School of Electrical Engineering Department of Electrical Engineering and Automation **ELEC 8201 Control and Automation**

> Exercise session 3 State-Based Design Implementation issues

> > Valeriy Vyatkin Pranay Jhunjhunwala Udayanto Dwi Atmojo

- Oven controller design:
 - From verbal spec to state machine
- State machine implementation in ST on the elevator example
- Exercise on state machine implementation
 - As a ST code
 - As ECC in function block

Example: heating oven

Verbal specification:

The oven is started with a **Start** button that seals in the Auto mode. This can be stopped if the **Stop** button is pushed. (Remember: **Stop** buttons are normally closed.)

When the Auto goes on, the **horn** is used to sound for the first 10 seconds to warn that the oven will start, and after that the horn stops and the **heating coils** start. When the oven is turned off the **fan** continues to blow for 300s, or 5 minutes, after.

Timing diagram vs. Specification

Let us follow the diagram ... (naive engineering)

State Machine Design

State Machine

State-based design example: 3-Floor Elevator

- There is no weight sensor and no stop button in the elevator
- All call buttons are constantly active

2	VAR_GLOBAL	onfloor 0	BOOL	Elevator at floor 0
6	VAR_GLOBAL	onfloor1	BOOL	Elevator at floor 1
6	VAR_GLOBAL	onfloor2	BOOL	Elevator at floor 2
6	VAR_GLOBAL	doorclosed0	BOOL	Doors at floor 0 are closed
6	VAR_GLOBAL	doorclosed1	BOOL	Doors at floor 1 are closed
2	VAR_GLOBAL	doorclosed2	BOOL	Doors at floor 2 are closed
2	VAR_GLOBAL	button0	BOOL	Call button at floor 0
6	VAR_GLOBAL	button1	BOOL	Call button at floor 1
6	VAR_GLOBAL	button2	BOOL	Call button at floor 2
6	VAR_GLOBAL	call0	BOOL	Request floor 0 from inside the cabin
6	VAR_GLOBAL	call1	BOOL	Request floor 1 from inside the cabin
2	VAR_GLOBAL	call2	BOOL	Request floor 2 from inside the cabin
6	VAR_GLOBAL	up	BOOL	Control the elevator to go up
6	VAR_GLOBAL	down	BOOL	Control the elevator to go down
6	VAR_GLOBAL	open0	BOOL	Open the doors at floor 0
6	VAR_GLOBAL	open1	BOOL	Open the doors at floor 1
6	VAR_GLOBAL	open2	BOOL	Open the doors at floor 2

Final controller

Implementation of state machines in ST

- state_stopped
- state_going_up
- state_going_down
- transitions implemented using if-then-else

Implementation of state machines in ST

Implementation of state machines in ST

From State Machine to ST

From State Machine to ST

IF state = S0:Start THEN HORN := FALSE; FAN := FALSE; COIL := FALSE; state := S1:Wait; ELSIF state = S1:Wait THEN IF Start AND Stop THEN state := S2:Auto END IF; ELSIF state = S2:Auto THEN T1.Start(t#10s); HORN := TRUE; IF T1.Q THEN state := S3:Heat; Else not STOP THEN state := S4:Stop; END IF; ELSIF state = S3:Heat THEN HORN := FALSE; FAN := TRUE; COIL := TRUE; T2.Start(t#5min); IF not STOP THEN state := S4: Stop; END IF; ELSIF state = S4:Stop THEN HORN := FALSE; COIL := FALSE; IF Start and Stop THEN state := S2:Auto; **ELSIF not T2.Q THEN** state := S5:StopFan; END IF; ELSIF state = S5:StopFan THEN FAN := FALSE: state := S1:Wait: END IF;

From State Machine to Function block

ECC

ECC & FB Network

Questions

