## CS-C2160 Theory of Computation

Lecture 9: Decidability and Undecidability
Pekka Orponen
Aalto University
Department of Computer Science

Topics:

- Decidable and semi-decidable languages and problems
- Background: countable and uncountable sets
- Universal Turing machines and undecidable problems

Material:

- In Finnish: Sections 6.1, 6.2, 1.7, 6.3 and 6.4 in the Finnish lecture notes
- In English: Sections 4.1-4.2 in the Sipser book and these slides


## Recap

Example: A Turing machine for the language $\left\{a^{k} b^{k} c^{k} \mid k \geq 0\right\}$


Computation on input $a a b b c c$ :


# Decidable and Semi-Decidable Languages and Problems 

### 9.1 Turing-recognisable and Turing-decidable languages

- The Church-Turing thesis: Any (strong enough) computing model $\equiv$ Turing machines.
- Computability theory: The study of what can be, and especially what cannot be computed with Turing machines ( $\equiv$ computer programs).
- Important distinction: Machines (programs) that always halt and those that don't.


## Definition 9.1

A Turing machine

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{acc}}, q_{\mathrm{rej}}\right)
$$

is total if it halts on all input strings. A language $A$ is

- Turing-recognisable (historically also called recursively enumerable) if it can be recognised with some Turing machine.
- Turing-decidable (historically also called recursive) if it can be recognised by some total Turing machine.


## An alternative point of view:

- Recall the connection between languages and decision problems (binary input-output relations): the language $A_{\Pi}$ corresponding to a decision problem $\Pi$ consists of those inputs $x$ for which the answer is "yes" (binary output 1 ) in the decision problem $\Pi$.
- The decision problem $\Pi$ is
- decidable if its language $A_{\Pi}$ is Turing-decidable, and
- semi-decidable if $A_{\Pi}$ is Turing-recognisable.
- A problem that is not decidable is called undecidable. (Note: An undecidable problem may still be semi-decidable.)
- In other words, a decision problem is (i) decidable if it has an algorithm that solves it correctly and always terminates, and (ii) semi-decidable if it has an algorithm that solves it correctly but may not terminate on some "no" instances.
- In the following, we will use this terminology also for languages, viz. decidable $\equiv$ Turing-decidable, semi-decidable $\equiv$ Turing-recognisable.


## Example:

The language

$$
\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}
$$

over the alphabet $\{a, b, c\}$ corresponds to the decision problem:
Given a string $x$ over the alphabet $\{a, b, c\}$. Is $x$ of form $a^{n} b^{n} c^{n}$ for some $n \geq 0$ ?

## Example:

The language

$$
\left\{n \# p \# q \mid n, p, q \in\{0,1\}^{*} \text { are binary numbers and } n=p q\right\}
$$

over the alphabet $\{0,1, \#\}$ corresponds to the decision problem:
Given a string $x$ over the alphabet $\{0,1, \#\}$. Is $x$ of form $n \# p \# q$, where $n, p, q \in\{0,1\}^{*}$, and $n=p q$ holds if we interpret $n, p, q$ is binary numbers?

This can be expressed more informally as:
Given binary numbers $n, p, q$. Does it hold that $n=p q$ ?

## Example:

The decision problem
Given a binary number $n$. Is $n$ a prime?
is represented by the language

$$
\left\{n \in\{0,1\}^{*} \mid n \text { is a prime number written in binary }\right\}
$$

over the alphabet $\{0,1\}$.

## Example:

## The decision problem

Given a multivariate polynomial $P$.
Does $P$ have integer roots?
can be expressed as the language
$\{P \mid P$ is a multivariate polynomial having an integer root $\}$.
The alphabet for $P$ could be for instance the standard ASCII alphabet, in which e.g. the string $\times 1 \wedge 3 * x 2-7 * \times 1$ could represent the polynomial $x_{1}^{3} x_{2}-7 x_{1}$.

## Example:

The language
$\{p \mid p$ is a UTF-8 encoded string
representing a Python program whose
execution terminates on all possible inputs\}
over the "byte alphabet" $\{0 \times 00,0 \times 01, \ldots, 0 x f f\}$ corresponds to the decision problem:

Given a Python program $p$. Does the execution of $p$ terminate on all inputs?

