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1 Introduction

In this Lecture, we specialize the setting of the previous lecture to multi-
armed bandit problems (MAB). The problem was first introduced as an ide-
alized model for. conducting medical trials by Thompson (1933). The sug-
gestive name refers to the problem faced a gambler entering the floor for
slot machines (one-armed bandits) at a casino. Each k of the K machines
gives a random prize for each coin fed into the machine. If the reward
distribution for a sequence of coins fed into machine k is a sequence of
independent draws from p(x | θk), then we are in the parametric learn-
ing setting of the first lecture. For this application, it may make sense to
assume that the parameters of the different machines are independently
drawn. If we denote the gambler’s posterior distribution on the parame-
ter of machine k after using tk coins on that machine (and after observing
(x0, ..., xtk) by µk

tk
, we get a new posterior µtk+1 after inserting one more

coin and observing reward xtk+1 by Bayes’ rule. The gambler’s problem
is to maximize the expected discounted reward from the machines over a
sequence of coins. If you want, you can also include the strategy of walk-
ing out of the casino as an additional arm yielding 1 coin for sure for each
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trial. Notice that the posteriors evolve according to a Markov process on
the state space ∆(Θ) of probability distributions on the parameter set. Per-
haps you can see the connection to the sequential allocation of alternative
treatments with initially uncertain effectiveness for the treatment of a se-
quence of patients.

To give you an idea of where multi-armed bandit models have been
applied, I reproduce a list from Slivkins (2021):

Application domain Action Reward
medical trials which drug to prescribe health outcome.
web design e.g., font color or page layout #clicks.
content optimization which items/articles to emphasize #clicks.
web search search results for a given query #satisfied users.
advertisement which ad to display revenue from ads.
recommender systems e.g., which movie to watch 1 if follows .
sales optimization which products to offer at which prices revenue.
procurement which items to buy at which prices #items procured.
auction/market design e.g. which reserve price to use revenue.
crowdsourcing match tasks and workers, assign prices #completed tasks.
datacenter design e.g., which server to route job completion time.
Internet e.g., which TCP settings to use? connection quality.
radio networks which radio frequency to use? #transmissions.
robot control a “strategy” for a given task job completion time.
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2 The Model

2.1 Sequential Markov Decision Problem

We start by formulating a sequential Markov decision problem.

• A sequence of decisions to be taken over a discrete infinite horizon
t = 0, 1, ....

• At each t, the decision maker chooses one alternative amongst a fixed
set of alternatives K called arms and we denote this choice by at ∈
{1, ..., K}.

• If at = k, a random payoff xk
t is realized and we denote the associated

random variable by Xk
t . We assume bounded rewards: supt | Xk

t |<
∞ for all k.

• The decision problem is a Markov decision problem with state vari-
able st ∈ S. This means simply that for all current states st = s ∈ S,
each action at = k induces a Markovian transition probability P k(s′ |
s) for reaching the state s′ ∈ S and that the (distribution of the) re-
ward depends only on (at, st).

• Write the distribution of Xk
t as F k (· | st).

• The state transition function ϕ depends on the choice of the arm and
the realized payoff:

st+1 = ϕ
(
xk
t ; st

)
.

• A feasible Markov policy a = {at}∞t=0 selects an available alternative
for each conceivable state st, i.e.

at : S → {1, ..., K}.
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2.2 Bandit Problem

The following two assumptions must be met for the problem to qualify as
a bandit problem.

1. Payoffs are evaluated according to the discounted expected payoff
criterion where the discount factor δ satisfies 0 ≤ δ < 1.

2. The payoff from each k depends only on outcomes if periods with
at = k. In other words, we can decompose the state variable st into
K components

(
s1t , ..., s

K
t

)
such that for all k :

skt+1 = skt if at ̸= k,

skt+1 = ϕ(skt , xt) if at = k,

and
F k (·, st) = F k

(
·; skt

)
.

Notice that when the second assumption holds, the alternatives must be
statistically independent.

It is easy to see that many situations of economic interest are special
cases of the above formulation.

• First, it could be that F k
(
·; θk

)
is a fixed distribution with an un-

known parameter θk. The state variable is then the vector of posterior
probability distributions on θk for k ∈ {1, ..., K}.

• Alternatively, F k
(
·; sk

)
could denote the random yield per period

from resource k after extracting sk units (think about mining or har-
vesting etc.).

The value function V (s0) of the bandit problem can be written as fol-
lows. Let Xk

(
skt
)

denote the random reward with distribution F k
(
·; skt

)
.

