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1 Introduction

In these three lectures, I introduce some main concepts that are useful for
all theoretical models of Bayesian learning. The first lecture provides an
overview of the area from the perspective of single agent dynamic decision
making.

Throughout the course, we emphasize the dual role of short run ac-
tions. They affect the distribution of immediate payoffs or rewards, but
they also convey information that is useful for the rest of the dynamic de-
cision problem. This dual role gives rise to a trade-off between exploitation
(maximizing current payoff) and exploration (investing in the production
of information).

In many competitive settings (say investing in the financial market), all
individual traders are small enough so that they do not have an impact on
the information content of the equity prices, and as a result, selecting an
optimal portfolio is an exploitation exercise in optimizing the returns.

A (monopolist) venture capitalist considering investment in a risky
start-up understands that if no funds are forwarded, the start-up cannot

1



continue and hence gets no information about the market viability of the
company. By investing in the start-up for a period, the venture capitalist
learns about the quality of the start-up and may be able to use this infor-
mation in future decisions.

In the first lecture, we set up a specific model of dynamic optimization
where the only connection between decisions across periods is informa-
tion. The reason for this choice is purely analytical, in order to learn about
the effects of information, it is best to abstract from other dynamic connec-
tions (capital accumulation, savings, habit formation etc.). Even though
some general results (existence and uniqueness of optimal policies) can be
obtained for the general model, useful characterizations (how to find the
solution, comparative statics etc.) are not possible.

To make progress on the problem, we introduce the model of multi-
armed bandits. In a nutshell, the objective is to maximize cumulative ex-
pected discounted rewards by choosing one alternative at a time from a
set of statistically independent options (the arms). This class of problems
is sufficiently general to cover interesting economic interactions, yet spe-
cific enough to allow useful characterizations.

The second lecture provides a solution (Gittins Index Theorem) to the
multi-armed bandit problem. Alternative approaches to the Theorem are
discussed and also some alternative formulations of the bandit problem
are discussed briefly.

The third lecture contains some first examples of bandits (one-armed
in some cases) in economic models.

Not surprisingly, time constraints set a bound on both the breadth and
the depth of coverage.



2 Bayesian Learning

2.1 Model

Consider the following simple yet quite general setting where an economic

agent learns about underlying uncertainty in her economic environment:
e Time is discrete, t =0, 1, ...
e In each period ¢, an action a; is taken in a finite set A = {a', ..., a™ }.

* A random variable X, is observed in each period. To avoid com-
plicated and unhelpful discussions around measurability, we take
the realizations of this random variable to be in a finite set X =

1 M
{z*, .. ™M}
¢ The decision maker receives a reward (a;, ;) in each period t.

¢ The distribution of X; depends on the action a; and on a parameter 6
controlling the uncertainty in the model. For simplicity, assume that
0 is in a finite set © = {6',...,0"}. Let p(z | a,0) be the conditional
probability mass function on X given (a, 6).

* The parameter is initially unknown and the decision maker has a
prior probability 1i0(¢) on ©.

* The objective of the decision maker is to maximize the expected dis-
counted sum of rewards, where the discount factor § < 1:

max E Z S'r(ay, ).
(at)2q —0

2.2 Analysis of the Model

Att, the information that the decision maker has is given by (ao, z, ..., a;—1, Z;—1).
Given that the decision problem from ¢ onward does not depend on the
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past values (as, z5) for s < t, the only payoff relevant state variable for the
dynamic problem is the posterior i, on © computed by Bayes” Rule:

11:()p(y | ay, 0)
pealOhan ) = Ot | a0

We can write j+1 ~ B(u;a¢) for the stochastic process for the posterior

obtained from Bayes’ rule (random since the realized posterior depends
also on ;).

With this, we may write the objective function explicitly as

Z Zétr(at,xt)p(xt | ag, 0)p(0).

e X

By defining
ata,ut . ZZT atuxt It | Qg, )Mt(0)7
e X

we may write the problem as

max E Y  §u(ay, 1) (1)
(@)Z0 55
subject to:  juer1 ~ B, ar). (2)

It should be noted that u(ay, u1¢) is linear in ;.
Proposition 2.1. The sequence problem 1 has a solution «;.

Proof. Since A is finite, the choice set A* is compact in product topology.
The payoff is continuous in product topology so Weierstrass” Theorem
guarantees the existence of an optimal policy. For a proof based on the
equivalent dynamic programming problem, see Blackwell (1965), Theo-
rem 7(b). ]

Since the A, X, © are all assumed finite, the the sequence problem above
may be solved by dynamic programming. Let V'(u) be the value function
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to the sequence problem starting at prior x,;. Bellman equation for the
problem is then:

V(N) = n}}?‘XET(ata :ut) + 6V<lu’t+1)7 (3)

subject to:  juer1 ~ B, ar). 4)

Standard results on dynamic programming guarantee that the set of
maximizers A(y) is an upper-hemicontinuous correspondence and there-
fore a measurable selection a(u) exists (Stokey, Lucas and Prescott (1989),
Theorem 7.6). This means that we can write the process of posterior beliefs
1 as a Markov process on probability distributions on ©. The most impor-
tant property of this process is that ji; is a martingale with respect to the
information contained in (A, Xo, ..., A;—1, X;—1) (formally the o -algebra
{F:} generated by (Ao, Xo, ..., At—1, Xt—1).