### 9.2 Basic properties of decidable and semi-decidable languages ( $\sim$ problems)

## Lemma 9.1

Let $A, B \subseteq \Sigma^{*}$ be decidable languages. Then $\bar{A}=\Sigma^{*}-A, A \cup B$, and $A \cap B$ are decidable languages as well.

## Proof

(i) Let $M_{A}$ be a total Turing machine with $\mathcal{L}\left(M_{A}\right)=A$. We obtain a total Turing machine $M_{\bar{A}}$ recognising $\bar{A}$ simply by swapping the accept and reject states of $M_{A}$ :

(ii) Let $M_{A}$ and $M_{B}$ be total Turing machines with $\mathcal{L}\left(M_{A}\right)=A$ and $\mathcal{L}\left(M_{B}\right)=B$. We obtain a total Turing machine $M$ recognising the language $A \cup B$ by sequential composition of $M_{A}$ and $M_{B}$ : if $M_{A}$ accepts the input, then $M$ also accepts; if $M_{A}$ rejects the input, then execute $M_{B}$ on the input string.

(iii) $A \cap B=\overline{\bar{A} \cup \bar{B}}$.

## Lemma 9.2

Let $A, B \subseteq \Sigma^{*}$ be semi-decidable languages. Then $A \cup B$ and $A \cap B$ are semi-decidable languages, too.

## Proof

$A \cap B$ as in Lemma 9.1 (ii), and $A \cup B$ with a construction similar to that in Lemma 9.3 (left as an exercise).

## Lemma 9.3

A language $A \subseteq \Sigma^{*}$ is decidable if and only if both languages $A$ and $\bar{A}$ are semi-decidable.

## Proof

By Lemma 9.1(i), if $A$ is decidable, then $\bar{A}$ is also decidable and hence both $A$ and $\bar{A}$ are semi-decidable as well.

We next show that if $A$ and $\bar{A}$ are both semi-decidable, then $A$ is decidable.

Let $M_{A}$ and $M_{\bar{A}}$ be Turing machines recognising the languages $A$ and $\bar{A}$, respectively. Then for every $x \in \Sigma^{*}$, either $M_{A}$ or $M_{\bar{A}}$ halts and accepts $x$.
We build a 2-tape Turing machine $M$ by combining $M_{A}$ and $M_{\bar{A}}$ "in parallel": on tape $1, M$ simulates machine $M_{A}$, and on tape 2 it simulates machine $M_{\bar{A}}$.
If the simulation on tape 1 halts in an accepting configuration, then $M$ accepts the input. If the tape 2 simulation accepts, then $M$ rejects the input.

## Corollary 9.4

Let $A \subseteq \Sigma^{*}$ be a semi-decidable language that is not decidable. Then the language $\bar{A}$ is not semi-decidable.

## Background: Countable and Uncountable Sets

### 9.3 Countable and uncountable sets

## Definition 9.2

- A set $X$ is countably infinite if there is a bijection $f: \mathbb{N} \rightarrow X$.
- A set is countable if it is finite or countably infinite.
- A set that is not countable is called uncountable.
- Intuitively, a set $X$ is countable if its elements can be ordered and indexed with natural numbers:
- $X=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}\right\}$ if $X$ is a finite set with $n$ elements, and
- $X=\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ if $X$ is countably infinite.
- Every subset of a countable set is also countable (proof left as an exercise). On the other hand, uncountable sets have both countable and uncountable subsets. Thus uncountable sets are, in some sense, "larger" than countable sets.


## Lemma 9.5

Let $\Sigma$ be a finite alphabet. The set $\Sigma^{*}$ of all strings over $\Sigma$ is countably infinite.

## Proof

We construct a bijection $f: \mathbb{N} \rightarrow \Sigma^{*}$ as follows. Let $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. We fix some arbitrary "alphabetical order" for the symbols in $\Sigma$, for instance, $a_{1}<a_{2}<\cdots<a_{n}$.
The strings in $\Sigma^{*}$ can now be enumerated in shortlex order with respect to the chosen alphabetical order:

- We first enumerate strings of length 0 (i.e., $\varepsilon$ ), then those of length 1 (i.e., $a_{1}, a_{2}, \ldots, a_{n}$ ), then those of length 2, and so on.
- Inside each length group, the strings are enumerated in lexicographic order with respect to the chosen alphabetical order.

