 0.0 10^{0} 10^{1} 10^{2} 10^{3} 10^{4} $R_{H(app)}$ in nm

Intensity autocorrelation functions of a Modal viscose diluted in water 1:9, DLS at different angles

Intensity distributions of the hydrodynamic radii for a Modal viscose

Correlation times between 10^{-5} and 10^{-4} s can be assigned to single molecules, those from 10^{-2} to 10^{-1} s to aggregates with particle sizes up to 80 µm.

Lenz Ber, 82 (2003), 118-127

Particle size in viscose solution

Standard viscose : water = 1:9, 90°

unfiltered and filtered through 0.2 µm diameter: Aggregates not completely separated by filtration.

With increasing lifetime, the apparent hydrodynamic radius of the aggregates increases; formation of (visible) gels.

Pulp Reactivity Determination Practical Approach

- 1. Dissolution behavior
- 2. Fibril aggregate dimensions
- 3. Viscose Filterability
- 4. Cellulose triacetate solution quality
- 5. Acetylation kinetics.

Viscose filterability

Viscose Filterability determined by "deep filtration" where **Standard filtration** law can be applied:

Hermans, P., H.L. Bredee. J. Soc. Chem. Ind., London, 15, T1 (193) Treiber, E. Monatshefte f. Chemie, 93, 455 (1962).

Benchmark of viscose filterability

Viscose Preparation and characterization according to a modified method of Treiber [Treiber E., 1962; Hüpfl, J.; Zauner, J., 1966]

Particle size distribution in viscose

The particle content in technical viscose solutions (Pamas device - light blockade principle), particles are calculated as spheres

Lenz Ber, 82 (2003), 118-127

Pulp dissolution behavior

Complete dissolution by left-handed untwisting of cellulose fibrils

Increased swelling, no dissolution Ballooning, formation of collars

- [0.5 M] (instead of 1.0 M), cuen dissolves only highly accessible & reactive cellulose.
- Dissolution kinetics as a measure for pulp reactivity

Gehmayr, V., Potthast, A., H. Sixta, Cellulose (2012)

Dissolution-based torque reactivity (DTR)

Ceccherini Sara, Maloney Thad. Cellulose (2019) 26 (18), 9877-9888

Effect of enzyme treatment

Sara Ceccherini et al., Biomacromolecules 2021, 22, 4805-4813