Definition 2.1. A sequence of random variables {Y;} on a probability space
(p, 2, F) is called a martingale with respect to information contained in the
increasing sequence of o-algebras {F;} if (for almost all w.r.t. ;1 w),

E[Ytﬂ | ]:zt] =Y,

Proposition 2.2. {;;(B)} is a martingale for all B C © with respect to the
o-algebra generated by the observables (aq, zo, ..., @t—1, T1—1).

Proof. Using Bayes’ rule from above, we have for all a(y), x

Z 2963 e (0)p(x | a(pr), 0)

zeX > vco He(O)p(x: | alp), 0) Pr{X; =z [ a(u:)}

E [Mt+1 | Mt

—ZZM p(x | a(p), 0 Zﬁbt )Zp(x\a(ut),e):m(B),

zeX 0eB 0eB zeX



We turn next to the question of convergence of these posterior proba-

bilities j;. In this quest, we use one of the most famous theorems in the

theory of stochastic processes.

Theorem 2.1 (Martingale Convergence Theorem, Doob). Let {Y;} be a mar-

tingale with respect to {;} which satisfies

supE | Y} |< o0
t

Then the limit Y, := lim, Y; exists and is finite, almost surely.

Remark. It may be useful to have some examples of martingales in mind.

1.

Random walk. Let X; = 1 w.p. 3 and X; = -1 w.p. 5. Puty; =

S'_, X,. Then Y; is a martingale with respect to the information
generated by Y; and E[Y; 4 | Y| = Y}.

. Random product. Put X, = 1 and let X; = 2 w.p. % and X; = 0

w.p. % SetY; = H’;Zl X,. Then Y, is a martingale with respect to the
information generated by Y; and E[Y; 4, | ;] = Y..

. Polya’s Urn. An urn contains one black and one white ball at ¢t =

0. Ateacht > 1 one ball is drawn at random and returned to the
urn together with another ball of the same color. Let /NV; denote the
number of white balls at t. PutY; = % Then E[Y, 11 | V] = Y,.

For each of the these cases, check if the conditions of the martingale
convergence theorem are satisfied. If yes, what is the limiting ran-
dom variable Y,,? (For Polya’s Urn, this is not an easy problem).

. Let © = {0,1} and let py = 5 be the prior probability that 0 = 1. At

each ¢ > 0 a realization X from the conditional distribution F'(z | 6)
on [0,1] is observed. Formulate Bayes’ rule for the case where F'(-)
has densities
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. Denote the posterior on § = 1 by p; and compute the unconditional
distribution of p; as a function of v € [0, 2].

6. Consider an independent sample X, ..., X; from F(- | §), where 6 €
{0,1}. Let p; denote the posterior of # = 1. Using Bayes’ rule, show

that the likelihood ratio % is a martingale if 6 = 1.

7. Let X, be a sequence of conditionally i.i.d. draws from normal distri-
bution with mean 6 and variance o,. Let 6 be drawn from a normal
prior distribution with mean 0 and variance 0y. How would you
compute the posterior distribution of ¢ after observing n draws of
the X,;? (Hint: is it normal?) Can you show that the mean of the
posterior is a martingale with respect to the information contained
in the X;?

An excellent source for more material on martingales is: David Williams,
Probability with martingales, Cambridge Mathematical Textbooks, Cam-
bridge University Press, 1991.

Martingale Convergence Theorem implies that along the optimally cho-
sen sequence of actions, there exists a random variable 1, such that with
probability 1,

i (B) = poo(B) forall B C ©.

This means that with probability 1, 1;(f) converges to a constant for
all § € ©. When is this possible? We say that there is complete learning
if 1, converges to a point mass on the correct §. There are two long-run
possibilities for the process of beliefs. i) Either the parameter is learned or
ii) no new information is generated along the optimal sequence. The latter
case implies that § cannot be identified from the distribution of X, at the

optimal action a ().



Remark. Let me say a few words on how the analysis above generalizes.
The mathematical analysis of the dynamic optimization problem becomes
hard if one assumes that X is uncountable, e.g. X C R and/or the pa-
rameter set © is uncountable. Defining conditional probability measures
is somewhat more tricky in this case. The second difficulty concerns the
continuity of the Bayes operator B(y; a;). Stokey, Lucas and Prescott con-
tains a discussion on the continuity requirements required for a rigorous
dynamic programming approach. Aghion et al. (1991) cited in the read-
ings is quite careful about such matters.

These are technical concerns and as long as you are willing to impose
continuity assumptions on the model, they can be handled and they will
not cause insurmountable problems. For example, various types of nor-
mally distributed X; with an unknown mean ¢ sampled from a normal
prior distribution can be accommodated.