The bijection $f$ is thus

| 0 | $\mapsto \varepsilon$ |  |  |  |  |
| ---: | :--- | ---: | :--- | :--- | :--- |
| 1 | $\mapsto$ | $a_{1}$ | $2 n+1$ | $\mapsto$ | $a_{2} a_{1}$ |
| 2 | $\mapsto a_{2}$ | $\vdots$ |  | $\vdots$ |  |
| $\vdots$ |  | $\vdots$ | $3 n$ | $\mapsto$ | $a_{2} a_{n}$ |
| $n$ | $\mapsto$ | $a_{n}$ | $\vdots$ |  | $\vdots$ |
| $n+1$ | $\mapsto a_{1} a_{1}$ | $n^{2}+n$ | $\mapsto$ | $a_{n} a_{n}$ |  |
| $n+2$ | $\mapsto a_{1} a_{2}$ | $n^{2}+n+1$ | $\mapsto$ | $a_{1} a_{1} a_{1}$ |  |
| $\vdots$ |  | $\vdots$ | $n^{2}+n+2$ | $\mapsto$ | $a_{1} a_{1} a_{2}$ |
| $2 n$ | $\mapsto a_{1} a_{n}$ | $\vdots$ |  | $\vdots$ |  |

- Note that in fact all programs written in any programming language are just strings over the respective base alphabet (ASCII in C, Unicode allowed in some other languages).
- By Lemma 9.5, the set of such strings is countably infinite, and therefore the set of all possible programs in any programming language is countable as well.
- We next prove that the family of all languages ( $\sim$ decision problems) over any alphabet is uncountable.
- Thus there are more decision problems than there are possible computer programs!
$\Rightarrow$ It is impossible, in any programming language, to write a decision program for every problem.


## Theorem 9.6

The family of all languages over any alphabet $\Sigma$ is uncountable.

## Proof (Cantor's diagonal argument)

Denote the family $\mathcal{P}\left(\Sigma^{*}\right)$ of all languages over $\Sigma$ by $\mathcal{A}$. Suppose that these languages could be enumerated in some order, say

$$
\mathcal{A}=\left\{A_{0}, A_{1}, A_{2}, \ldots\right\} .
$$

Let the set of all strings over $\Sigma$, enumerated in shortlex order, be $\Sigma^{*}=\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$. Using these orders, define a language $\tilde{A}$ as

$$
\tilde{A}=\left\{x_{i} \in \Sigma^{*} \mid x_{i} \notin A_{i}\right\} .
$$

Since $\tilde{A}$ belongs to the family $\mathcal{A}$, and we assumed that the languages in $\mathcal{A}$ can be enumerated, it must be the case that $\tilde{A}=A_{k}$ for some $k \in \mathbb{N}$. But now, according to the definition of $\tilde{A}$, we obtain the contradiction

$$
x_{k} \in \tilde{A} \Leftrightarrow x_{k} \notin A_{k}=\tilde{A} .
$$

Thus the assumption that $\mathcal{A}$ could be enumerated is wrong and $\mathcal{A}$ is uncountable.

| $\tilde{A}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  | $\searrow$ | $A_{0}$ | $A_{1}$ | $A_{2}$ | $A_{3} \cdots$ |  |
|  |  |  |  |  |  |  |
|  | $x_{0}$ | $\emptyset$ | 0 | 0 | 1 | $\cdots$ |
|  |  |  |  | 0 |  |  |
| $x_{1}$ | 0 | 1 | 0 | 0 | $\cdots$ |  |
|  |  |  |  | 0 |  |  |
|  | $x_{2}$ | 1 | 1 | 1 | 1 | $\cdots$ |
|  |  |  |  |  | 1 |  |
|  | $x_{3}$ | 0 | 0 | 0 | $\emptyset$ | $\cdots$ |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\ddots$ |  |

Graphically, the idea of the proof can be illustrated as follows:

- We form the "incidence matrix" of the languages $A_{0}, A_{1}, A_{2}, \ldots$ and the strings $x_{0}, x_{1}, x_{2}, \ldots$
- The cell at row $i$, column $j$ has value: 1 if $x_{i} \in A_{j}$, 0 if $x_{i} \notin A_{j}$.
- Now the language $\tilde{A}$ differs from every language $A_{k}$ on the "diagonal" of the matrix.


