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Introduction

Thus far, the linear regression model has all the variables being measured at the
same point in time.

To allow financial variables to adjust to shocks over time this model is now
extended to incorporate dynamic effects.

In a scalar dynamic model, a single dependent financial variable is explained
using its own past history as well as lags of other relevant financial variables.

Single dependent variable models are often extended to multivariate specifications
in which several financial variables are jointly determined and modelled together.
Such models are heavily used in central banks, treasuries, international agencies,
and the financial industry.
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Stationarity

Standard linear regression requires that the variables involved satisfy a simplifying
condition known as stationarity.

Technically, a time series is said to be covariance stationary, if the mean, variance,
and autocovariances all remain invariant to the time periods in which they are
calculated.

Stationarity is important because it allows us to build standard models and use the
past behaviour of variables to extrapolate their behaviour in the future.
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Single Equation Autoregressive Models
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AR model

The simplest possible dynamic model is an autoregressive model of order 1 or
AR(1) model

yt = φ0 + φ1yt−1 + ut , ut ∼ iid (0, σ2
u).

The condition |φ1| < 1 is required for the model to be stationary.

If the longest lag included being the pth lag, then

yt = φ0 + φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + ut , ut ∼ iid (0, σ2
u),

in which φ0, φ1, · · · , φp are unknown parameters. This is an AR(p) model.
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Estimation - AR(1)

For the AR(1) model the unknown parameters {φ0, φ1, σ
2
u} are easily estimated by

ordinary least squares.
The residual sum of squares function for the AR(p) model is

S =
T∑

t=2

u2
t =

T∑
t=2

(yt − φ0 − φ1yt−1)2 ,

where the sample sum of squares begins at t = 2 as 1 observation is lost because
of the inclusion of 1 lag in the model.
Estimation proceeds by simple treating the lags of yt as regressors, so estimation
amounts to regressing yt on a constant and its first lag.
Once φ̂0 and φ̂1 are available then

ût = yt − φ̂0 − φ̂1yt−1

and the residual variance is

σ̂2
u =

1
T − 1

T∑
t=2

û2
t .
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Estimation - AR(p)

The unknown parameters θ = {φ0, φ1, · · · , φp, σ
2
u} of the AR(p) model are

estimated by least squares.

The residual sum of squares function for the AR(1) model is

S =
T∑

t=p+1

u2
t =

T∑
t=p+1

(yt − φ0 − φ1yt−1 − φ2yt−2 − · · · − φpyt−p)2 ,

where the sample sum of squares begins at t = p + 1 as p observations are lost
because of the inclusion of p lags in the model.

After estimating the parameters the least squares residuals are computed as

ût = yt − φ̂0 − φ̂1yt−1 − φ̂2yt−2 − · · · − φ̂pyt−p,

which are used to compute the residual variance

σ̂2
u =

1
T − p

T∑
t=p+1

û2
t .

Financial Econometric Modeling c©Hurn, Martin, Phillips & Yu Oxford University Press, 2020 9 / 42



Autocorrelation function

Consider the following sequence of AR models may be estimated
equation-by-equation by ordinary least squares

yt = φ10 + ρ1yt−1 + u1t ,

yt = φ20 + ρ2yt−2 + u2t ,

...
...

...

yt = φk0 + ρk yt−k + ukt ,

giving the estimated ACF {ρ̂1, ρ̂2, · · · , ρ̂k}. The notation adopted for the constant
term in the above regressions emphasises that this term differs for each equation.

For 0 < φ1 < 1, the autocorrelation function of yt declines exponentially for
increasing k so that the effects of previous values on yt gradually diminish.

For −1 < φ1 < 0, the autocorrelation function of yt alternates in sign as k is even
or odd and its modulus declines exponentially.

Plotting the autocorrelation function is a useful tool to get a feel for the data.
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Partial autocorrelation function

Another measure of the dynamic properties of AR models is the partial
autocorrelation function (PACF) at lag k , which measures the relationship between
yt and yt−k but now with the intermediate lags included in the regression model,
so that their effects are controlled for.
To compute the sample PACF the following AR models are estimated
equation-by-equation by ordinary least squares

yt = φ10 + φ11yt−1 + u1t

yt = φ20 + φ21yt−1 + φ22yt−2 + u2t

yt = φ30 + φ31yt−1 + φ32yt−2 + φ33yt−3 + u3t

...
...

