
Lecture 11. State-Based Design

and its Implementation

Valeriy Vyatkin

2022

2

State-based Logic Design

Example: Double acting Pneumatic Cylinder

Drawing a state machine for a Double Acting Pneumatic Cylinder

In this example, system has 2 control signals

1. FWD (Forward)

2. RETR (Retract)

Pneumatic Cylinder

3

1. Converts the energy in the compressed air into linear motion.

2. The air enters the cylinder and pushes a piston from one end of the cylinder

to the other.

3. There are two main types of cylinder - Single acting and Double

acting

4

1. In a single acting cylinder, the piston is forced out by the pressure of the air.

2. When the air supply is removed and the air inside the cylinder is allowed to

escape, the piston moves back, driven by the force of a spring.

3. By restricting the escaping air (exhaust), it is possible to slow down the return

movement of the piston.

Compressed

Air

Direction

of motion

Compressed

Air

Direction

of motion

Single Acting Pneumatic Cylinder

http://en.wikipedia.org/wiki/Single-_and_double-acting_cylinders

Double Acting Pneumatic Cylinder

5

1. Double acting cylinder has two air connections.

2. Compressed air is applied to one connector and the other connector is

allowed to exhaust to atmosphere (i.e. the air is allowed to escape freely).

3. the piston is driven to one end of the cylinder.

4. When air is then applied to the second connector and the first is allowed to

exhaust to atmosphere, the piston is driven back.

Compressed

Air

Direction

of motion

Compressed

Air

Direction

of motion

Exhaust

Exhaust

http://en.wikipedia.org/wiki/Single-_and_double-acting_cylinders

State-based Logic Design

Scenario

Example: Double acting Pneumatic Cylinder

Move fwd Move backLeft Left

Right

State-based Logic Design

Step 1: Find stable states

Example: Double acting Pneumatic Cylinder

Move fwd Move backLeft Left

Scenario
Right

Left

Right

Move Retract

Initial state

State name

State-based Logic Design

Step 2: What control signals are to be set ON in the states?

Example: Double acting Pneumatic Cylinder

Left

Right

Move Retract

FWD:=1 RETR:=1

FWD:=0

RETR:=0
FWD:=0

Move fwd Move backLeft Left

Scenario
Right

State-based Logic Design

Step 3: Transitions between states

Example: Double acting Pneumatic Cylinder

Move fwd Move backLeft Left

Scenario
Right

Left

Right

Move Retract

FWD:=1 RETR:=1

FWD:=0

RETR:=0
FWD:=0

10

State-based Logic Design

Step 4: Conditions of the transitions

Example: Double acting Pneumatic Cylinder

Move fwd Move backLeft Left

Scenario
Right

START

end

home

1

Left

Right

Move Retract

FWD:=1 RETR:=1

FWD:=0

RETR:=0
FWD:=0

Finite-state machines (FSMs)

11

• Initial state (shown with double

circle)

• The next state depends on the

current state and current input

signals

• The outputs either depend on the

current state and input signals

(Mealy machines) or on the current

state only (Moore machines)

• Which kind of state machine is

shown on the left?

Single acting cylinder

Curiosity #1: Table implementation of FSM

Inputs States

START HOME END S1 S2 S3

1 0 0 0 X

2 0 0 1 X

3 0 1 0 S1

4 0 1 1 X

5 1 0 0 X

6 1 0 1 X

7 1 1 0 S2

8 1 1 1 x

Output FWD=1

12

State transition function T for the Cylinder

2
n

 f
o

r
n

 b
in

a
ry

 i
n

p
u

ts

Algorithm:

1. Fill the table and

2. Update states and outputs according to it

Curiosity #2: Boolean Functions ->
Structured Text (or Ladder Diagrams)

13

// Initialisation

IF FirstScan THEN

S1 := 1; S2 := 0; S3 := 0;

S1x := 1; S2x := 0; S3x := 0;

FWD := 0;

FirstScan := 0;

END_IF;

// State transition function

S2x := S2 AND NOT END

OR S1 AND START;

S3x := S3 AND NOT HOME

OR S2 AND END;

S1x := S1 AND NOT START

OR S3 AND HOME;

// Outputs

FWD := S2;

// Next state variables

S1 := S1x; S2 := S2x; S3 := S3x;

𝑆𝑇𝐴𝑇𝐸′ = 𝑆𝑇𝐴𝑇𝐸 ∙ 𝑇𝑙 +

𝑗=0

𝑀

𝑆𝑇𝐴𝑇𝐸𝑗
𝑖 ∙ 𝑇𝑗

𝑖

S1

S2 S3

Ladder logic representation

14

The same in Structured text:

S2x := S2 AND NOT END

OR S1 AND START;

S3x := S3 AND NOT HOME

OR S2 AND END;

S1x := S1 AND NOT START

OR S3 AND HOME;

LED := S1x;

FWD := S2x;

S1 := S1x;

S2 := S2x;

S3 := S3x;

FWD

Implementation of Moore State Machine in Basic FB

15

1. Added START state, where ECC is at the start up.

2. Event REQ activates all 3 transition conditions.

3. Setting of the control signal is implemented in algorithms.

4. Output events are emitted to make the control signal

available outside the function block. Algorithms:

FWD :=TRUE;

FWD: BACK:

FWD :=FALSE;

INIT:

FWD:=FALSE;

Implementation of Moore State Machine in ST language

IF State=1 THEN

IF START THEN

State:=2;

END_IF;

ELSIF State=2 THEN

FWD:=TRUE;

IF END THEN

State:=3;