## Universal Turing Machines and Undecidable Problems

## What is a universal Turing machine?

- In "interpreted" computer programming languages such as Python or Java, programs are not compiled into machine code but executed (simulated) by a systems program called an interpreter (cf. Python interpreter, Java virtual machine).
- Similarly a "universal Turing machine" can execute (simulate) any other Turing machine, given its description as an input string.
- In modern terminology, a universal Turing machine is thus an interpreter for the "Turing machines" programming language, written in the same language.


### 9.4 An encoding for Turing machines

- Without loss of generality, we consider standard, deterministic 1-tape Turing machines whose input alphabet is $\Sigma=\{0,1\}$.
- Each such machine

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{acc}}, q_{\mathrm{rej}}\right)
$$

can be encoded into a binary string.

- The idea:
- fix some ordering for the states and the tape alphabet, and
- use unary coding for encoding the transitions.
- Number the states and the tape alphabet so that
- $Q=\left\{q_{0}, q_{1}, \ldots, q_{n}\right\}$ with $q_{\text {acc }}=q_{n-1}$ and $q_{\text {rej }}=q_{n}$
- $\Gamma \cup\{\triangleright, \triangleleft\}=\left\{a_{0}, a_{1}, \ldots, a_{m}\right\}$ with $a_{0}=0, a_{1}=1, a_{2}=\triangleright$, and $a_{3}=\triangleleft$
- Furthermore, let $\Delta_{0}=L$ and $\Delta_{1}=R$.
- The code for transition function entry $\delta\left(q_{i}, a_{j}\right)=\left(q_{r}, a_{s}, \Delta_{t}\right)$ is:

$$
c_{i j}=0^{i+1} 10^{j+1} 10^{r+1} 10^{s+1} 10^{t+1}
$$

- The code for the whole machine $M$ is:

$$
\begin{aligned}
c_{M}= & 111 c_{00} 11 c_{01} 11 \ldots 11 c_{0 m} 11 c_{10} 11 \ldots 11 c_{1 m} 11 \\
& \ldots 11 c_{n-2,0} 11 \ldots 11 c_{n-2, m} 111
\end{aligned}
$$

- Note: From the code of a machine it is easy to algorithmically deduce the number of states as well as the size of the tape alphabet.

Example:
Consider the following machine $M$ ( $\sim$ machine succ from Lecture 8$)$.


$$
\begin{aligned}
& Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\} \\
& \Sigma=\{0,1\} \\
& \Gamma=\{0,1\}
\end{aligned}
$$

Then $c_{M}=111 c_{0,0} 11 c_{0,1} 11 c_{0,2} 11 c_{0,3} 11 c_{1,0} 11 \ldots 11 c_{3,3} 111$, where

$$
\begin{array}{rll}
\delta\left(q_{0}, 0\right)=\left(q_{1}, 1, R\right): & c_{0,0}=010100100100 \\
\delta\left(q_{0}, 1\right)=\left(q_{2}, 0, R\right): & c_{0,1}=0100100010100 \\
\delta\left(q_{0}, \triangleright\right)=\left(q_{\mathrm{rej}}, \triangleright, R\right): & c_{0,2}=0100010000001000100 \\
\delta\left(q_{0}, \triangleleft\right)=\left(q_{\mathrm{rej}}, \triangleleft, L\right): & c_{0,3}=01000010000001000010
\end{array}
$$

### 9.5 A language that is not semi-decidable

- Previously we showed how to associate each Turing machine $M$ to a binary string $c_{M}$ encoding it.
- In reverse, we can associate each binary string $c$ to a Turing machine $M_{c}$.
- Some binary strings do not encode any Turing machine in the way described above - to such strings, we associate some trivial Turing machine $M_{\text {triv }}$ that rejects all input strings.
- That is, we define:
$M_{c}=\left\{\begin{array}{l}\text { the machine } M \text { for which } c_{M}=c \text { if } c \text { is a valid encoding }, \\ \text { the machine } M_{\text {triv }} \text { otherwise. }\end{array}\right.$
- As a result, we obtain:
- an enumeration of all Turing machines (with input alphabet $\{0,1\}$ ), and also
- an enumeration of all semi-decidable languages over the alphabet $\{0,1\}$.
- The machines are:

$$
M_{\varepsilon}, M_{0}, M_{1}, M_{00}, M_{01}, \ldots
$$

(Indices in shortlex order.)

