
Chapter 5: Nonstationarity in Financial Time Series

Financial Econometric Modeling
Stan Hurn, Vance Martin, Peter C.B. Phillips and Jun Yu

Oxford University Press, 2020

Financial Econometric Modeling c©Hurn, Martin, Phillips & Yu Oxford University Press, 2020 1 / 35



Introduction

An important property of asset prices is that they exhibit strong evidence of trends
over long periods of time.

Trend behaviour often manifests in a tendency for a time series to drift over time in
such a way that no fixed mean value is revealed.

But this long term growth is coupled with extended sub-periods in which prices
wander above and below the growth line.

Such time series are said to be nonstationary and may embody both a
deterministic trend or a stochastic trend, which arises from the accumulation of
random forces that drive prices to wander above and below the path of
deterministic drift.

Nonstationary behaviour needs to be respected in empirical work because of the
importance of linkages between trending financial time series that are often the
subject of investigation, because of the serious impact that trends can have on
forecasting performance, and because of major changes in the econometric
apparatus of inference when trends are present in the data.
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Unit roots, Trends and the Order of Integration
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The unit root hypothesis

Identification of stochastic nonstationarity, typically hinges on testing evidence in
support of a unit root restriction ρ = 1 in an autoregressive model of the form

yt = ρyt−1 + vt ,

in which vt is a stationary disturbance term.

If the restriction ρ = 1 is satisfied and vt ∼ iid (0, σ2
v ), the model is commonly

known as a random walk.

Tests of the restriction ρ = 1 are referred to as unit root tests and have very
different characteristics from traditional regression tests in stationary time series
models where |ρ| < 1. These distributions differ considerably from a normal
distribution and lead to new procedures for testing.

The classification of variables as either stationary or nonstationary has
implications in both finance and econometrics. From a finance perspective,
stochastic nonstationarity is important because the ubiquity of the random forces
driving financial asset prices leads to the wandering price trajectories that are
typically observed in practice and they are compatible with the efficient markets
hypothesis.
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Unit roots and efficient markets

The return to a risky asset in an efficient market may be written as

rt = pt − pt−1 = α + vt , vt ∼ iid (0, σ2
v ) ,

where pt is the logarithm of the asset price. The parameter α represents the
average return on the asset. From an efficient markets point of view, since α = 0
and vt is not autocorrelated, rt+1 cannot be predicted using information at time t .

Another way of expressing the random walk equation is to write it in terms of pt as

pt = α + pt−1 + vt . (1)

The parameter α is the drift parameter with yt now representing a random walk
with drift.
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Figure: Simulated trajectory of a random walk with drift with p0 = 1.491, α = 0.0035 and
σ2

v = 0.002.
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Bond data

Consider fitting a simple AR(1) regression model

yt = α + ρyt−1 + vt ,

to monthly data on United States zero coupon bonds for the period January 1947 to
February 1987.

Table:

Ordinary least squares estimates of an AR(1) model estimated using monthly data on
United States zero coupon bonds with maturities ranging from 2 months to 9 months

for the period January 1947 to February 1987.

Maturity Intercept Slope
(mths) (α̂) se(α̂) (ρ̂) se(ρ̂)

2 0.090 0.046 0.983 0.008
3 0.087 0.045 0.984 0.008
4 0.085 0.044 0.985 0.007
5 0.085 0.045 0.985 0.007
6 0.087 0.045 0.985 0.007
9 0.088 0.046 0.985 0.007
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Dependence on past shocks

Lat the random walk equation by one period

pt = α + pt−1 + vt ,

pt−1 = α + pt−2 + vt−1,

Substituting for pt−1 gives

pt = α + α + pt−2 + vt + vt−1 .

Repeating this recursive substitution process for t-steps gives

pt = p0 + αt + vt + vt−1 + vt−2 + · · ·+ v1 = αt +
t∑

j=1

vj + p0 ,

in which pt is fully determined by its initial value, p0, a deterministic trend component
and the accumulation of the complete history of shocks since initialisation of the
process at t = 0.
The unit root mechanism is evident in the equation both in the unit coefficient of the
lagged price variable pt−1 and in the accumulation process

∑t
j=1 vj whose weights are

unity in all time periods. The drift parameter α now determines the extent of the
deterministic drift measured by the linear time trend αt .

