
Chapter 7

Multivariate Models
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Simultaneous Equations Models

• All the models we have looked at thus far have been single
equations models of the form

y = Xβ + u

• All of the variables contained in the X matrix are assumed to
be EXOGENOUS.

• y is an ENDOGENOUS variable.
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Simultaneous Equations Models (Cont’d)

• An example from economics to illustrate - the demand and
supply of a good:

Qdt = α+ βPt + γSt + ut (1)

Qst = λ+ µPt + κTt + vt (2)

Qdt = Qst (3)

where

Qdt = quantity of new houses demanded at time t

Qst = quantity of new houses supplied (built) at time t

Pt = (average) price of new houses prevailing at time t

St = price of a substitute (e.g. older houses)
Tt = some variable embodying the state of housebuilding
technology, ut and vt are error terms.
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Simultaneous Equations Models: The Structural
Form

• Assuming that the market always clears, and dropping the
time subscripts for simplicity

Q = α+ βP + γS + u (4)

Q = λ+ µP + κT + v (5)

• This is a simultaneous STRUCTURAL FORM of the model.

• The point is that price and quantity are determined
simultaneously (price affects quantity and quantity affects
price).

• P and Q are endogenous variables, while S and T are
exogenous.

• We can obtain REDUCED FORM equations corresponding to
(4) and (5) by solving equations (4) and (5) for P and for Q
(separately).
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Obtaining the Reduced Form

• Solving for Q, Solving for Q

α+ βP + γS + u=λ+ µP + κT + v (6)

• Solving for P,

Q

β
−

α

β
−

γS

β
−

u

β
=

Q

µ
−

λ

µ
−

κT

µ
−

v

µ
(7)
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Obtaining the Reduced Form (Cont’d)
• Rearranging (6),

βP − µP = λ− α+ κT − γS + v − u

(β − µ)P = (λ− α) + κT − γS + (v − u)

P =
λ− α

β − µ
+

κ

β − µ
T −

γ

β − µ
S +

v − u

β − µ
(8)

• Multiplying (7) through by βµ,

µQ − µα− µγS − µu = βQ − βλ− βκT − βv

µQ − βQ = µα− βλ− βκT + µγS + µu − βv

(µ− β)Q = (µα− βλ)− βκT + µγS + (µu − βv)

Q =
µα− βλ

µ− β
−

βκ

µ− β
T +

µγ

µ− β
S +

µu − βv

µ− β
(9)
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Obtaining the Reduced Form (Cont’d)

• (8) and (9) are the reduced form equations for P and Q.

‘Introductory Econometrics for Finance’ c© Chris Brooks 2013 7



Simultaneous Equations Bias

• But what would happen if we had estimated equations (4) and
(5), i.e. the structural form equations, separately using OLS?

• Both equations depend on P. One of the CLRM assumptions
was that E(X ′u) = 0, where X is a matrix containing all the
variables on the RHS of the equation.

• It is clear from (8) that P is related to the errors in (4) and
(5) - i.e. it is stochastic.

• What would be the consequences for the OLS estimator, β̂, if
we ignore the simultaneity?

• Recall that β̂ = (X ′X )−1X ′y and y = Xβ + u
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Simultaneous Equations Bias (Cont’d)

• So that

β̂ = (X ′X )−1X ′(Xβ + u)

β̂ = (X ′X )−1X ′Xβ + (X ′X )−1X ′u

β̂ = β + (X ′X )−1X ′u

• Taking expectations,

E (β̂) = E (β) + E ((X ′X )−1X ′u)

E (β̂) = β + E ((X ′X )−1X ′u)

• If the X’s are non-stochastic, E (X ′u) = 0, which would be the
case in a single equation system, so that E (β̂) = β, which is
the condition for unbiasedness.
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Simultaneous Equations Bias (Cont’d)

• But .... if the equation is part of a system, then E (X ′u) 6= 0,
in general.

• Conclusion: Application of OLS to structural equations which
are part of a simultaneous system will lead to biased
coefficient estimates.

• Is the OLS estimator still consistent, even though it is biased?

• No - In fact the estimator is inconsistent as well.

