School of Electrical Engineering

Department of Electrical Engineering and Automation

ELEC 8201 Control & Automation

Design of Automation Applications

Valeriy Vyatkin, Pranay Juhnjhunwala

Plan

- 1. Develop complex applications with function blocks
- 2. How to implement continuous control in function blocks?
- 3. Object-based design
- 4. Service-oriented design

Start with interfaces

- Plant inputs and outputs
- Human-machine interfaces
 - Buttons and switches
 - Display process variables and trends
 - ...

Model-View-Control design pattern

Example: Tank

Aalto University

Simulated tank and HMI

Requiremets?

- Maintain water level
- Maintain certain temperature
- Maintain temperature while increasing water level
- •
- More general:
 - Apply a recipe to a batch of product
 - While ensuring bumpless change of water level and temperature

Application structure

Controller

Recipe

Continuous control of level and temperature


```
ALGORITHM REQ IN ST:
| (* Add your comment (as per IEC 61131-3) here
PID with Bumpless Transfer and Anti-Reset Windup, REAL PV+XOUT
ERROR: = PV-SP;
IF FIRSTTIME THEN
  ITERM:=(ERROR-X0)/KP;
  DTERM:=0;
ELSE
  ITERM:=ITERM+ERROR*DLT/TR;
  DTERM:= (3* (PV-X3) +X1-X2) *TD/DLT/10;
END IF;
OUT:=-KP*ERROR-ITERM-DTERM;
X3 := X2; X2 := X1; X1 := PV;
ITERM:=ITERM-ERROR*DLT/TR;
NEG:=0;
IF OUT<0 THEN
  NEG := 1;
  // OUT:=0;
ELSIF OUT>100 THEN
  OUT:=100;
END IF;
FIRSTTIME:=FALSE;
END ALGORITHM
```

```
KP: Proportional constant
```

TR: Integral constant

TD: Derivative constant

SP: Setpoint. The target for your process variable

DLT: Cycle time constant

PV: Process Variable, the value you want to control

X0: Default initial value.

OUT: PID output

NEG: Flag indicating that OUT<0

$$X_{OUT} = -(K_p \cdot e + \int \frac{e}{T_R} dt + T_d \frac{de}{dt})$$

e=PV-SP:

- The manipulated variable XOUT, the process variable PV and the proportionality constant KP are of type REAL, as are the internal terms ERROR, ITERM and ETERM.
- The inputs PV, SP and X0 are assumed to be limited to the range 0 to 100 per cent of full scale, and the output XOUT is limited to the same range.

How to deploy this code to control a real Tank?

Substitute the plant model with interface to PLC I/O

How to connect application with PLC I/Os?

Watch the lesson:

■ Adding Symbolic links to controller IO's and IceBlock HW configuration

Distributed Control System

Object-based modular design: EnAS lab demo

Assembly system consists of

six conveyors

pallet

two identical jack stations.

Two sledges

two grippers

ten sensors.

Controlled using seven PLCs

EnAS control application

Hierarchical Composition

How to apply Model-View-Control Pattern when integrating objects?

Block Diagram Modelling: Composition

Model-View-Control-HMI Design Pattern

Service-oriented Architecture in Automation

Message exchange between services

Implementation in function blocks

Two independent processes

Mutual Exclusion

Four processes

Orchestration

Example of SOA application: EnAS

Modular Mechatronic Software Engineering

Each function block type corresponds to a mechatronic component type.

Each function block typeimplements basic control services for the mechatronic component.

Programming with Function Blocks

Programming with Function Blocks

Programming with Function Blocks

Layered services architecture

Distributed deployment magic

What to remember?

- How to control continuous process with PLC?
- Batch process: combination of discrete steps (recipe) and continuous processes.
- Object-oriented architecture
 - Benefits: re-use of code, flexibility
- Service-oriented architecture
 - Benefits: re-use of services, flexibility of loose coupling, relience on Cloud and Fog services