...
...

yt = φk0 + φk1yt−1 + φk2yt−2 + · · ·+ φkk yt−k + ukt ,

where the estimated PACF is therefore given by {φ̂11, φ̂22, · · · , φ̂kk}.
The PACF for an AR(p) model is zero for lags greater than p. For example, in the
AR(1) model the PACF has a spike at lag 1 and thereafter is φkk = 0, ∀ k > 1.
This is in contrast to the ACF which in general has non-zero values for higher lags,
as seen in the simple AR(1) model above.
Note that by construction the ACF and PACF at lag 1 are equal to each other.
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ACF and PACF of S&P 500 dividend returns
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Regression Models with Dynamics

To allow for dynamic effects, regression models may be combined with the ARMA
class of models. Some examples are as follows.

yt = α + βxt + ut , ut = φ1ut−1 + vt [AR disturbance]
yt = α + βxt + λyt−1 + ut [Lagged dependent]
yt = α + βxt + γxt−1 + ut [Lagged explanatory]
yt = α + βxt + λyt−1 + γxt−1 + ut [Joint specification]

ut = φ1ut−1.

One important reason for including dynamics in a regression model is to correct
for potential misspecification problems that arise from incorrectly excluding
explanatory variables.
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Vector Autoregressive Models
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Background

Thus far we have considered single equations and we have just encountered that
autoregressive (AR) model.

Sometimes it is difficult to delimit a single variable as the dependent variable to be
explained in terms of all the other variables - and it is reasonable to suppose that
all variables are jointly determined.

To allow financial variables to adjust to shocks over time this model is now
extended to incorporate dynamic effects.

In a multiple equation system where each variable is dependent on its own lags
and the lags or all other variables, then we have a vector autoregressive (VAR)
model.

The assumption of stationarity of all the variables is maintained.
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VAR(1) with 2 variables

An example of a two variable VAR(1) model is

y1t = φ10 + φ11,1y1t−1 + φ12,1y2t−1 + u1t

y2t = φ20 + φ21,1y1t−1 + φ22,1y2t−1 + u2t

where y1t and y2t are the jointly dependent variables and u1t and u2t are disturbance
terms.
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VAR(2) with 2 variables

An example of a two variable VAR(2) model is

y1t = φ10 + φ11,1y1t−1 + φ11,2y1t−2 + φ12,1y2t−1 + φ12,2y2t−2 + u1t

y2t = φ20 + φ21,1y1t−1 + φ21,2y1t−2 + φ22,1y2t−1 + φ22,2y2t−2 + u2t

where y1t and y2t are the jointly dependent variables and u1t and u2t are disturbance
terms.
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VAR(1) with three variables

An example of a three variable VAR(1) model is

y1t = φ10 + φ11,1y1t−1 + φ12,1y2t−1 + φ13,1y3t−1 + u1t

y2t = φ20 + φ21,1y1t−1 + φ22,1y2t−1 + φ23,1y3t−1 + u2t

y3t = φ30 + φ31,1y1t−1 + φ32,1y2t−1 + φ33,1y3t−1 + u3t ,

where y1t , y2t and y3t are the jointly dependent variables, p is a prescribed lag length
which is the same for all equations and u1t , u2t and u3t are disturbance terms.
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VAR(p)

An example of a three variable VAR(p) model is

y1t = φ10 +

p∑
i=1

φ11,iy1t−i +

p∑
i=1

φ12,iy2t−i +

p∑
i=1

φ13,iy3t−i + u1t

y2t = φ20 +

p∑
i=1

φ21,iy1t−i +

p∑
i=1

φ22,iy2t−i +

p∑
i=1

φ23,iy3t−i + u2t

y3t = φ30 +

p∑
i=1

φ31,iy1t−i +

p∑
i=1

φ32,iy2t−i +

p∑
i=1

φ33,iy3t−i + u3t ,

where y1t , y2t and y3t are the jointly dependent variables, p is a prescribed lag length
which is the same for all equations and u1t , u2t and u3t are disturbance terms.
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Higher dimensional VARs

In matrix notation a VAR with N variables is conveniently represented as

yt = Φ0 + Φ1yt−1 + Φ2yt−2 + · · ·+ Φpyt−p + ut ,

where the parameter matrices are given by

Φ0 =


φ10

φ20
...
φN0

 , Φi =


φ11,i φ12,i · · · φ1N,i

φ21,i φ22,i φ2N,i
...