Financial Econometric Modeling c©Hurn, Martin, Phillips & Yu Oxford University Press, 2020 8 / 35



Properties

Taking expectations and using the property that E(vt ) = E(vt−1) = · · · = 0, gives
the mean of pt

E(pt ) = p0 + αt .

Evidently when α > 0, the mean price drifts upwards and increases over time at
the same constant rate α. Even when the drift parameter α is small, over long
periods of time the upward drift in the mean price becomes a prominent
characteristic of the time series.

The variance of pt is given at each point in time by

var(pt ) = E{[pt − E(pt )]2} = tσ2
v .

Just as for the mean, the variance is also a linear increasing function over time. So
the asset price pt exhibits fluctuations with increasing amplitude as time passes.

These properties reveal some of the implications of the efficient market hypothesis
on the time series behaviour of financial asset prices. Specifically, in an efficient
market asset prices may be expected to exhibit trending behaviour in levels and in
long term fluctuations.
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Order of integration

The partial summation
∑t

j=1 vj aggregates (or integrates) up the component
shocks vj .
Simply removing the deterministic trend, αt , from the process yt will not be
sufficient to obtain a stationary series because the stochastic trend component is
still retained.
This partial summation component is the origin of an important concept
concerning nonstationarity, namely, the order of integration of a time series. A
process is integrated of order d , denoted by I(d), if it can be rendered stationary
by differencing d times. Setting d = 1 to ensure differencing once, we have

∆pt = α + vt ,

where the symbol ∆ is known as the difference operator, leading to
∆pt = pt − pt−1 . The series ∆pt is stationary with mean α, variance σ2 and
residual vt is serially uncorrelated.
A general time series yt is said to be integrated of order one, denoted I(1), if it is
rendered stationary by differencing once: that is yt is nonstationary, but
∆yt = yt − yt−1 is stationary
If d = 2, then yt is I(2) and needs to be differenced twice to achieve stationarity as
follows

∆(yt − yt−1) = (yt − yt−1)− (yt−1 − yt−2) = yt − 2yt−1 + yt−2.

It is rare for financial series to exhibit orders of integration as high as d = 2 and
extremely rare to encounter even higher orders than I(2). In general, the series
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Figure: Monthly United States equity prices and various transformations of the equity price
process for the period January 1871 to June 2004.
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Deterministic trend

Nonrandom function of time.

Most common is linear trend
yt = α + δ t + vt

where vt is stationary.

De-trending by OLS:
yt − α̂− δ̂ t

If de-trended yt is stationary, then yt is called trend-stationary.
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Stochastic trend

Random forces drive the trending: autoregression with unit root

yt = α + yt−1 + vt

where vt is stationary. If vt ∼ WN(0, σ2
u), the above model is called a random walk with

drift.

De-trending by differencing:
∆yt = yt − yt−1

If differencing yt produces a stationary series, then yt is called difference-stationary.

Order of integration I(#): the number of times yt needs to be differenced in order to
reach a stationary series.

Financial Econometric Modeling c©Hurn, Martin, Phillips & Yu Oxford University Press, 2020 13 / 35



Trend and difference stationary
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Figure: Illustrating different trends
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Testing for Unit Roots – the Dickey Fuller
Framework
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Testing

Identification of stochastic nonstationarity, typically hinges on testing evidence in
support of a unit root restriction ρ = 1 in an autoregressive model of the form

yt = ρyt−1 + vt ,

in which vt is a stationary disturbance term.

If the restriction ρ = 1 is satisfied and vt ∼ iid (0, σ2
v ), the model is commonly

known as a random walk.

Tests of the restriction ρ = 1 are referred to as unit root tests and have very
different characteristics from traditional regression tests in stationary time series
models where |ρ| < 1. These distributions differ considerably from a normal
distribution and lead to new procedures for testing.

