

ELEC-E8126: Robotic Manipulation Constrained and parallel kinematics

Ville Kyrki

14.3.2022

Learning goals

- Understand modeling and characteristics of closed kinematic chains.
- Understand constraints posed by closed chains in contexts of parallel robots, cooperative manipulation and dextrous manipulation.

Terminology

prismatic (sliding) joint revolute (rotary) joint

Closed kinematic chain - loops

Actuated (active) vs unactuated (passive) joints

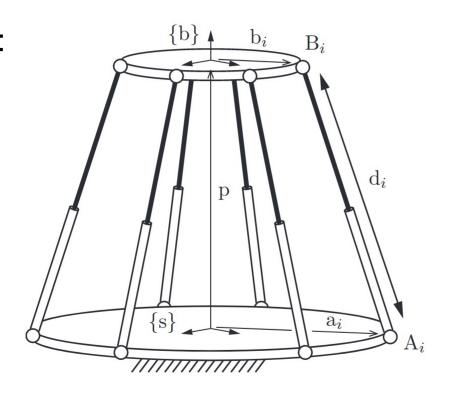
- Why have unactuated joints?

What's the loop here?

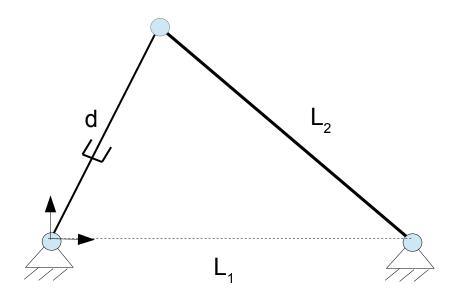
Typical parallel robot characteristics

Compared to serial-link arms:

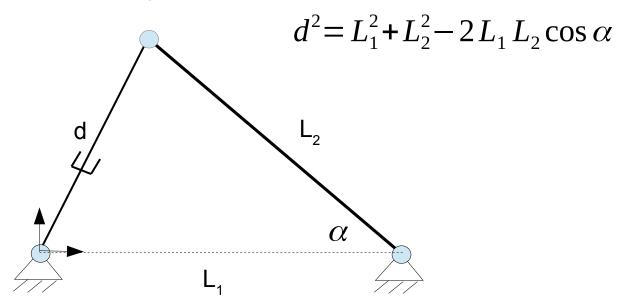
- Small workspace
- Accurate
- Rigid structure
- More difficult to model



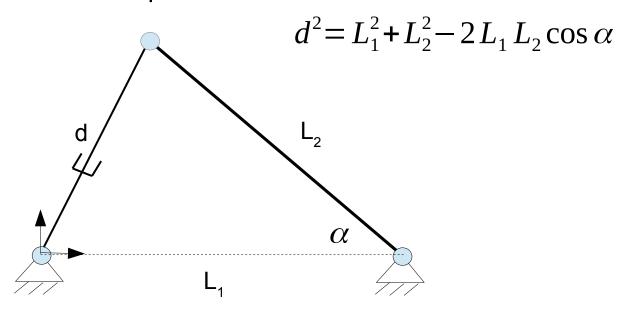
- What is the position of top point with respect to the length of prismatic joint d?
 - What is the constraint equation?



- What is the position of top point with respect to the length of prismatic joint d?
 - What is the constraint equation?



- What is the position of top point with respect to the length of prismatic joint d?
 - What is the constraint equation?

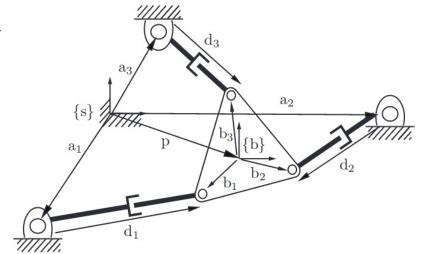


How to now solve the position of the top point?

e.g.
$$y = L_2 \cos \alpha = (L_1^2 + L_2^2 - d^2)/(2L_1)$$

3x RPR – mechanism and kinematics

- Planar mechanism with 3 RPR structures.
- Prismatic joints actuated, revolute joints passive.



