

Rheology of cellulose solutions

Theory and Practice of Wet Spinning of Cellulose Solutions

Fundamentals

- Anton Paar, Basics of Rheology. Course number: IARBA001
- Gebhard Schramm, A practical approach to rheology and rheometry, Gebrueder Haake GmbH, Karlsruhe (ASIN: B000BWY1WA)
- Thomas G. Mezger, Applied Rheology With Joe Flow on Rheology Road (ISBN: 978-3-9504016-0-8)

Steady shear tests

- h ... plate distance
- A ... area of upper plate
- F ... force displacing upper plate sidewards
- v ... velocity of upper plate (bottom one is fixed)

Shear stress:
$$au=F/_A$$
 [Pa]

- s ... deflection path
- $\phi \ ...$ deflection angle

Shear strain:
$$\gamma=2$$

A

h.

Steady shear tests

Shear rate:
$$\dot{\gamma}={dv}/{dh}$$
 [S-1]

$$\dot{\gamma} = \frac{d\gamma}{dt} = \frac{ds/_{dh}}{dt} = \frac{ds/_{dt}}{dh} = \frac{dv}{dh}$$

10.3.2022 4

Newton's law

Isaac Newton (1642 to 1727); he writes about the flow resistance of fluids (e.g. of air and water).

However, this later so-called "Viscosity Law of Newton" was formulated not before the 19 century (e.g. by G.G. Stokes in 1845).

Viscosity values

 $\tau = \eta * \dot{\gamma}$ SI-unit: [Pa s] old unit: "poise" [P]

Aalto University School of Chemical

Engineering

viscosity = flow resistance of fluids in motion

Material	Shear viscosity η / mPas (20 °C)
air	0.018
water	1.00
ethanol	1.20
olive oil	100
motor oils	50-1000
honey	10000

(1P = 0.1 Pas or 1cP = 1mPas) 10.3.2022

Typical shear rate ranges

Process	Shear rates (s ⁻¹)	
Sedimentation	< 0.001 to 0.01	
Surface leveling	0.01 to 0.1	
Sagging	0.01 to 1	
Dip coating	1 to 100	
Pipe flow, pumping, filling into containers	10 to 10,000	
Mixing, stirring	10 to 10,000	
Spinning	10 to 10,000	
Coating, painting, brushing	100 to 10,000	
Spraying	1000 to 10,000	
(High-speed) coating, blade coating	100,000 to 1 mio.	

Non-Newtonian fluid

Polymer melts or solutions show reduced viscosity at high shear rates. This phenomenon is called shear

Non-Newtonian fluid

1. Liquids at rest

2. Liquids flowing in the direction of the arrows

stretching

Non-Newtonian fluid

Zero shear viscosity η₀

100

10

shear rate / s⁻¹

10

0.1

The viscosity of polymer solutions and melts dependent on the shear is rate. Extrapolation of the viscosity curve to $\dot{\gamma} = 0$ affords the so called *zero shear viscosity* η_0

Suitable model functions for concentrated polymer solutions and melts to determine η_0 :

$$\eta(\dot{\gamma}) = \frac{\eta_0}{1 + (c * \dot{\gamma})^p} \qquad \text{Cro}$$

 $\eta(\dot{\gamma}) = (c * \dot{\gamma})^p$

 $\eta(\dot{\gamma}) = \frac{\eta_0}{(1 + (c * \dot{\gamma})^{p_1})^p}$

)SS

Power law (for $\eta(\dot{\gamma}) << \eta_0$)

Carreau/Gahleitner

10.3.2022 12

Polymer solution

For solutions containing unlinked polymers

An increasing average molar mass M results in a higher zero shear viscosity value (for a constant polymer concentration)

Polymer solution

Polymer solutions

Unlinked polymers and zero shear viscosity

P1: narrower MMD, with a steeper decrease of the curveP2: wider MMD

Non-Newtonian behaviors

Phenomenon*	Description
Shear thinning	Viscosity decrease upon shear rate increase
Shear thickening	Viscosity increase upon shear rate increase
Thixotropic behavior	Time dependent viscosity decrease upon constant shear load
Rheopectic behavior	Time dependent viscosity increase upon constant shear load

*these terms are only applicable if the solute (molecules) are not degraded, i.e. the fluid displays the initial viscosity level after a certain rest phase.

Shear test – Continuous rotation

Figure 2.3: Velocity distribution and shear rate in the shear gap of a Two-Plates-Model

Controlled shear rate (CSR): Shear rate (velocity) is set and controlled and shear stress is measured

Controlled shear stress (CSS): Shear stress is set and controlled and shear rate is measured

Shear test – Continuous rotation

Figure 2.3: Velocity distribution and shear rate in the shear gap of a Two-Plates-Model

$$\tau = \frac{2}{\pi R^2} M = C_1 M \qquad \text{M...torque}$$
[Nm]
$$\dot{\gamma} = \frac{v}{h} = \frac{\omega R}{h} = \frac{2\pi R}{60h} n = C_2 n$$

$$\eta = \frac{\tau}{\dot{\gamma}} = \frac{2Mh}{\pi R^4 \omega}$$

 ∞ ...angular frequency [rad s⁻¹] *n*...rotational speed [min⁻¹]

Weissenberg effect

Rotational velocity increases with the radius ($v = \omega r$). Hence, polymer chains are subjected to higher shear stress at the outer layers. To "escape" this stress they try to move inwards and, subsequently, upwards. This generate a "normal (perpendicular) stress"

Weissenberg effect

10.3.2022 20

YouTube: https://www.youtube.com/watch?v=npZzlgKjs0l

Visco-elasticity

Elastic behavior and shear modulus

Hooke's law:

within the linear-elastic range

 $\tau = G * \gamma$

 $G\dots$ shear modulus [Pa]

within the Hookean range

F = -k * s

k... spring constant [N m⁻¹]

Robert Hooke (1635 to 1703); in 1676 he describes for solids proportionality of force and deformation.