• Hence it would not be possible to estimate equations (4) and
(5) validly using OLS.
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Avoiding Simultaneous Equations Bias

So What Can We Do?

• Taking equations (8) and (9), we can rewrite them as

P = π10 + π11T + π12S + ε1 (10)

Q = π20 + π21T + π22S + ε2 (11)

• We CAN estimate equations (10) & (11) using OLS since all
the RHS variables are exogenous.

• But ... we probably don’t care what the values of the π
coefficients are; what we wanted were the original parameters
in the structural equations - α, β, γ, λ, µ, κ.
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Identification of Simultaneous Equations
Can We Retrieve the Original Coefficients from the π’s?

• Short answer: sometimes.

• As well as simultaneity, we sometimes encounter another
problem: identification.

• Consider the following demand and supply equations

Q = α+ βP Supply equation (12)

Q = λ+ µP Demand equation (13)

We cannot tell which is which!

• Both equations are UNIDENTIFIED or NOT IDENTIFIED, or
UNDERIDENTIFIED.

• The problem is that we do not have enough information from
the equations to estimate 4 parameters. Notice that we would
not have had this problem with equations (4) and (5) since
they have different exogenous variables.
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What Determines whether an Equation is Identified
or not?

• We could have three possible situations:

1. An equation is unidentified

– like (12) or (13)
– we cannot get the structural coefficients from the reduced

form estimates

2. An equation is exactly identified

– e.g. (4) or (5)
– can get unique structural form coefficient estimates

3. An equation is over-identified

– Example given later
– More than one set of structural coefficients could be obtained

from the reduced form.

• How do we tell if an equation is identified or not?
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What Determines whether an Equation is Identified
or not? (Cont’d)

• There are two conditions we could look at:

– The order condition - is a necessary but not sufficient
condition for an equation to be identified.

– The rank condition - is a necessary and sufficient condition for
identification. We specify the structural equations in a matrix
form and consider the rank of a coefficient matrix.

Statement of the Order Condition (from Ramanathan 1995, pp.666)

• Let G denote the number of structural equations. An equation
is just identified if the number of variables excluded from an
equation is G-1.

• If more than G-1 are absent, it is over-identified. If less than
G-1 are absent, it is not identified.
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What Determines whether an Equation is Identified
or not? (Cont’d)

Example

• In the following system of equations, the Y’s are endogenous,
while the X’s are exogenous. Determine whether each
equation is over-, under-, or just-identified.

Y1 = α0 + α1Y2 + α3Y3 + α4X1 + α5X2 + u1 (14)

Y2 = β0 + β1Y3 + β2X1 + u2 (15)

Y3 = γ0 + γ1Y2 + u3 (16)

Solution

G = 3;
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What Determines whether an Equation is Identified
or not? (Cont’d)

If # excluded variables = 2, the eqn is just identified

If # excluded variables > 2, the eqn is over-identified

If # excluded variables < 2, the eqn is not identified

Equation 14: Not identified

Equation 15: Just identified

Equation 16: Over-identified
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Tests for Exogeneity

• How do we tell whether variables really need to be treated as
endogenous or not?

• Consider again equations (14)-(16). Equation (14) contains
Y2 and Y3- but do we really need equations for them?

• We can formally test this using a Hausman test, which is
calculated as follows:

1. Obtain the reduced form equations corresponding to (14)-(16).
The reduced forms turn out to be:

Y1 = π10 + π11X1 + π12X2 + v1 (17)

Y2 = π20 + π21X1 + v2 (18)

Y3 = π30 + π31X1 + v3 (19)
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Tests for Exogeneity (Cont’d)

Estimate the reduced form equations (17)-(19) using OLS, and
obtain the fitted values, Ŷ1, Ŷ2, Ŷ3

2. Run the regression corresponding to equation (14).

3. Run the regression (14) again, but now also including the
fitted values Ŷ 1

2 , Ŷ
1
3 as additional regressors:

Y1 = α0 + α1Y2 + α3Y3 + α4X1 + α5X2 + λ2Ŷ
1
2 + λ3Ŷ

1
3 u1 (20)

4. Use an F-test to test the joint restriction that λ2 = 0, and
λ3 = 0. If the null hypothesis is rejected, Y2 and Y3 should be
treated as endogenous.
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Recursive Systems

• Consider the following system of equations:

Y1 = β10 + γ11X1 + γ12X2 + u1 (21)

Y2 = β20 + β21Y1 + γ21X1 + γ22X2 + u2 (22)

Y3 = β30 + β31Y1 + β32Y2 + γ31X1 + γ32X2 + u3 (23)

• Assume that the error terms are not correlated with each
other. Can we estimate the equations individually using OLS?