END_IF;

ELSIF State=3 THEN

FWD:=FALSE;

IF HOME THEN

State:=1;

END_IF;

END_IF;

16

S1

S2 S3

S1

S2 S3

Encapsulate the ST code to function block

17

IF State=1 THEN

IF START THEN

State:=2;

END_IF;

ELSIF State=2 THEN

FWD:=TRUE;

IF END THEN

State:=3;

END_IF;

ELSIF State=3 THEN

FWD:=FALSE;

IF HOME THEN

State:=1;

END_IF;

END_IF;

Algorithm REQ

Mealy Machine – Simple ST code example

//Example: Mealy Machine:

IF S1 THEN

IF Ev1 THEN

Var1:=1;

S1:=0; S2:=1; S3:=0;

END_IF

ELSIF S2 THEN

IF Ev2 THEN

Var2:=1;

S1:=0; S2:=0; S3:=1;

END_IF

ELSIF S3 THEN

IF Ev3 THEN

Var3:=1;

S1:=1; S2:=0; S3:=0;

END_IF

END_IF

Example: Mealy Machine in ST

(* Here can be added possible state S1
action statements *)

(* Here can be added possible state S2
action statements *)

(* Here can be added possible state S3
action statements *)

Ev1
Var1:= 1;

Ev2
Var2:=1;

Ev3
Var3:=1;

S1 S2

S3

Mealy State Machine example

Extension 1: Counting
Requirement: Once the START button is pressed, the cylinder will need to

shuttle back and forth 3 times.

To count the number of passes we need an integer variable (Count) which will

be incremented every time cylinder reaches the “end” position. The variable will

be compared with the desired number of passes (3) to decide whether to

repeat or stop.

Transition arc from Retract to Move is added.

19

Extension 2: Hold cylinder for some time in
the extended position

20

Requirement: Hold cylinder in the

extended position for 5 sec.

Solution: Use delay timer.

Delay timer is an object that can be:

1) Started with some duration.

2) Checked if it has expired.

21

Extension 3: Adding HMI

HMI logic is implanted into the state machine

Moving back

Use of timers in function blocks: delay in ECC

• There is no state timer in ECC.

• So one needs to use an external E_DELAY

22

Start delay timer

Delay timer expired

Extension 4: Blinking lamp

Requirement: There is an LED lamp
under the button.

Make the LED of the START button
blinking while the cylinder is in the
leftmost state. Implement controller in
LLD.

To implement the blinking, we need to
introduce a “sister” state to S1, where
the LED will be reset for some time,
say 200 ms.

23

Extension 5: Initialization

24

A new initial state Startup is introduced.

Problem: At the power up the machine may be not in the initial state. The

machine may require positioning to the intial state before starting the

operation

● There is no weight sensor and no stop button in the elevator

● All call buttons are constantly active

25

State-based design example: 3-Floor Elevator

A Use Case Diagram of Elevator

A use case diagram at its simplest is a representation of a user’s interaction
with a system.

26

A More Detailed Use Case Diagram

27

28

A real-life elevator

State-based controller design: algorithm

1. Determine modular decomposition.

2. For each module

a. Identify stable states in the system’s behavior.

b. Define for each state output signals that shall be

true in this state.

c. Define transition conditions from state to state.

29

Example: Modular State-based Controller
for Elevator

Modular decomposition

30

Disclaimer

The elevator example is used in this course for illustrative

purposes of hierarchical state-machine design.

In more detail and with hands on it will be investigated in the

master course DIAS ELEC 8102

31

Example: Modular State-based Controller
for Elevator

Modular decomposition

1. FSM #1: Moving between floors

• control the elevator motor

2. FSM #2: Opening/closing doors

• control the door motor

32

Moving between floors: determine states

33

call0

call2

atFloor0

atFloor2

up

down

stopped stopped stopped

going upgoing down

Moving between floors: determine actions

34

call0

call2

atFloor0

atFloor2

up

down

stopped stopped stopped

going down going up

Moving between floors: add transitions

35

Input variable Description

onfloor(0, 1, 2) Elevator is on floor 0/1/2

doorclosed(0, 1, 2) Doors on floor 0/1/2 are closed

button(0, 1, 2) button 0/1/2 is pressed

call(0, 1, 2) call button on floor 0/1/2 is pressed

allClosed: BOOL
all doors

closed
x: int where elevator is called y: int current floor

Moving between floors: add transitions

36

Moving between floors: add stopping
conditions

37

Done!

Opening/closing doors: states

38

Opening/closing doors: actions

39

Opening doors

40

Closing doors

41

Final controller

42

Doors control

Elevator movement control

nested

Advantages of state-based controllers

● Clear step-by-step development process

a. Determine modular decomposition

b. Determine states

c. Define actions

d. Define transitions

● Self-annotated, easy-to-understand code

● First design, then just implement: minimal amount of

debugging required

49

Limitations of State-based Design Approach

• Concurrent processes

– need to decompose to smaller subsystems

– how to handle their interaction and

coordination?

• Sometimes it is difficult to define stable

states

50

Summary

• State machine design reduces the effort of converting informal
requirements written in natural language to the fully formal
executable code.

• State-based design can be converted to code in many ways,
e.g.
– Look up table

– Via Boolean logic

– As IF-THEN-ELSE of a high-level programming language

– In a graphical language of a similar structure

• Each way has different complexity of design, computation and
life-time code maintenance

• State-based design can be extended with various
enhancements, such as timing delays, arithmetic operations,
etc.

• There are limitations of state-based design and some
workarounds

51