...
. . .

...
φN1,i φN2,i · · · φNN,i

 .
The disturbances ut = {u1t , u2t , ..., uNt}′ ∼ iid (0,Ω) are independent over t with zero
mean and covariance matrix

Ω = E(utu′t ) =


σ2

1 σ12 · · · σ1N

σ21 σ2
2 · · · σ2N

...
...

. . .
...

σN1 σN2 · · · σ2
N

 .
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Estimating the covariance matrix of residuals

To estimate the covariance matrix Ω let ût = {û1t , û2t , · · · , ûNt} represent the least
squares residuals for each equation in the VAR.
An estimate of the covariance matrix is computed using the sample residual moment
matrix defined by

Ω̂ =


σ̂2

1 σ̂12 · · · σ̂1N

σ̂21 σ̂2
2 σ̂2N

...
. . .

...
σ̂N1 σ̂N2 · · · σ̂2

N

 ,
or more explicitly,

Ω̂ =
1
T


∑T

t=p+1 û2
1t

∑T
t=p+1 û1t û2t · · ·

∑T
t=p+1 û1t ûNt∑T

t=p+1 û2t û1t
∑T

t=p+1 û2
2t

∑T
t=p+1 û2t ûNt

...
. . .

...∑T
t=p+1 ûNt û1t

∑T
t=p+1 ûNt û2t · · ·

∑T
t=p+1 û2

Nt

 .
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Popularity

VARs enjoy great popularity in applied research in finance.

(i) Estimation is straightforward, involving the application of ordinary least squares to
each equation in the VAR.

(ii) The VAR system provides a convenient framework to forecast financial variables.

(iii) The model provides a basis for performing so-called causality tests between
financial variables.

(iv) Theoretical models in finance can be tested through the imposition of restrictions
on the VAR parameters.
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Lag Length Selection

If the lag length is too short, there is a risk that aspects of the dynamic mechanism
are excluded from the model. If the lag structure is too long then there are
redundant lags which can reduce the precision of the parameter estimates,
thereby raising the standard errors and yielding t statistics that may be biased
downwards.

In choosing the lag structure of a VAR, care must be exercised in relation to the
sample size as degrees of freedom quickly diminish for even moderate lag lengths.
For each integer increase in the lag length, an additional matrix of coefficients
must be estimated. In a K dimensional system this means an additional K 2

coefficient parameters are needed for each extra lag.

For these reasons, an important practical consideration in constructing and
estimating a VAR(p) model is the choice of the lag order p.
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Choosing lag length

A common data-driven approach to selecting lag order is to use information
criteria.

The three most commonly used information criteria (IC) for selecting a
parsimonious time series model are

AIC = log |Ω̂|+ 2pK 2

T

HIC = log |Ω̂|+ 2 log(log(T ))

T
pK 2

SIC = log |Ω̂|+ log(T )

T
pK 2.

In these expressions, Ω̂ is an estimate of the covariance matrix.

In the scalar case, the determinant of the estimated covariance matrix, |Ω̂|, is
replaced by the estimated residual variance, σ̂2

u .
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Selection procedure

Choosing an IC optimal lag order using any of the above criteria requires the following
steps.

Step 1: Choose a maximum number of lags, pmax, for the VAR model. This
choice may be informed by the ACFs and PACFs of the data, the
frequency with which the data are observed and the sample size.

Step 2: Estimate the model sequentially for all lags up to and including pmax.
For each regression, compute the relevant information criterion, holding
the sample size fixed.