• Equation 21: Contains no endogenous variables, so X1 and X2

are not correlated with u1. So we can use OLS on (21).
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Recursive Systems (Cont’d)
• Equation 22: Contains endogenous Y1 together with
exogenous X1 and X2. We can use OLS on (22) if all the RHS
variables in (22) are uncorrelated with that equation’s error
term. In fact, Y1 is not correlated with u2 because there is no
Y2 term in equation (21). So we can use OLS on (22).

• Equation 23: Contains both Y1 and Y2; we require these to
be uncorrelated with u3. By similar arguments to the above,
equations (21) and (22) do not contain Y3, so we can use
OLS on (23).

• This is known as a RECURSIVE or TRIANGULAR system.
We do not have a simultaneity problem here.

• But in practice not many systems of equations will be
recursive...
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Indirect Least Squares (ILS)

• Cannot use OLS on structural equations, but we can validly
apply it to the reduced form equations.

• If the system is just identified, ILS involves estimating the
reduced form equations using OLS, and then using them to
substitute back to obtain the structural parameters.

• However, ILS is not used much because

1. Solving back to get the structural parameters can be tedious.

2. Most simultaneous equations systems are over-identified.
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Estimation of Systems Using Two-Stage Least
Squares

• In fact, we can use this technique for just-identified and
over-identified systems.

• Two stage least squares (2SLS or TSLS) is done in two stages:

Stage 1:

• Obtain and estimate the reduced form equations using OLS.
Save the fitted values for the dependent variables.

Stage 2:

• Estimate the structural equations, but replace any RHS
endogenous variables with their stage 1 fitted values.
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Estimation of Systems Using Two-Stage Least
Squares (Cont’d)

Example: Say equations (14)-(16) are required.

Stage 1:

• Estimate the reduced form equations (17)-(19) individually by
OLS and obtain the fitted values, .

Stage 2:
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Estimation of Systems Using Two-Stage Least
Squares (Cont’d)

• Replace the RHS endogenous variables with their stage 1
estimated values:

Y1 = α0 + α1Ŷ
1
2 + α3Ŷ

1
3 + α4X1 + α5X2 + u1 (24)

Y2 = β0 + β1Ŷ
1
3 + β2X1 + u2 (25)

Y3 = γ0 + γ1Ŷ
1
2 + u3 (26)

• Now Ŷ 1
2 and Ŷ 1

3 will not be correlated with u1, Ŷ
1
3 will not be

correlated with u2, and Ŷ 1
2 will not be correlated with u3.

• It is still of concern in the context of simultaneous systems
whether the CLRM assumptions are supported by the data.
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Estimation of Systems Using Two-Stage Least
Squares (Cont’d)

• If the disturbances in the structural equations are
autocorrelated, the 2SLS estimator is not even consistent.

• The standard error estimates also need to be modified
compared with their OLS counterparts, but once this has been
done, we can use the usual t- and F-tests to test hypotheses
about the structural form coefficients.
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Instrumental Variables

• Recall that the reason we cannot use OLS directly on the
structural equations is that the endogenous variables are
correlated with the errors.

• One solution to this would be not to use Y2 or Y3 , but rather
to use some other variables instead.

• We want these other variables to be (highly) correlated with
Y2 and Y3, but not correlated with the errors - they are called
INSTRUMENTS.
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Instrumental Variables (Cont’d)
• Say we found suitable instruments for Y2 and Y3, z2 and z3
respectively. We do not use the instruments directly, but run
regressions of the form

Y2=λ1 + λ2z2 + ε1 (27)

Y3=λ3 + λ4z3 + ε2 (28)

• Obtain the fitted values from (27) & (28), Ŷ 1
2 and Ŷ 1

3 , and
replace Y2 and Y3 with these in the structural equation.