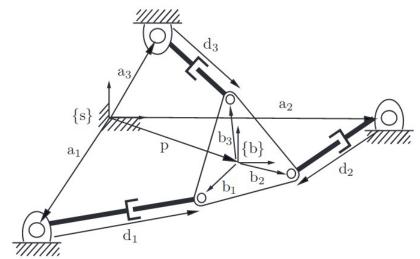
$$d_{i}^{2} = (p_{x} + b_{ix}\cos\phi - b_{iy}\sin\phi - a_{ix})^{2} + (p_{y} + b_{ix}\sin\phi + b_{iy}\cos\phi - a_{iy})^{2}$$

What do these provide us?

3x RPR – mechanism and kinematics

Planar mechanism with 3 RPR structures.

 Prismatic joints actuated, revolute joints passive.



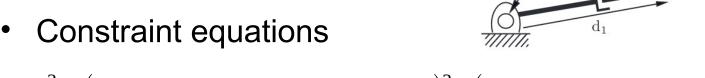
Constraint equations

$$d_{i}^{2} = (p_{x} + b_{ix} \cos \phi - b_{iy} \sin \phi - a_{ix})^{2} + (p_{y} + b_{ix} \sin \phi + b_{iy} \cos \phi - a_{iy})^{2}$$

What do these provide us?

3x RPR – mechanism and kinematics

- Planar mechanism with 3 RPR structures.
- Prismatic joints actuated, revolute joints passive.

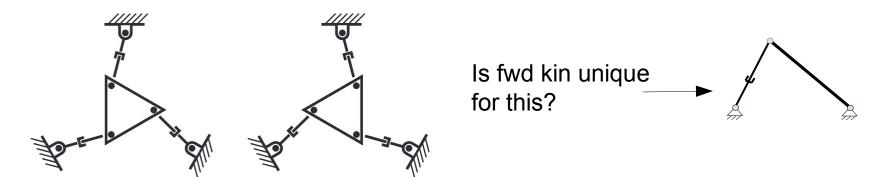


$$d_{i}^{2} = (p_{x} + b_{ix}\cos\phi - b_{iy}\sin\phi - a_{ix})^{2} + (p_{y} + b_{ix}\sin\phi + b_{iy}\cos\phi - a_{iy})^{2}$$

What do these provide us?

Forward kinematics

Fwd kinematics of parallel kinematics often non-unique.



 Different type of singularity compared to serial mechanisms. But in which way?

Jacobian and constraint Jacobian

Jacobian can be obtained also from inverse kinematics.

- Why/how?
$$\theta = f_{ik}(x)$$
 $\dot{x} = J(\theta) \dot{\theta}_a = \frac{\partial f_{fk}(\theta)}{\partial \theta} \dot{\theta}_a$ active

Jacobian and constraint Jacobian

Jacobian can be obtained also from inverse kinematics.

- Why/how?
$$\theta = f_{ik}(x)$$
 $\dot{x} = J(\theta) \dot{\theta}_a = \frac{\partial f_{fk}(\theta)}{\partial \theta} \dot{\theta}_a$ active

 Constraint Jacobian – Jacobian of the set of constraint equations.

$$h(\boldsymbol{\theta}) = \mathbf{0}$$

$$H(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}} = \left[H_a(\boldsymbol{\theta}) H_p(\boldsymbol{\theta}) \right] \begin{bmatrix} \dot{\boldsymbol{\theta}}_a \\ \dot{\boldsymbol{\theta}}_p \end{bmatrix} = \mathbf{0}$$
active passive

What was the relationship of Jacobian to singularities for serial kinematic chains?

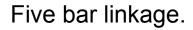
Singularities of parallel mechanisms

- End-effector singularities
 - Jacobian loses rank rank(J) < n.
 - Do not depend on which joints are actuated.

 Even though Jacobian maps active joint velocities to Cartesian velocities.

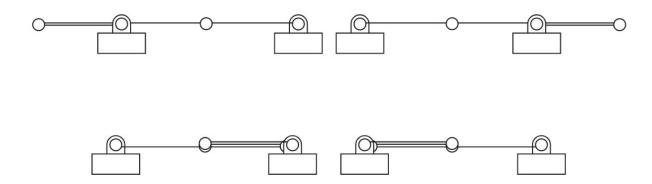
Similar to singularities of serial

robots.