Step 3: Choose the specification corresponding to the minimum values of the
information criterion. In some cases there will be disagreement
between different information criteria on the choice of lag length. The
final decision is then a matter of individual judgement.
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Interpreting VARs

Financial Econometric Modeling c©Hurn, Martin, Phillips & Yu Oxford University Press, 2020 26 / 42



Interpreting VARs

In a VAR model, all lagged variables are assumed to contribute information in
determining the behaviour of each dependent variable.

But in most empirical applications of VARs there are often large numbers of
estimated coefficients which are statistically insignificant.

A question of considerable importance in empirical work is whether the
coefficients of all the lagged values of a particular explanatory variable in a given
equation are zero or not.

This question bears on whether the information content of the past values of one
variable influences the behaviour of another variable in the system.

This notion has a close connection with that of causal influence in the sense that
predictions might be improved by measuring and including such influences.
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Granger causality

Have another look at

y1t = φ10 + φ11,1y1t−1 + φ12,1y2t−1 + φ13,1y3t−1 + u1t

y2t = φ20 + φ21,1y1t−1 + φ22,1y2t−1 + φ23,1y3t−1 + u2t

y3t = φ30 + φ31,1y1t−1 + φ32,1y2t−1 + φ33,1y3t−1 + u3t ,

The information content of variable y2 on variable y1 might be tested by
considering restriction

φ12,1 = 0.

This restriction can be tested jointly using a χ2 test with 1 degrees of freedom.
If y2t plays a role in predicting future values of y1t , then y2t is said to cause y1t in
Granger’s sense (Named after Professor Sir Clive Granger, who won the Nobel
Prize in Economics in 2003)
It is important to remember that Granger causality is based on the presence (or
absence) of predictability and does not of itself signify causal influence in a
philosophical sense.
Evidence of Granger causality and the lack of Granger causality from y2t to y1t , are
denoted, respectively, as

y2t → y1t y2t 9 y1t .
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More generally ...

It is also possible to test for Granger causality in the reverse direction by performing a
joint test of the lags of y1t in the y2t equation. Combining both sets of causality results
can yield a range of statistical causal patterns:

Unidirectional: y1t → y2t

(from y1t to y2t ) y2t 9 y1t

Unidirectional: y2t → y1t

(from y2t to y1t ) y1t 9 y2t

Bidirectional: y2t → y1t

(feedback) y1t → y2t

Independence: y2t 9 y1t

y1t 9 y2t
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Impulse response analysis

Granger causality testing is one method of identifying the system dynamics of a
VAR that enhances understanding of variable interactions over time.

An alternative but related approach focuses on impulse responses by tracking the
transmission effects of shocks to the system on the dependent variables. This
approach to examining system dynamics is called impulse response analysis.

A potential candidate for the shocks in a VAR system is the vector of disturbances
ut = {u1t , u2t , ..., uNt}, which represents contributions to the dependent variable
that are not predicted from past information. The primary problem in the direct use
of the fitted disturbances in studying impulse responses is that these terms are
correlated, which complicates the interpretation of the shocks ut with respect to
the underlying economic and financial forces.

One solution that aids interpretation is to transform the VAR into a new system in
which the disturbances in the equations are uncorrelated so that the effects of
these uncorrelated shocks on the system variables can be traced over time,
thereby enabling determination of the responses to impulses associated with the
individual shocks.
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Illustration

Consider the bivariate VAR model of equity returns and dividend returns

ret = φ10 +
6∑

i=1

φ11,i ret−i +
6∑

i=1

φ12,i rdt−i + u1t ,

rdt = φ20 +
6∑

i=1

φ21,i ret−i +
6∑

i=1

φ22,i rdt−i + u2t .

Let the relationship between the two VAR disturbances u1t and u2t , be represented
by the linear regression equation

u2t = ρu1t + v2t ,

where ρ is a parameter capturing the correlation between u1t and u2t .