• We do not use the instruments directly in the structural
equation.

• It is typical to use more than one instrument per endogenous
variable.
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Instrumental Variables (Cont’d)
• If the instruments are the variables in the reduced form
equations, then IV is equivalent to 2SLS.

What Happens if We Use IV / 2SLS Unnecessarily?

• The coefficient estimates will still be consistent, but will be
inefficient compared to those that just used OLS directly.

The Problem With IV

• What are the instruments?

Solution: 2SLS is easier.

Other Estimation Techniques

1. 3SLS - allows for non-zero covariances between the error
terms.
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Instrumental Variables (Cont’d)

2. LIML - estimating reduced form equations by maximum
likelihood

3. FIML - estimating all the equations simultaneously using
maximum likelihood
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An Example of the Use of 2SLS: Modelling the
Bid-Ask Spread and Volume for Options

• George and Longstaff (1993)

• Introduction

– Is trading activity related to the size of the bid / ask spread?
– How do spreads vary across options?

• How Might the Option Price / Trading Volume and the Bid /
Ask Spread be Related?

Consider 3 possibilities:

1. Market makers equalise spreads across options.

2. The spread might be a constant proportion of the option
value.

3. Market makers might equalise marginal costs across options
irrespective of trading volume.

‘Introductory Econometrics for Finance’ c© Chris Brooks 2013 30



Market Making Costs

• The S&P 100 Index has been traded on the CBOE since 1983
on a continuous open-outcry auction basis.

• Transactions take place at the highest bid or the lowest ask.

• Market making is highly competitive.
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What Are the Costs Associated with Market
Making?

• For every contract (100 options) traded, a CBOE fee of 9c
and an Options Clearing Corporation (OCC) fee of 10c is
levied on the firm that clears the trade.

• Trading is not continuous.

• Average time between trades in 1989 was approximately 5
minutes.
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The Influence of Tick-Size Rules on Spreads

• The CBOE limits the tick size:

$1/8 for options worth $3 or more

$1/16 for options worth less than $3

• The spread is likely to depend on trading volume

... but also trading volume is likely to depend on the spread.

• So there will be a simultaneous relationship.
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The Data

• All trading days during 1989 are used for observations.

• The average bid & ask prices are calculated for each option
during the time 2:00pm – 2:15pm Central Standard time.

• The following are then dropped from the sample for that day:

1. Any options that do not have bid / ask quotes reported during
the 1/4 hour.

2. Any options with fewer than 10 trades during the day.

• The option price is defined as the average of the bid & the
ask.

• We get a total of 2456 observations. This is a pooled
regression.
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The Models

• For the calls:

CBAi = α0 + α1CDUM i + α2Ci + α3CLi + α4Ti

+α5CR i + ei (29)

CLi = γ0 + γ1CBAi + γ2Ti + γ3T
2
i + γ4M

2
i + vi (30)

• And symmetrically for the puts:

PBAi =β0 + β1PDUM i + β2Pi + β3PLi + β4Ti

+β5PR i + ui (31)

PLi = δ0 + δ1PBAi + δ2Ti + δ3T
2
i + δ4M

2
i + wi (32)
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The Models (Cont’d)
• where [] CR i and PR i are the squared deltas of the options

• CDUM i and PDUM i are dummy variables to allow for the
minimum tick size

= 0 if Ci or Pi < $3

= 1 if Ci or Pi ≥ $3

• T 2 allows for a nonlinear relationship between time to
maturity and the spread.

• M2 is used since ATM options have a higher trading volume.

• Aside: are the equations identified?