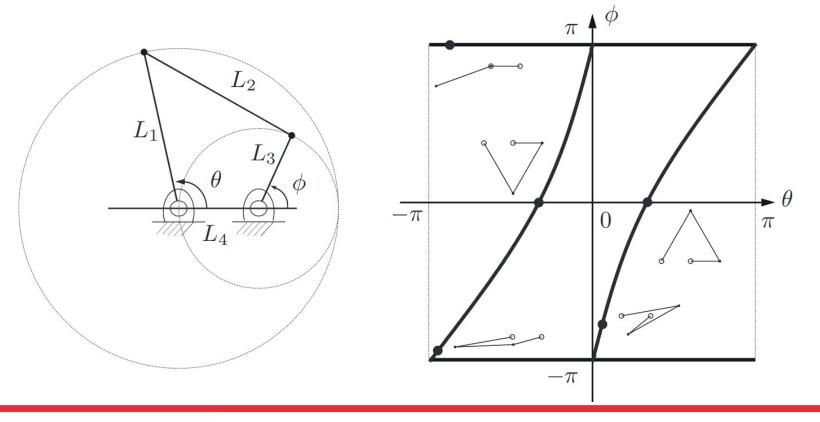
Singularities of parallel mechanisms

- Configuration space singularities
 - Constraint Jacobian loses rank rank(H) < p.
 - Do not depend on which joints are actuated.
 - Branching points/regions in full configuration space.



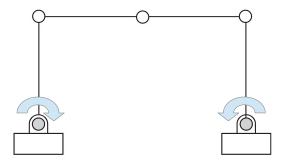
Configuration space singularity example

Four bar linkage



Singularities of parallel mechanisms

- Actuator singularities
 - Constraint Jacobian of passive joints loses rank $rank(H_p) < p$
 - Changing the set of actuated joints will eliminate the singularity.
 - But new one(s) may be created.



What happens?
Can you avoid by changing actuated joints? How?

Closed chains and manipulation

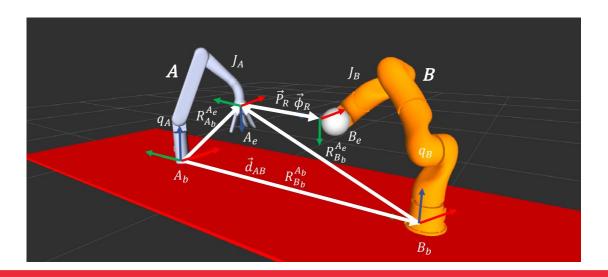
 Are there situations where manipulation creates closed chains?

Closed chains and manipulation

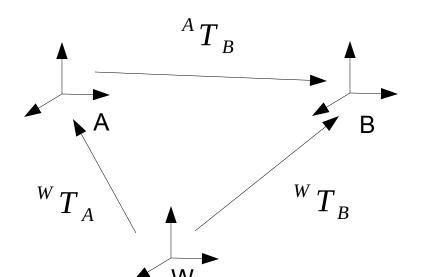
- Are there situations where manipulation creates closed chains?
- Cooperative (dual-arm) manipulation
- Dexterous (in-hand) manipulation
- Let's take a quick look at these.

Cooperative manipulation

- Cooperative manipulation: Multiple arms manipulate a tightly grasped (rigid) object.
- What kind of constraints exist?



- Chain remains closed (and rigid) →
 - Robot velocities need to match in object frame.
 - Alternatively, relative pose remains constant.



Closed kinematic chain?

Relative Jacobian

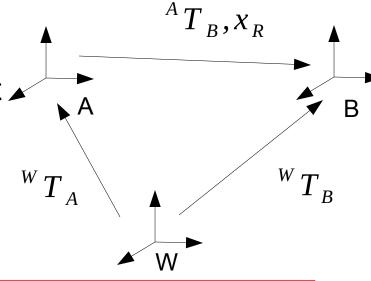
Jacobian of relative pose is called relative Jacobian

$$\dot{x_R} = J_R \begin{bmatrix} \dot{\theta_A} \\ \dot{\theta_B} \end{bmatrix}$$
 Size?

- Can be calculated using individual robot Jacobians.
- What is the loop closure constraint

 given the relative Jacobian?

$$J_{R} \begin{bmatrix} \dot{\theta}_{A} \\ \dot{\theta}_{B} \end{bmatrix} = J_{R} \dot{\theta} = 0$$



Relative Jacobian and coordinated motion control

 Let's define a (hybrid) velocity controller using relative Jacobian.

$$\dot{\theta} = \underbrace{J_R^+ K_R(x_R - x_R^*)}_{relative\ pose\ fb} + \underbrace{(I - J_R^+ J_R)[J_A \quad 0]^+ (\dot{x_A^*} + K_P(x_A - x_A^*))}_{pose\ fb}$$

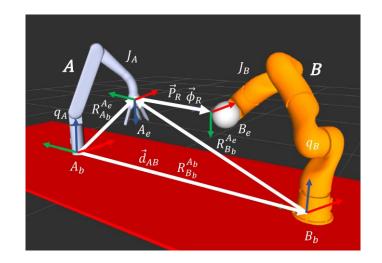
Check position+force control lecture!