The classification of variables as either stationary or nonstationary has
implications in both finance and econometrics. From a finance perspective,
stochastic nonstationarity is important because the ubiquity of the random forces
driving financial asset prices leads to the wandering price trajectories that are
typically observed in practice and they are compatible with the efficient markets
hypothesis.
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Hypotheses

Consider again the AR(1) regression equation

yt = α + ρyt−1 + vt

in which vt ∼ N(0, σ2
v ).

We are now interested in testing the following hypotheses:

H0 : ρ = 1 [Variable yt is nonstationary]
H1 : |ρ| < 1 [Variable yt is stationary].

To perform the test, the equation is estimated by ordinary least squares regression
and a t statistic is constructed in the usual manner to test whether ρ = 1. This
statistic has the conventional ratio form

tρ =
ρ̂− 1
se(ρ̂)

, (2)

where se(ρ̂) is the standard error of ρ̂.
The difficulty in executing the test arises from the fact that under the null
hypothesis, the time series yt is nonstationary and nonstationarity affects both the
finite sample and asymptotic distribution of the statistic tρ.
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A useful transformation

In practice, it is convenient to transform the AR(1) equation

yt = α + ρyt−1 + vt

in a way that converts the t statistic to a test of a zero slope coefficient in the
transformed equation.

To achieve this transformation, simply subtract yt−1 from both sides of and collect
terms to give

yt − yt−1 = α + (ρ− 1)yt−1 + vt . (3)

Defining β = ρ− 1 gives the regression equation

yt − yt−1 = α + βyt−1 + vt .

These two equations are precisely the same with the connection between them
being β = ρ− 1.

This transformation has the great advantage that the t statistic commonly reported
in standard regression packages directly yields the unit root test statistic.
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Using the zero coupon bond data

To illustrate this equivalence in a practical application, consider the monthly data on
United States zero coupon bonds with maturities ranging from 2 months to 9 months
for the period January 1947 to February 1987.

The AR(1) regression gives

yt = 0.090
(0.046)

+ 0.983
(0.008)

yt−1 + v̂t

The transformed equation yields

yt − yt−1 = 0.090
(0.046)

− 0.017
(0.008)

yt−1 + v̂t .

The difference in the two slope estimates is easily reconciled

β̂ = ρ̂− 1 = 0.983− 1 = −0.017.

To perform a statistical test of the null hypothesis H0 : ρ = 1, the two relevant t
statistics in these two regressions are

tρ =
ρ̂− 1
se(ρ̂)

=
0.983− 1

0.008
= −2.120 ,

tβ =
β̂ − 0
se(β̂)

=
−0.017− 0

0.008
= −2.120 ,

demonstrating that the two methods are indeed equivalent.
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Dealing with a deterministic trend alternative

These tests can be extended to deal with the possibility that under the alternative
hypothesis the time series may be stationary around a deterministic trend.

The form of the equation to be estimated is

∆yt = yt − yt−1 = α + δt + βyt−1 + vt .

The Dickey-Fuller test still consists of testing β = 0. But under the alternative
hypothesis, yt is now a stationary process with a deterministic trend.

Once again using the monthly data on United States zero coupon bonds, the
estimated regression including the time trend gives the following results (with
standard errors in parentheses)

∆yt = 0.030
(0.052)

+ 0.001
(0.001)

t − 0.046
(0.014)

yt−1 + v̂t .

The value of the Dickey-Fuller test statistic is

tβ =
β̂ − 0
se(β̂)

=
−0.046− 0

0.014
= −3.172.
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Dickey Fuller tests

Three basic forms of the Dickey-Fuller unit root test are available, based on the
following regression equations

Model 1: ∆yt = βyt−1 + vt

Model 2: ∆yt = α + βyt−1 + vt

Model 3: ∆yt = α + δt + βyt−1 + vt .

For each of these three models, the null hypothesis of the unit root test remains
the same, namely, H0 : β = 0.

Unlike conventional statistical testing, however, the pertinent critical value for
determining statistical significance in each case is different. The differences arise
because the distribution of the unit root test statistic changes substantially
depending on which model is used as the test regression. Thus, changing the
regression equation by adding an intercept and/or a linear time trend not only
affects the fitted regression coefficients and t statistics, it also changes their
asymptotic distributions.
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Figure: Comparisons of the simulated distributions of the t statistic from the three Dickey-Fuller
regressions in cases (i) Model 1 - without an intercept or trend (dashed line), (ii) Model 2 - with an
intercept but without a trend (long-dashed line) and (iii) Model 3 - with both intercept and trend
(solid line). The standard normal curve (dotted line) is provided as a reference point.
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Augmented Dickey Fuller test (ADF)

In estimating any of the previous test regressions, there is a real possibility that the
disturbance term will exhibit autocorrelation.