- The semi-decidable languages are:

$$
\mathcal{L}\left(M_{\varepsilon}\right), \mathcal{L}\left(M_{0}\right), \mathcal{L}\left(M_{1}\right), \mathcal{L}\left(M_{00}\right), \mathcal{L}\left(M_{01}\right), \ldots
$$

Each language can appear multiple times in this list, as different machines may recognise the same language.

## Lemma 9.7

The "diagonal language"

$$
D=\left\{c \in\{0,1\}^{*} \mid c \notin \mathcal{L}\left(M_{c}\right)\right\}
$$

is not semi-decidable.

## Proof (Cantor-style diagonal argument)

Suppose that $D$ is semi-decidable; then $D=\mathcal{L}(M)$ for some Turing machine $M$. Let $d$ be the binary encoding of $M$, i.e. $D=\mathcal{L}\left(M_{d}\right)$. Now

$$
d \in D \quad \Leftrightarrow \quad d \notin \mathcal{L}\left(M_{d}\right)=D
$$

From the contradiction, we deduce that the assumption must be wrong and thus $D$ is not semi-decidable.

- The decision problem corresponding to the language $D$ is: "Given a binary string $c$, is it the case that the Turing machine associated to $c$ does not accept the string $c$ ?" More natural examples of undecidable languages will be seen later.
- A graphical view of language $D$ : if the characteristic functions of the languages $\mathcal{L}\left(M_{\varepsilon}\right), \mathcal{L}\left(M_{0}\right), \mathcal{L}\left(M_{1}\right), \ldots$ are represented as an infinite array, then the language $D$ is the one that is obtained by "flipping" the language obtained from the diagonal:

| $\left.\begin{array}{c\|ccccc} \\ \searrow & \mathcal{L}\left(M_{\varepsilon}\right) & \mathcal{L}\left(M_{0}\right) & \mathcal{L}\left(M_{1}\right) & \mathcal{L}\left(M_{00}\right) & \cdots \\ \hline \varepsilon & \emptyset^{1} & 0 & 0 & 0 & \cdots \\ 0 & 0 & \chi^{0} & 1 & 0 & \cdots \\ 1 & 0 & 0 & \chi^{0} & 1 & \cdots \\ 00 & 0 & 0 & 0 & \emptyset^{1} & \cdots \\ & \vdots & \vdots & \vdots & \vdots & \vdots \\ & & & & & \end{array}\right]$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |

### 9.6 A universal language and universal Turing machines

- Let us define a universal language $U^{1}$ (over the binary alphabet $\{0,1\}$ ) as

$$
U=\left\{c_{M} w \mid \text { Turing machine } M \text { accepts string } w\right\} .
$$

- The corresponding decision problem is:

Given a Turing machine $M$ and a string $w$.
Does $M$ accept the string $w$ ?

- If $A$ is a semi-decidable language and $M$ is a Turing machine recognising $A$, then

$$
A=\left\{w \in\{0,1\}^{*} \mid c_{M} w \in U\right\}
$$

- The language $U$ itself is semi-decidable, too. The machines recognising $U$ are called universal Turing machines.

[^0]
## Theorem 9.8

The language $U$ is semi-decidable.

## Proof

It is easiest to describe a Turing machine $M_{U}$ recognising $U$ in the 3tape machine model. This can then be transformed into a standard 1 -tape machine as explained in Lecture 8.

In the beginning, the input is placed on tape 1 as usual. After this, the machine works as follows:

1. First, $M_{U}$ checks whether the input is of form $c w$, where $c$ is a valid code for a Turing machine. If the input is not of that form, $M_{U}$ rejects it (and thus works as expected for $M_{\text {triv }}$ ). Otherwise, it copies the binary input sub-string $w=a_{1} a_{2} \ldots a_{k} \in\{0,1\}^{*}$ to tape 2 in the unary form

$$
00010^{a_{1}+1} 10^{a_{2}+1} 1 \ldots 10^{a_{k}+1} 10000
$$

1. 

| . |
| :---: |
|  |  |

2. 


3. $\square$
2. Now it is known that the input is of form $c w$, where $c=c_{M}$ for some machine $M$ and $M_{U}$ has to check whether $M$ accepts $w$.