• Equations (29) & (30) and then separately (31) & (32) are
estimated using 2SLS.
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Results 1

Call bid–ask spread and trading volume regression
CBAi = α0 + α1CDUM i + α2Ci + α3CLi + α4Ti + α5CR i + ei
CLi = γ0 + γ1CBAi + γ2Ti + γ3T

2
i
+ γ4M

2
i
+ vi

α0 α1 α2 α3 α4 α5 Adj. R2

0.08362 0.06114 0.01679 0.00902 −0.00228 −0.15378 0.688
(16.80) (8.63) (15.49) (14.01) (−12.31) (−12.52)

γ0 γ1 γ2 γ3 γ4 Adj. R2

−3.8542 46.592 −0.12412 0.00406 0.00866 0.618
(−10.50) (30.49) (−6.01) (14.43) (4.76)

Note: t-ratios in parentheses.
Source: George and Longstaff (1993). Reprinted with the permission of School of Business Administration,
University of Washington.
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Results 2

Put bid–ask spread and trading volume regression
PBAi = β0 + β1PDUM i + β2Pi + β3PLi + β4Ti + β5PR i + ui
PLi = δ0 + δ1PBAi + δ2Ti + δ3T

2
i
+ δ4M

2
i
+ wi

β0 β1 β2 β3 β4 β5 Adj.R2

0.05707 0.03258 0.01726 0.00839 −0.00120 −0.08662 0.675
(15.19) (5.35) (15.90) (12.56) (−7.13) (−7.15)

δ0 δ1 δ2 δ3 δ4 Adj. R2

−2.8932 46.460 −0.15151 0.00339 0.01347 0.517
(−8.42) (34.06) (−7.74) (12.90) (10.86)

Note: t-ratios in parentheses.
Source: George and Longstaff (1993). Reprinted with the permission of School of Business Administration,
University of Washington.
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Comments:

Adjusted R2 ≈ 0.6

α1 and β1 measure the tick size constraint on the spread

α2 and β2 measure the effect of the option price on the
spread

α3 and β3 measure the effect of trading activity on the spread

α4 and β4 measure the effect of time to maturity on the
spread

α5 and β5 measure the effect of risk on the spread

γ1 and δ1 measure the effect of the spread size on trading
activity etc.
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Calls and Puts as Substitutes

• The paper argues that calls and puts might be viewed as
substitutes since they are all written on the same underlying.

• So call trading activity might depend on the put spread and
put trading activity might depend on the call spread.

• The results for the other variables are little changed.
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Conclusions

• Bid - Ask spread variations between options can be explained
by reference to the level of trading activity, deltas, time to
maturity etc. There is a 2 way relationship between volume
and the spread.

• The authors argue that in the second part of the paper, they
did indeed find evidence of substitutability between calls &
puts.

Comments

– No diagnostics.

– Why do the CL and PL equations not contain the CR and PR
variables?
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Conclusions (Cont’d)

– The authors could have tested for endogeneity of CBA and
CL.

– Why are the squared terms in maturity and moneyness only in
the liquidity regressions?

– Wrong sign on the squared deltas.
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Vector Autoregressive Models

• A natural generalisation of autoregressive models popularised
by Sims

• A VAR is in a sense a systems regression model i.e. there is
more than one dependent variable.

• Simplest case is a bivariate VAR

y1t = β10 + β11y1t−1 + · · ·+ β1ky1t−k + α11y2t−1 + · · ·

+α1ky2t−k + u1t

y2t = β20 + β21y2t−1 + · · ·+ β2ky2t−k + α21y1t−1 + · · ·

+α2ky1t−k + u2t
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Vector Autoregressive Models (Cont’d)

where uit is a white noise disturbance term with E(uit) = 0,
(i = 1, 2), E(u1tu2t) = 0.

• The analysis could be extended to a VAR(g) model, or so that
there are g variables and g equations.
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Vector Autoregressive Models: Notation and
Concepts

• One important feature of VARs is the compactness with which
we can write the notation. For example, consider the case
from above where k=1.