Dynamics of cooperative manipulation

What is the total wrench applied on the object?

$${}^{O}F = {}^{O}F_{A} + {}^{O}F_{B} = G_{A}F_{A} + G_{B}F_{B} = G\begin{bmatrix} F_{A} \\ F_{B} \end{bmatrix}$$

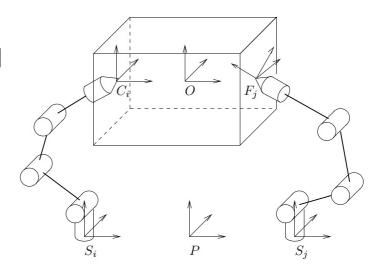
$$F = G^{+O}F + V_{S}F_{A}$$



- External wrench ^OF
- Internal forces in V = null(G)
 - How do we want this to behave?
 - Would internal forces be useful in some case?

Dextrous manipulation

- To manipulate grasped objects in hand,
 - finger motions need to be coordinated for grasp to remain stable.
 - object needs to be manipulable.
- What does this mean beyond force closure?



Coordinated motion in grasping

Finger motions have to correspond to object motion at contacts

$$J \quad \dot{\underline{\boldsymbol{\theta}}} = G^T \quad \underline{\boldsymbol{V}}_O$$
finger joint vels object twists

Why is this more than the relative Jacobian?

Each contact only in friction constrained directions

$$H\hat{J}\dot{\theta} = H\hat{G}^TV_O$$

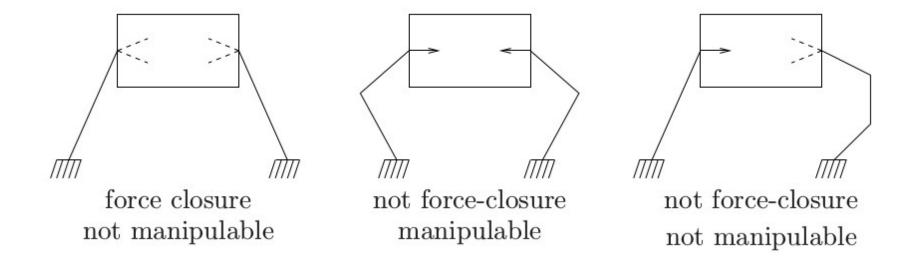
Selection matrix to choose constrained directions

• What is then the constraint for fingers to be able to generate any twist V_0 ? rank(G)=6 rank(GJ)=6

force closure (almost)

Finger motions can create any object motion.

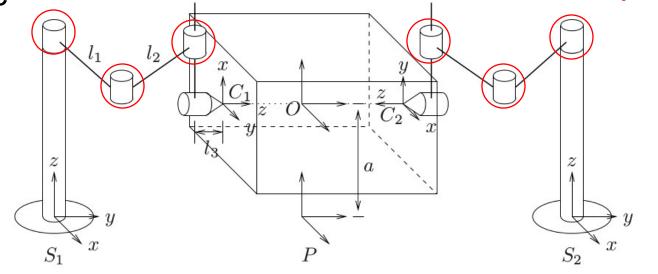
Manipulability vs force closure



Manipulability example: 2x SCARA

- Assume soft fingers (there's torsional friction around contact normal).
- Is the grasp force closure?

• Is the grash maninulable? controllable joints



Summary

- Parallel robots have typically both actuated and unactuated joints in closed chains.
 - Inverse kinematics for typical parallel robots are often unique.
 - Forward kinematics often yields multiple solutions.
- Closed chains also appear in cooperative and dexterous manipulation.

Next time: Redundancy

Readings:

- Chiaverini et al., "Redundant robots", in Springer Handbook of Robotics, 2nd ed., ch. 10-10.2.2.
 - Freely available through library webpage lib.aalto.fi. Log-in first and then search for "Springer Handbook of Robotics".