Note that v2t is a new disturbance term which, from the properties of the linear
regression model, is uncorrelated with u1t . This equation is a structural
relationship between the two shocks u1t and u2t in which the residual v2t is that
part of the impulse u2t which is uncorrelated with u1t .
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Illustration

Substituting for u1t and u2t and rearranging yields

rdt = (φ20 − ρφ10) + ρ ret +
6∑

i=1

(φ21,i − ρφ11,i )ret−i +
6∑

i=1

(φ22,i − ρφ12,i )rdt−i + v2t ,

= β20 + ρ ret +
6∑

i=1

β21,i ret−i +
6∑

i=1

β22,i rdt−i + v2t ,

in which β20 = φ20 − ρφ10, β21,i = φ21,i − ρφ11,i and β22,i = φ22,i − ρφ12,i .
The difference between the original VAR equation for rdt and this one is the
inclusion of equity returns at time t , ret , as an explanatory variable.
Moreover, since v2t is independent of u1t , the VAR equation for ret and this
equation for rdt contain disturbances that are now uncorrelated with each other.
The VAR is now called a structural VAR (SVAR)

ret = β10 +
6∑

i=1

β11,i ret−i +
6∑

i=1

β12,i rdt−i + v1t ,

rdt = β20 + ρ ret +
6∑

i=1

β21,i ret−i +
6∑

i=1

β22,i rdt−i + v2t ,

where β10 = φ10, β11,i = φ11,i , β12,i = φ12,i and v1t = u1t .
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Parameter estimates

Parameter estimates of a bivariate SVAR(6) model for the United States monthly equity
and dividend returns for the period January 1871 to September 2016.

Lag Equity Returns Dividend Returns
re rd re rd

0 -0.006
(0.003)

1 0.297 -0.049 0.003 0.910
(0.024) (0.188) (0.003) (0.024)

2 -0.070 0.520 0.007 0.019
(0.025) (0.255) (0.003) (0.032)

3 -0.029 -0.248 0.008 -0.254
(0.025) (0.251) (0.003) (0.032)

4 0.030 0.318 0.002 0.226
(0.025) (0.251) (0.003) (0.032)

5 0.052 -0.231 0.012 0.014
(0.025) (0.255) (0.003) (0.032)

6 -0.005 -0.341 0.014 -0.025
(0.024) (0.186) (0.003) (0.024)

Constant 0.264 0.019
(0.100) (0.012)

T 1742 1742
RSS 25945.84 419.0077
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Equity Shock

Impulse responses show the time-forms of system variable responses to incoming
structural shocks.

Impulse responses impart interpretable information about the internal dynamics
within a VAR system that govern the transmission effects of shocks.

Let the size of the shock be one standard deviation of v1t given by

∆ret =

√
25945.84

1742
= 3.8593.

Dividend returns change by

∆rdt = ρ̂× 3.8593 = −0.0061× 3.8593 = −0.0237 .
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One period effects

Consider

ret+1 = β10 +
6∑

i=1

β11,i ret+1−i +
6∑

i=1

β12,i rdt+1−i + v1t+1,

rdt+1 = β20 + ρ ret+1 +
6∑

i=1

β21,i ret+1−i +
6∑

i=1

β22,i rdt+1−i + v2t+1 .

Expected change in equities at t + 1 comes from

Et (∆ret+1) = β11,1∆ret + β12,1∆rdt .

Thus the impulse response of equities at time t + 1 to an equity shock is
estimated as

Et (∆ret+1) = 0.2974× 3.8593− 0.0489× (−0.0237) = 1.1491 .

Expected change in dividends at t + 1 comes from

Et (∆rdt+1) = ρ∆ ret+1 + β21,1∆ret + β22,1∆rdt ,

which is estimated as

Et (∆rdt+1) = −0.0061×1.1491+0.0028×3.8593+0.9096×(−0.0237) = −0.0179.
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Dividend Shock

Let the size of the shock be one standard deviation of v2t which is

∆rdt =

√
419.0077

1742
= 0.4904.

The effect of a dividend shock on equities at time t is

∆ret = 0.0000 .

The effects of the dividend shock at time t is

Et (∆ret+1) = β11,1∆ret + β12,1∆rdt ,

which is estimated as

Et (∆ret+1) = 0.2974× 0.00 + (−0.0489)× 0.4904 = −0.0240.