• We can write this as

y1t = β10 + β11y1t−1 + α11y2t−1 + u1t

y2t = β20 + β21y2t−1 + α21y1t−1 + u2t

• or
(

y1t
y2t

)

=

(

β10
β20

)

+

(

β11 α11

α21 β21

)(

y1t−1

y2t−1

)

+

(

u1t
u2t

)
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Vector Autoregressive Models: Notation and
Concepts (Cont’d)

• or even more compactly as

yt = β0 + β1yt−1 + ut
g × 1 g × 1 g × gg × 1 g × 1

• This model can be extended to the case where there are k lags
of each variable in each equation:

yt = β0 + β1yt−1 + β2yt−2 + · · ·+ βkyt−k + ut
g × 1 g × 1 g × gg × 1 g × g g × 1 g × g g × 1 g × 1

• We can also extend this to the case where the model includes
first difference terms and cointegrating relationships (a
VECM).
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Vector Autoregressive Models Compared with
Structural Equations Models

• Advantages of VAR Modelling

– Do not need to specify which variables are endogenous or
exogenous - all are endogenous

– Allows the value of a variable to depend on more than just its
own lags or combinations of white noise terms, so more
general than ARMA modelling

– Provided that there are no contemporaneous terms on the
right hand side of the equations, can simply use OLS
separately on each equation

– Forecasts are often better than “traditional structural” models.

• Problems with VAR’s

– VAR’s are a-theoretical (as are ARMA models)
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Vector Autoregressive Models Compared with
Structural Equations Models (Cont’d)

– How do you decide the appropriate lag length?

– So many parameters! If we have g equations for g variables
and we have k lags of each of the variables in each equation,
we have to estimate (g + kg 2) parameters. e.g. g=3, k=3,
parameters=30

– Do we need to ensure all components of the VAR are
stationary?

– How do we interpret the coefficients?
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Choosing the Optimal Lag Length for a VAR

• 2 possible approaches: cross-equation restrictions and
information criteria

Cross-Equation Restrictions

• In the spirit of (unrestricted) VAR modelling, each equation
should have the same lag length

• Suppose that a bivariate VAR(8) estimated using quarterly
data has 8 lags of the two variables in each equation, and we
want to examine a restriction that the coefficients on lags 5
through 8 are jointly zero. This can be done using a likelihood
ratio test
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Choosing the Optimal Lag Length for a VAR
(Cont’d)

• Denote the variance-covariance matrix of residuals (given by
ûû′)/T ), as Σ̂. The likelihood ratio test for this joint
hypothesis is given by

LR = T [log|Σ̂r | − log|Σ̂u|]

where where |Σ̂r | is the variance-covariance matrix of the
residuals for the restricted model (with 4 lags), where |Σ̂u | is
the variance-covariance matrix of residuals for the unrestricted
VAR (with 8 lags), and T is the sample size.
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Choosing the Optimal Lag Length for a VAR
(Cont’d)

• The test statistic is asymptotically distributed as a χ2 with
degrees of freedom equal to the total number of restrictions.
In the VAR case above, we are restricting 4 lags of two
variables in each of the two equations = a total of 4*2*2=16
restrictions.

• In the general case where we have a VAR with p equations,
and we want to impose the restriction that the last q lags have
zero coefficients, there would be p2q restrictions altogether

• Disadvantages: Conducting the LR test is cumbersome and
requires a normality assumption for the disturbances.
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Information Criteria for VAR Lag Length Selection

• Multivariate versions of the information criteria are required.
These can be defined as:

MAIC = log
∣

∣

∣
Σ̂
∣

∣

∣
+ 2k ′/T

MSBIC = log
∣

∣

∣
Σ̂
∣

∣

∣
+

k ′

T
log(T )

MHQIC = log
∣

∣

∣
Σ̂
∣

∣

∣
+

2k ′

T
log(log(T ))

where all notation is as above and k is the total number of
regressors in all equations, which will be equal to g2k+g for g
equations, each with k lags of the g variables, plus a constant
term in each equation. The values of the information criteria
are constructed for 0, 1, ... lags (up to some pre-specified
maximum k̄)).
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Does the VAR Include Contemporaneous Terms?