Then the problem of finding an optimal allocation policy is the solution to
the following intertemporal optimization problem:
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V (s0) = sup
a

{
Ea

∞∑
t=0

δtXat (satt )

}
.

The celebrated index theorem due to Gittins and Jones (1974) trans-
forms the problem of finding the optimal policy into a collection of k

stopping problems. Stopping problems are amongst the simplest dynamic
stochastic optimization problems. At each point in time, the decision maker
has to decide whether to stop or continue. To formalize this idea, let Xt be
the (bounded) reward from stopping in period t. Deterministic stopping
problems are quite easy: just pick the t at which X := supt Xt is reached.
If no such t exists, then you can get an ϵ-optimal solution for all ϵ > 0 by
stopping at the first t with Xt > X − ϵ.

Stochastic stopping problems allow for a stochastic process Xtt = 0∞.
The decision to stop or not must be based on information observed at or
before t, i.e. the σ-algebra generated by (X0, ..., Xt). Even if you know the
statistical properties of the process (i.e. the probability measure P on X∞,
you do not know the realizations of (Xt+1, ...). We denote stopping times
by τ and since they depend on the realizations of the (Xt), they are random
variables. The requirement that you can use only information available
at t just says that the event τ = t must be measurable with respect to
σ(X0, ..., Xt). With these preliminaries, a stopping problem is just to find

sup
τ

EXτ .

For each alternative k, we calculate the following index mk
(
skt
)
, which

only depends on the state variable of alternative k:

mk
(
skt
)
= sup

τ

{
E
∑τ

u=t δ
tXk

(
sku
)

E
∑τ

u=t δ
t

}
, (1)

where τ is a stopping time with respect to {skt }.
The idea is to find for each k the stopping time τ that results in the

highest discounted expected return per discounted expected number of
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periods in operation. It is a good exercise to show that a stopping time
achieving the supremum exists (hint: discounting and bounded returns).

The Gittins index theorem then states that the optimal way of choos-
ing arms in a bandit problem is to select in each period the arm with the
highest Gittins index, mk

(
skt
)
.

Theorem 2.1 (Gittins-Jones (1974)).
The optimal policy satisfies at = k for some k such that

mk
(
skt
)
≥ mj

(
sjt
)

for all j ∈ {1, ..., K}.

Proof. The theorem is proved by using the principle of optimality: a policy
is optimal if there is no profitable one-shot deviation from it. Starting at an
arbitrary state s0 = s, let π∗ be a policy that activates an arm with maximal
index at each point (in case of ties choose the arm with the smallest index).
We claim that any policy π(0) starting with a0 = k in the first period and
then according to π∗ yields a payoff no larger than the payoff from policy
π∗. I.e. we need to show that for all s, k

Vπ∗(s) ≥ Vπ(0)(s).

To this effect, we construct a sequence of policies π(n) such that the
associated value Vπ(n)(s) satisfies:

lim
n

V n
π(n)(s) = Vπ∗(s) for all s,

Vπ(n)(s) ≥ Vπ(n−1)(s) for all s.

The sequence π(n) is defined recursively. For s0 = s, let k∗,m∗, τ ∗ be
the arm with the highest index, the value of the highest index and the
stopping time achieving the index. Then π(n) is a concatenation of the
optimal policy up to τ ∗ (reaching the random state sτ∗) with the policy π(0)

with initial state sτ∗ .
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By construction, πn and π∗ agree for at least the first n periods. Because
of discounting (and bounded returns), this implies that limn V

n
π(n)(s) =

Vπ∗(s). For n > 1, π(n) and π(n−1) agree over the first τ ∗ periods and:

Vπ(n)(s)− Vπ(n−1)(s) = E
{
δτ

∗E {Vπ(n−1)(sτ∗)− Vπ(n−2)(sτ∗)|sτ∗}
}
.

To prove that Vπ(n)(s) ≥ Vπ(n−1)(s) inductively, it is enough to show that
Vπ(1)(s) ≥ Vπ(0)(s).

If k = k∗, then π(1) = π(0) = π∗ and there is nothing to prove, so suppose
k ̸= k∗. Define a stopping time σ for arm k as the first t where mk

(
skt
)
<

m∗. Then we see that π(0) activates arm k for a duration of σ periods. At
stopping time σ, the highest index is m∗ of arm k∗. Since π(0) continues
according to π∗, it activates k∗ for the next τ ∗ periods up to stopping time
σ + τ ∗ − 1. From σ + τ ∗ onwards, π(0) proceeds according to π∗.