To do this, $M_{U}$ keeps the description $c$ of $M$ on tape 1, uses tape 2 to simulate the tape of $M$ (in unary coding), and stores the current simulated state of $M$ on tape 3 in the unary form $q_{i} \sim 0^{i+1}$ (in the beginning, $M_{U}$ thus writes the code 0 for the state $q_{0}$ on tape 3).
1.

2.

| 1 | 0 | * $\cdot$ | 0 | 1 | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $j+1$ |  |  |  |

3. 

| 0 | $\cdots$ | 0 |  | $\cdots$ |
| :--- | :--- | :--- | :--- | :--- |
| $1 \ldots i+1$ | $\cdots \cdots$ |  |  |  |

3. After the initial preparations, $M_{U}$ works in phases and simulates the action of one transition of $M$ in each phase.

In the beginning of each phase, $M_{U}$ searches the place on the description of $M$ on tape 1 that corresponds to the current simulated state $q_{i}$ (tape 3) and symbol $a_{j}$ under the simulated tape head (tape 2).
Let that place on the tape 1 be $0^{i+1} 10^{j+1} 10^{r+1} 10^{s+1} 10^{t+1}$.
Now $M_{U}$ replaces the sub-string $0^{i+1}$ on tape 3 with $0^{r+1}$ and the sub-string $0^{j+1}$ on tape 2 with $0^{s+1}$, and moves the tape head on tape 2 one simulated symbol left if $t=0$ and right if $t=1$.
1.

2.

3.

| 0 | $\cdots$ | 0 |  | $\cdots$ |
| :--- | :--- | :--- | :--- | :--- |
| $4 \ldots i+1$ | $\cdots$ |  |  |  |

If the description on tape 1 does not contain a place corresponding to the simulated state $q_{i}$, the simulated machine $M$ has reached the accept or the reject state.

Thus $i=k+1$ or $i=k+2$, where $q_{k}$ is the last state having transitions encoded in the description of $M$, and machine $M_{U}$ enters the state $q_{\text {acc }}$ or $q_{\text {rej }}$, correspondingly.

## Theorem 9.9

The language $U$ is not decidable.

## Proof

Suppose that $U$ would be decidable. Then there is a total Turing machine $M_{U}^{T}$ recognising $U$. We can now build a total Turing machine $M_{D}$ that recognises the diagonal language $D$ of Lemma 9.7 as follows.

Let $M_{\mathrm{OK}}$ be a total Turing machine that checks whether a string is a valid code for a Turing machine. Similarly, let $M_{\text {DUP }}$ be a total Turing machine that transforms a string $c$ into the string $c c$. We build the machine $M_{D}$ by combining the machines $M_{U}^{T}, M_{\mathrm{OK}}$ and $M_{\mathrm{DUP}}$ :



Now clearly $M_{D}$ is total whenever the machine $M_{U}^{T}$ is, and $M_{D}$ recognises $D$ :

$$
\begin{aligned}
c \in \mathcal{L}\left(M_{D}\right) & \Leftrightarrow c \notin \mathcal{L}\left(M_{\mathrm{OK}}\right) \vee c c \notin \mathcal{L}\left(M_{U}^{T}\right) \\
& \Leftrightarrow c \notin \mathcal{L}\left(M_{c}\right) \\
& \Leftrightarrow c \in D .
\end{aligned}
$$

But by Theorem 9.7, the language $D$ is not decidable. We have thus obtained a contradiction, and our assumption that $U$ is decidable must be wrong.

## Corollary 9.10

The language

$$
\tilde{U}=\left\{c_{M} w \mid w \notin \mathcal{L}(M)\right\}
$$

is not semi-decidable.

## Proof

The language $\tilde{U}$ is effectively the same as the complement $\bar{U}$ of the universal language $U$. More precisely, $\bar{U}=\tilde{U} \cup E R R$, where ERR is the (obviously) decidable language

$$
\begin{aligned}
\operatorname{ERR}=\left\{x \in\{0,1\}^{*} \mid\right. & x \text { does not start with } \\
& \text { a valid code for a Turing machine }\} .
\end{aligned}
$$

If the language $\tilde{U}$ were semi-decidable, then so would the language $\bar{U}$. But as the language $U$ is semi-decidable, it would follow (by Lemma 9.3) that $U$ is decidable. This contradicts Theorem 9.7 and therefore we must conclude that $\tilde{U}$ is not semi-decidable.


[^0]:    ${ }^{1}$ Language $A_{\text {TM }}$ in Sipser's book.