• So far, we have assumed the VAR is of the form

y1t = β10 + β11y1t−1 + α11y2t−1 + u1t

y2t = β20 + β21y2t−1 + α21y1t−1 + u2t

• But what if the equations had a contemporaneous feedback
term?

y1t = β10 + β11y1t−1 + α11y2t−1 + α12y2t + u1t

y2t = β20 + β21y2t−1 + α21y1t−1 + α22y1t + u2t
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Does the VAR Include Contemporaneous Terms?
(Cont’d)

• We can write this as

(

y1t
y2t

)

=

(

β10
β20

)

+

(

β11 α11

α21 β21

)(

y1t−1

y2t−1

)

+

(

α12 0
0 α22

)(

y2t
y1t

)

+

(

u1t
u2t

)

• This VAR is in primitive form.
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Primitive versus Standard Form VARs
• We can take the contemporaneous terms over to the LHS and
write
(

1 −α12

−α22 1

)(

y1t
y2t

)

=

(

β10
β20

)

+

(

β11 α11

α21 β21

)(

y1t−1

y2t−1

)

or

Ayt = β0 + β1yt−1 + ut

• If both sides are pre-multiplied by A−1

yt = A
−1β0 +A

−1β1yt−1 +A
−1ut

or

yt = A0 +A1yt−1 + et

• This is known as a standard form VAR, which we can estimate
using OLS.

‘Introductory Econometrics for Finance’ c© Chris Brooks 2013 55



Block Significance and Causality Tests

• It is likely that, when a VAR includes many lags of variables, it
will be difficult to see which sets of variables have significant
effects on each dependent variable and which do not. For
illustration, consider the following bivariate VAR(3):

(

y1t
y2t

)

=

(

α10

α20

)

+

(

β11 β12
β21 β22

)(

y1t−1

y2t−1

)

+

(

γ11 γ12
γ21 γ22

)(

y1t−2

y2t−2

)

+

(

δ11 δ12
δ21 δ22

)(

y1t−3

y2t−3

)

+

(

u1t
u2t

)
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Block Significance and Causality Tests (Cont’d)
• This VAR could be written out to express the individual
equations as

y1t = α10 + β11y1t−1 + β12y2t−1 + γ11y1t−2 + γ12y2t−2

+ δ11y1t−3 + δ12y2t−3 + u1t

y2t = α20 + β21y1t−1 + β22y2t−1 + γ21y1t−2 + γ22y2t−2

+ δ21y1t−3 + δ22y2t−3 + u2t

• We might be interested in testing the following hypotheses,
and their implied restrictions on the parameter matrices:

Hypothesis Implied restriction

1 Lags of y1t do not explain current y2t β21 = 0 and γ21 = 0 and δ21 = 0
2 Lags of y1t do not explain current y1t β11 = 0 and γ11 = 0 and δ11 = 0
3 Lags of y2t do not explain current y1t β12 = 0 and γ12 = 0 and δ12 = 0
4 Lags of y2t do not explain current y2t β22 = 0 and γ22 = 0 and δ22 = 0
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Block Significance and Causality Tests (Cont’d)
• Each of these four joint hypotheses can be tested within the
F-test framework, since each set of restrictions contains only
parameters drawn from one equation.

• These tests could also be referred to as Granger causality
tests.

• Granger causality tests seek to answer questions such as “Do
changes in y1 cause changes in y2?” If y1 causes y2, lags of y1
should be significant in the equation for y2. If this is the case,
we say that y1 “Granger-causes” y2.

• If y2 causes y1, lags of y2 should be significant in the equation
for y1.

• If both sets of lags are significant, there is “bi-directional
causality”
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Impulse Responses

• VAR models are often difficult to interpret: one solution is to
construct the impulse responses and variance decompositions.

• Impulse responses trace out the responsiveness of the
dependent variables in the VAR to shocks to the error term.
‘A unit shock is applied to each variable and its effects are
noted.

• Consider for example a simple bivariate VAR(1):

y1t = β10 + β11y1t−1 + α11y2t−1 + u1t

y2t = β20 + β21y2t−1 + α21y1t−1 + u2t

• A change in u1t will immediately change y1. It will change
change y2 and also y1 during the next period.

• We can examine how long and to what degree a shock to a
given equation has on all of the variables in the system.
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Variance Decompositions

• Variance decompositions offer a slightly different method of
examining VAR dynamics. They give the proportion of the
movements in the dependent variables that are due to their
“own” shocks, versus shocks to the other variables.