However, the laterly so-called "Elasticity Law of Hooke" was formulated not before the 19. century (e.g. by T. Young in 1807, or A.L. Cauchy in 1827).

10.3.2022

Elastic behavior and shear modulus

Material	Shear modulus G / Pa (20 °C)		
salad dressing	≈10		
cosmetics	≈500		
puddings	≈5 000		
gummi bears	≈100 000		
PE-LD	≈100 000 000		
PE-HD	≈500 000 000		
window glass	≈30 000 000 000		
steel	≈80 000 000 000		

Elastic behavior and shear modulus

Cheese type	Example	Shear modulus (around)	
1 cream	Philadelphia	1 kPa	
2 soft	French Camembert	10 kPa	
3 semi-hard	Holland Gouda (young)	0.1 MPa	
4 hard	Swiss Emmentaler	0.5 MPa	5
5 extra hard	Italian Parmigiano	1 MPa	4

Oscillatory tests

0°

180°

270°

Two plates model, equipped with two sensors, on top: preset of deflection path (strain or deformation) bottom: measurement of resulting force (shear stress)

Sinusoidal preset

For ideally elastic behavior of a totally stiff sample (e.g. a stone or steel):

- There is no time shift between the sine curves of preset strain and resulting shear stress:
- The curves of γ and τ are "in phase"

$$G^* = \frac{\tau(t)}{\Box t}$$

$$G^* = G' + iG''$$

$$i = \sqrt{-1}$$
...imaginary unit

- G'...storage modulus [Pa]: refers to stress energy that is stored upon deformation and completely recovered after removal of the external stress
- G''...loss modulus [Pa]: refers to energy that is lost during shear induced flow (energy dissipation)

$$G' = \frac{\tau_A}{\gamma_A} * \cos(\delta)$$
$$G'' = \frac{\tau_A}{\gamma_A} * \sin(\delta)$$
$$|G^*| = \sqrt{(G')^2 + (G''^2)}$$

$$\frac{G''}{G'} = \frac{\sin(\delta)}{\cos(\delta)} = \tan(\delta)$$

 $|G^*| = \omega * |\eta^*|$ $|\eta^*|$...complex (dynamic) viscosity

Aalto University **Note:** G', G'', η^* , and δ are frequency dependent! Therefore, a test ool of Chemical 10.3.2022 requires to measure a whole frequency range (ω) = frequency sweep. Enaineerina

Viscoelasticity: summary

Idealviscous flow behavior	Behavior of a viscoelastic liquid (sol)	Sol/gel transition point	Behavior of a viscoelastic solid (gel)	Idealelastic deformation behavior
$\delta = 90^{\circ}$	$90^{\circ} > \delta > 45^{\circ}$	$\delta = 45^{\circ}$	$45^\circ > \delta > 0^\circ$	$\delta = 0^{\circ}$
$\tan(\delta) \to \infty$	$\tan(\delta) > 1$	$\tan(\delta) = 1$	$\tan(\delta) < 1$	$tan(\delta) \rightarrow 0$
$G' \rightarrow 0$	$G^{\prime\prime} > G^{\prime}$	G' = G''	G' > G''	$G^{\prime\prime} \rightarrow 0$

Solutions with direct solvents

Frequency sweep

Oscillatory frequency sweep measurements provides complex viscosity as function of angular frequency

10.3.2022 29

Frequency sweep

Frequency sweep

Frequency sweep

Maxwellian behavior

In the range of low frequencies $G''(\omega)$ and $G'(\omega)$ show the slopes of 1:1 and 2:1

Determination of molar mass

Correlation between zero shear viscosity η_0 and weight average molar mass $M_{\rm w}$

Correlation between $tan(\delta)$ and polydispersity index M_w/M_n

Schausberger and Möslinger, Das Papier. 1999, 12, 715-721.

Pulp solutions

Viscose vs Lyocell vs Ionic liquids

Aqueous solutions

Deconstruction of intramolecular O_3 -H... O_5 ' and O_2 -H... O_6 ' H-bonds

Yamashiki *et al. Polym. J.* 1988, 20, 447-457 Kamide *et al. Cell. Chem. Technol.* 1990, 24, 23-31

10.3.2022 37

- Major limitation of NaOH as solvent: solubility of cellulose strongly dependent on DP
- Upper limit for cellulose concentration;
- Limited mechanical properties of regenerated products

- tendency of solutions to gel irreversibly
- Gelling over time
- Pronounced gelling upon temperature increase

NaOH solutions – additives

Various additives tested:

- amongst longest know: ZnO
- also urea and thiourea

No confirmed effect on solubility maximum; but stabilization of solution state and hampering of gelation

Summary questions

- What is viscoelasticity?
- How does the temperature affect viscoelasticity?
- How does the polymer molecular weight affect viscoelasticity?
- Compare aqueous and direct cellulose solutions in terms of their viscoelastic properties