The effect of the dividend shock on dividends the next month is

Et (∆rdt+1) = ρ∆ret+1 + β21,1∆ret + β22,1∆rdt ,

which is estimated as

Et (∆rdt+1) = 0.2974× (−0.0241) + 0.0028× 0.00 + 0.9097× 0.4904 = 0.4463 .
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Impulse responses
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Figure: Impulse responses for the VAR(6) model of equity and dividend returns. The shaded
areas represent 95% confidence intervals. Data are monthly for the period February 1871 to
September 2016.
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Cholesky Decomposition

The calculation of impulse responses is presented within a regression framework
which involves estimating the SVAR by least squares and then using recursive
substitution methods to compute the effects of the structural shocks on the
variables in the model.

A more convenient approach in the multivariate case is to perform the calculations
using matrices. Formally this is achieved by defining a lower triangular matrix L
with the property that the estimated VAR covariance matrix Ω̂ in is decomposed as

Ω̂ = LL′.

This decomposition of a matrix is commonly referred to as the Cholesky
decomposition. As the matrix being decomposed in this case is the covariance
matrix, L can be referred to as the standard deviation matrix, or even square-root
matrix, as multiplying L by the transposition of itself recovers the covariance
matrix.

Impulse responses based on the Cholesky decomposition are also the same
estimates obtained using the recursive substitution method applied earlier to the
estimated SVAR model.
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Variance decomposition

To gain explicit quantitative insight on the relative importance of various structural
shocks on the variables in the system a variance decomposition can also be
performed.

The forecast variances for each variable over alternative forecast horizons are
decomposed into the separate relative effects of each structural shock with the
results expressed as a percentage of the overall movement.

In the case of the SVAR model of equities and dividends, the approach is to
express the forecast error variances of equities and dividends in terms of the
structural shocks v1 and v2.
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Forecast Error Variance at T + 1 for Equity

The forecast error variance of equities at T + 1 is defined as

var(e1T+1) = ET [(e1T+1 − ET (e1T+1))2] = ET (e2
1T+1) = ET (v2

1T+1),

which uses the property that ET (e1T+1) = 0 and uses the fact that the
one-step-ahead forecast error for equities simply equals the equity structural shock

e1T+1 = v1T+1 .

This result shows that the equities forecast error variance at T + 1 is totally
determined by its own shocks. This result immediately follows from the triangular
ordering of the SVAR model.

The forecast error variance of equities at T + 1 is estimated as

v̂ar(e1T+1) = 3.85932 = 14.8940.

and 100% of this forecast error variance of 14.8940 at T + 1 is the result of own
shocks to equities and nothing comes from dividend shocks.
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Forecast Error Variance at T + 1 for Dividends

After a little manipulation it can be shown that

e2T+1 = ρ(reT+1 − ET (reT+1)) + v2T+1 = ρv1T+1 + v2T+1.

The forecast error at T + 1 for dividends is a function of both structural shocks
unlike equities which is simply a function of its own shock v1T+1.

The forecast error variance of dividends at T + 1 is

var(e2T+1) = ET [(ρv1T+1 + v2T+1)2]

= ET (ρ2v2
1T+1 + v2

2T+1 + 2ρv1T+1v2T+1)

= ρ2ET (v2
1T+1) + ET (v2

2T+1).

The dividend forecast error variance at T + 1 is estimated as

v̂ar(e2T+1) = (−0.0061)2 × 3.85932 + 0.490442 = 0.0010 + 0.24053 = 0.2411.

This expression shows that for the dividends forecast error variance of 0.2411,
0.24053/0.2411 = 0.99766, or 99.766% is due to own shocks and the remaining
is due to equity shocks.
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Variance decomposition

Variance decomposition expressed in percentages computed from a VAR(6) model
estimated using monthly data on United States equity returns, ret , and dividend

returns, rdt , over the period January 1871 to September 2016.

Period Decomposition of re Decomposition of rd
re rd re rd

1 100.000 0.000 0.234 99.766
2 99.996 0.004 0.201 99.799
3 99.684 0.316 0.172 99.828
4 99.531 0.469 0.631 99.369
5 99.057 0.943 1.217 98.783

10 98.785 1.215 8.822 91.178
15 98.732 1.267 11.522 88.478
20 98.694 1.306 12.571 87.429
25 98.680 1.320 12.911 87.089
30 98.675 1.325 13.012 86.988
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