One common solution to correct for induced autocorrelation is to include lags of
the dependent variable ∆yt in the test regressions. With adjustments for the extra
lagged variables, the equations take the augmented form

Model 1: ∆yt = βyt−1 +
p∑

i=1
φi ∆yt−i + vt ,

Model 2: ∆yt = α + βyt−1 +
p∑

i=1
φi ∆yt−i + vt ,

Model 3: ∆yt = α + δt + βyt−1 +
p∑

i=1
φi ∆yt−i + vt .

The unit root test procedures remain the same and involve the use of the same t
statistic for testing β = 0 after taking into account the new specification of the
various models.

The lag length p in these specifications is an unknown parameter and may be
chosen to ensure that the disturbances ut do not exhibit autocorrelation.
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Extensions – Beyond the Dickey Fuller
Framework
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Extensions

There is a huge literature on unit root testing, Extensions to the simple Dickey Fuller
framework includes

allowing for structural breaks;

different approaches to detrending the data;

testing with stationarity as the null hypothesis;

testing for mildly explosive behaviour.
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Structural Breaks

When the timing of such structural breaks is known, it is straightforward to
accommodate such shifts in the regression model.
Level shift only

∆yt = βyt−1 + α + δt +

p∑
i=1

φi ∆yt−i + γLBREAKt + vt ,

where the structural break dummy variable is defined as

LBREAKt =

{
0 : t ≤ τ
1 : t > τ,

and τ is the observation (assumed to be known) where the break occurs.
Additional shift in the time trend slope

∆yt = βyt−1 + α + δt +

p∑
i=1

φi ∆yt−i + (γα + γδt)LBREAKt + vt .

Unit root tests are now constructed and performed just as before by testing the
hypothesis β = 0. However, because the regression equation has changed
through the inclusion of the covariate LBREAKt , the distribution of the ADF
statistic under the null also changes to accommodate the presence of this
covariate.
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Ordinary Least Squares Detrending

Consider

yt = α + δt + ut ,

ut = φut−1 + vt ,

Instead of proceeding in the manner described previously and using Model 3, an
alternative approach is to use a two-step procedure.

Step 1: Detrending Estimate the parameters of the equation by ordinary
least squares and then construct a detrended version of yt given by

y∗
t = yt − α̂− δ̂t .

Step 2: Testing Test for a unit root using the deterministically detrended
data, y∗

t , from the first step, using the Dickey-Fuller or augmented
Dickey-Fuller test. Model 1 will be the appropriate model to use
because, by construction, y∗

t will have zero mean and no
deterministic trend.

This procedure is equivalent to the single-step approach based on Model 3 .
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GLS Detrending

An alternative approach to defines the constant φ∗

φ∗ = 1 + c/T where c =

{
−7 [Constant (α 6= 0, δ = 0)

−13.5. [Trend (α 6= 0, δ 6= 0),

and use it to construct the following variables

y∗
t = yt − φ∗yt−1 , α∗ = 1− φ∗ , t∗ = t − φ∗(t − 1).

The starting values for each of these variables at t = 1 are y∗
1 = y1 and α∗

1 = 1
and t∗1 = 1, respectively. The starting values are important because if c = −T
then this differencing procedure has no effect. If, on the other hand, c = 0 then the
procedure reverts to a simple first difference.
Using the newly defined variables run the regression

y∗
t = π0α

∗ + π1t∗ + u∗
t ,

in which u∗
t is a composite disturbance term. Once the ordinary least squares

estimates π̂0 and π̂1 are available, detrended data

û ∗
t = y∗

t − π̂0α
∗ − π̂1t∗ ,

can be constructed and tested for a unit root using Model 1 of the Dickey-Fuller
framework. New critical values are required.
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Nonparametric Adjustment for Autocorrelation