Martingale convergence theorem is a very important result for eco-
nomic theory models. It applies in a much more general setting and it
leads to some interesting connections to diverse other areas of probabil-
ity theory. Williams” book is a bit demanding, but very entertaining (for a
math book).

2.3 Results

* Asymptotically, we have that a(y) € arg max, 4 u(a, fiso. In words,
since the beliefs have converged there are no more dynamic consid-
erations in the model and only exploitation motive remains. See
Aghion, Bolton, Harris, and Jullien (1991) and Easley and Kiefer
(1988) for details and additional material.

* A simple corollary of this is that if complete learning takes place,
then asymptotically a full information optimal action is chosen.

* As 0 — 1, full information optimal payoffs can be approximated
arbitrarily closely.



e When A C R and the reward function is a deterministic (but un-
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known) analytic function of (a, ), then asymptotically full learning
is achieved. Is this a reasonable economic setting?

If the reward is deterministic, differentiable and quasi-concave, then
the full learning results. What is the economic significance of this
and how does this relate to the previous observation.

The value function V' (p) is convex. To see this, consider a binary
experiment resulting in posterior ;' with probability A and in 4 with
probability (1 — A). By the martingale property of posteriors, we
have = A/ + (1 — M)y, Since the policy a(u) (sequence of actions
contingent on the realizations of a;, z;)) is also feasible starting with
prior 4 or y”, and therefore

AV (') + (1 =)V (") = V().

This just states the obvious fact that not reacting to the result of the
experiment is a feasible strategy. What can you say about strict con-
vexity of V?

Budd, Harris, and Vickers (1993) considers models with almost my-
opic decision makers. Moscarini and Smith (2002) analyzes demand
for information near certainty and Moscarini and Smith (2001) pro-
vides a nice connection to the sequential statistical decision problem
of Wald (1949) (i.e. when to accept a hypothesis vs. collect more
observations).

Examples

. Learning the bias in a coin. Suppose a coin is tossed independently.

The result of each toss X, is independent of the result of other tosses
conditional on the bias ¢ of the coin. The bias just gives the probabil-
ity of observing heads in a single toss. Assume that the prior on O is
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the uniform distribution on [0, 1]. Compute the posterior after a first
observation of heads (H). or tails (T) as follows:

0 16
O;H) = ——— =20, u(0;T) = ————— =2 — 2.
p(6; H) [ odo w6 T) IR

More generally, recall that Beta function B(«, () is defined as:

B(a, p) = /01 (1 — 2)° tda,

and Beta -distribution with parameters «, 5 for 6 € [0, 1] is:

T (1 - )P
- B(a,B)

The probability of getting n heads in ¢ trials is:

(Z) on(1 — 0)in.

By plugging into Bayes’ rule, you can verify that if the prior is dis-

p(0)

tributed as Beta distribution with parameters o, 8 and n heads are
observed in ¢ trials, then the posterior is a Beta -distribution with pa-
rameters a+n, 5+ (t—n). Note that the uniform distribution is a Beta.
-distribution with parameters 1,1 and the two posteriors computed
above comply with the general formula.

. Learning via pricing the (common) valuation of a sequence of cus-
tomers. Consider next the optimal pricing problem of a monopolist
with zero cost facing a sequence of customers with unit demand and
with a common willingness to pay 6 for the good. Assume that the
monopolist’s prior belief on ¢ is that it is uniformly distributed on
0, 1]. In each ¢, the monopolist sets a price a; and a sale is realized, i.e.
xy = 1if 0 > a; and z; = 0 if a; > 6. The stage payoff r(x;, a;) = xa;.
Let §, = max{a, | z, = 1,s < t}, and §; = min{a, | v, = 0,s < t}.
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Then the monopolist’s posterior on © before setting the price in pe-
riod ¢ is uniform on [6,,0;]. Consider then the following Bellman
equation:

— 0—a 0—a — a—20
V(0,0) = 1—9)= 0= Vi(a,0) 4+ 0=—=V(0,a).
(6,9) Qfgggg( i 75 (a,0) + 7o (6, a)

Itis a very good exercise to show formally that this Bellman equation
has a unique solution and that the solution is continuous and convex
and that an optimal pricing strategy exists. I invite you to solve his
problem and in particular, you should determine if complete learn-
ing results.

3. Monopolist learning the slope of the demand curve. Consider next
a monopolist with zero cost facing uncertain noisy demand. The de-
mand depends on a binary parameter § € {0, 1}, and market proba-
bility of making a sale at price a;, is given by

Ty = Qg — 69pt7

over a suitable range of prices (to make probabilities well defined).
The monopolist maximizes expected profit m;p;. See McLennan (1984)
how full learning may fail in this setting for low enough 4 and also
see Harrison, Keskin, and Zeevi (2012) and Loertscher and McLen-
nan (2020) for more recent developments and variations on related
topics.
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