• This is done by determining how much of the s-step ahead
forecast error variance for each variable is explained
innovations to each explanatory variable (s= 1,2,...).

• The variance decomposition gives information about the
relative importance of each shock to the variables in the VAR.
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Impulse Responses and Variance Decompositions:
The Ordering of the Variables

• But for calculating impulse responses and variance
decompositions, the ordering of the variables is important.

• The main reason for this is that above, we assumed that the
VAR error terms were statistically independent of one another.

• This is generally not true, however. The error terms will
typically be correlated to some degree.

• Therefore, the notion of examining the effect of the
innovations separately has little meaning, since they have a
common component.
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Impulse Responses and Variance Decompositions:
The Ordering of the Variables (Cont’d)

• What is done is to “orthogonalise” the innovations.

• In the bivariate VAR, this problem would be approached by
attributing all of the effect of the common component to the
first of the two variables in the VAR.

• In the general case where there are more variables, the
situation is more complex but the interpretation is the same.
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An Example of the use of VAR Models: The
Interaction between Property Returns and the

Macroeconomy.

• Brooks and Tsolacos (1999) employ a VAR methodology for
investigating the interaction between the UK property market
and various macroeconomic variables.

• Monthly data are used for the period December 1985 to
January 1998.

• It is assumed that stock returns are related to macroeconomic
and business conditions.

• The variables included in the VAR are

– FTSE Property Total Return Index (with general stock market
effects removed)
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An Example of the use of VAR Models: The
Interaction between Property Returns and the

Macroeconomy. (Cont’d)

– The rate of unemployment

– Nominal interest rates

– The spread between long and short term interest rates

– Unanticipated inflation

– The dividend yield.

The property index and unemployment are I(1) and hence are
differenced.
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Marginal Significance Levels associated with Joint
F -tests that all 14 Lags have not Explanatory Power

for that particular Equation in the VAR

• Multivariate AIC selected 14 lags of each variable in the VAR

Lags of variable
Dependent

variable SIR DIVY SPREAD UNEM UNINFL PROPRES

SIR 0.0000 0.0091 0.0242 0.0327 0.2126 0.0000
DIVY 0.5025 0.0000 0.6212 0.4217 0.5654 0.4033
SPREAD 0.2779 0.1328 0.0000 0.4372 0.6563 0.0007
UNEM 0.3410 0.3026 0.1151 0.0000 0.0758 0.2765
UNINFL 0.3057 0.5146 0.3420 0.4793 0.0004 0.3885
PROPRES 0.5537 0.1614 0.5537 0.8922 0.7222 0.0000

The test is that all 14 lags have no explanatory power for that particular equation in the
VAR.
Source: Brooks and Tsolacos (1999).
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Variance Decompositions for the Property Sector
Index Residuals

• Ordering for Variance Decompositions and Impulse Responses:

1. Order I: PROPRES, DIVY, UNINFL, UNEM, SPREAD, SIR

2. Order II: SIR, SPREAD, UNEM, UNINFL, DIVY, PROPRES.

Explained by innovations in

SIR DIVY SPREAD UNEM UNINFL PROPRES

Months ahead I II I II I II I II I II I II

1 0.0 0.8 0.0 38.2 0.0 9.1 0.0 0.7 0.0 0.2 100.0 51.0
2 0.2 0.8 0.2 35.1 0.2 12.3 0.4 1.4 1.6 2.9 97.5 47.5
3 3.8 2.5 0.4 29.4 0.2 17.8 1.0 1.5 2.3 3.0 92.3 45.8
4 3.7 2.1 5.3 22.3 1.4 18.5 1.6 1.1 4.8 4.4 83.3 51.5
12 2.8 3.1 15.5 8.7 15.3 19.5 3.3 5.1 17.0 13.5 46.1 50.0
24 8.2 6.3 6.8 3.9 38.0 36.2 5.5 14.7 18.1 16.9 23.4 22.0

Source: Brooks and Tsolacos (1999).
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Impulse Responses and Standard Error Bands for
Innovations in Dividend Yield and Unexpected

Inflation
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