The test is based on estimating the Dickey-Fuller regression equation by ordinary
least squares and then correcting for the autocorrelation in a nonparametric way.
The Phillips-Perron statistic is

t̃β = tβ
(
γ̂0

f̂0

)1/2

− T (̂f0 − γ̂0)se(β̂)

2f̂ 1/2
0 s

,

where tβ is the ADF statistic, s is the standard error of the Dickey-Fuller test
regression, and f̂0 is known as the long-run variance.
The long-run variance is computed as

f̂0 = γ̂0 + 2
p∑

j=1

(1− j
p

)γ̂j ,

where p is the length of the lag, and γ̂j is the j th estimated autocovariance function
of the ordinary least squares residuals

γ̂j =
1

T − j

T∑
t=j+1

ût ût−j .

The critical values are the same as the Dickey-Fuller critical values when the
sample size is large.
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KPSS test

The Dickey-Fuller testing framework, including the GLS detrending and
Phillips-Perron variants, are designed for testing the null hypothesis that a time
series yt is nonstationary or I(1).
There is also a popular test commonly known as the KPSS test, after Kwiatkowski,
Phillips, Schmidt and Shin that is often reported in the empirical literature which
has a null hypothesis of stationarity or I(0).
Consider the regression model

yt = α + δt + wt + ut ,

where wt is given by

wt = wt−1 + vt , vt ∼ iid N(0, σ2
v ).

The null hypothesis that yt is a stationary I(0) process is tested in terms of the null
hypothesis H0 : σ2

v = 0 in which case wt is simply a constant equal to zero. Define
{û1, · · · , ûT} as the ordinary least squares residuals from a regression of yt on a
constant and a deterministic trend. Now define the standardised test statistic

S =
1

T 2 f̂0

T∑
t=1

(
t∑

j=1

ûj )
2,

in which f̂0 is a consistent estimator of the long-run variance of ut .
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Testing for Bubbles
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Bubbles and Unit Root Tests

Consider the model
Pt =

1
1 + R

Et [Pt+1 + Dt+1] ,

where Pt is the price of an asset, R is the risk-free rate of interest assumed to be
constant for simplicity, Dt is the dividend payment.
By recursive substitution,

Pt =
N∑

j=1

β jEt [Dt+j ] + βNEt [Pt+N ] =
N∑

j=1

β jEt [Dt+j ] + Bt ,

where β = (1 + R)−1 and Bt = βNEt [Pt+N ]. The process Bt is known as the
rational bubble component.
In the absence of bubbles (Bt = 0), the degree of nonstationarity of the asset price
is controlled by the character of the dividend series.
Asset prices will be explosive in the presence of bubbles because 1 + R > 1.
One way of testing for the presence of Bt in asset prices is to apply a right-sided
unit root test to Pt and also to Dt . If one rejects the null in Pt and cannot reject the
null in Dt , then there is evidence of explosive behavior in Pt . SInce this explosive
behavior is not due to Dt it must be due to a bubble.
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Right-Tailed Unit Root Tests

If the ADF test were applied to the full sample where there is a bubble and the
bubble collapses in the sample, the unit root test would not reject the null
hypothesis H0 : ρ = 1 in favour of the right-tailed alternative H1 : ρ > 1. Evans
(1991) shows that standard unit root tests have difficulties in detecting periodically
collapsing bubbles.
Phillips, Wu and Yu (2011) and Phillips and Yu (2011) suggest implementing
recursive a unit root test based on an expanding window of observations, starting
with a minimum window size and eventually using the entire sample. The test
statistic is the maximum of the t statistics obtained in from the recursive
regression. Critical values for the recursive test are obtained by simulation.
Recursive testing of this kind also has the potential to deliver a date-stamping
procedure for the origination and termination of bubbles. By matching the
recursive t statistics with the path of the right tailed critical values an estimate of
the origination of bubble behaviour in the data is obtained by determining the first
observation for which the test statistic crosses the critical value path. This is
known as the first crossing time principle.
An estimate of the termination of the bubble is obtained by noting the observation
for which the recursive test statistic crosses back over and falls below the critical
value path.
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