Policy π(1) starts with k∗ for τ ∗ periods, then selects k for a period and
then proceeds according to π∗. π(1) activates arm k for at least σ periods
from τ ∗ onwards. This follows from the fact that the continuation is aco-
ording to π∗ and the indices of k′ ̸= k, k∗ are unchanged (and at most m∗)
and mk(sτ∗) ≤ m∗ by the definition of τ ∗.

To sum, π(0) starts with k for σ periods followed by k∗ for τ ∗ periods.
π(1) starts with k∗ for τ ∗ periods followed by k for σ periods. At the end
of σ+ τ∗ periods, both policies have reached the same state and their con-
tinuation is according to π∗. Note that for given k, k∗, the stopping times
σ and τ are independent. Hence the difference in expected returns is:

E

{
σ−1∑
t=0

δtXk(skt ) + δσ
τ∗−1∑
t=0

δtXk∗(sk
∗

t )|s0

}

−E

{
τ∗−1∑
t=0

δtXk∗(sk
∗

t ) + δτ
∗
σ−1∑
t=0

δtXk(skt )|s0

}

= E(1− δτ
∗
)E

{
σ−1∑
t=0

δtXk(skt )

}
− E(1− δσ)E

{
τ∗−1∑
t=0

δtXk∗(sk
∗

t )

}
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=
1

1− δ
E(1− δτ

∗
)E(1− δσ)(mk

σ(sk)−m∗)

≤ 1

1− δ
E(1− δτ

∗
)E(1− δσ)(mk(sk)−m∗) ≤ 0,

where we have written:

mk
σ(sk) =

{
E
∑σ

t=0 δ
tXk

(
skt
)

E
∑σ

t=0 δ
t

}
.

An alternative formulation of the main theorem, based on dynamic
programming can be found in Whittle (1982). The basic idea is to find
for every arm a retirement value Mk

t , and then to choose in every period
the arm with the highest retirement value. Formally, for every arm k and
retirement value M , we can compute the optimal retirement policy given
by:

V k
(
skt ,M

)
≜ max

{
E
[
Xk

(
sku
)
+ δV k

(
sk+1
t ,M

)]
,M

}
(2)

The auxiliary decision problem given by (2) compares in every period the
trade-off between continuation with the reward process generated by arm
k or stopping with a fixed retirement value M . The index of arm k in the
state skt is the highest retirement value at which the decision maker is just
indifferent between continuing with arm k or retiring with M = M

(
skt
)
:

Mk
(
skt
)
= V k

(
skt ,M

k
(
skt
))

.

The resulting index Mk
(
skt
)

is equal to the discounted sum of flow index
mk

(
skt
)
, or Mk

(
skt
)
= mk

(
skt
)
/ (1− δ).

We write V (s) for the value function of the original bandit problem
starting at s without retirement options. Since rewards are bounded, we
have V (s,M) = V (s) for low enough M, and the problems coincide. From
the definition it is clear that V (s,M) is non-decreasing in M . Consider an
arbitrary policy of retiring at a stopping time τ . The value from this policy
is
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V (s,M ; τ) =
τ∑

t=0

δtEXat
st + EδτM.

Since each V (s,M ; τ) is linear in M and V (s,M) = supτ V (s,M ; τ), we
know that V (s,M) is convex in M . Therefore it has a derivative almost
everywhere, and by envelope theorem,

∂V (s,M)

∂M
= EδτM ,

where τM is the optimal retirement policy for retirement value M .
It seems reasonable to conjecture that arm k is permanently abandoned

if at the states where the individual arm is retired, i.e. at τk,M . By the
independence of the arms, we have:

EδτM =
∏
k

Eδτk,M ,

and

∂V (s,M)

∂M
=

∏
k

∂V k(sk,M)

∂M
.

Notice that
∏

k
∂V k(sk,M)

∂M
is non-decreasing in M since each V k(sk,M) is

convex and nondecreasing in M . Furthermore,
∏

k
∂V k(sk,M)

∂M
is zero for

M < −L and unity for M ≥ L (recall that L is the bound on the absolute
value of the rewards). Therefore it has the properties of a distribution
function. Integrating gives:

V (s,M) = L−
∫ L

M

∏
k

∂V k(sk,m)

∂m
dm.

The remaining step is to verify that Gittins index rule is optimal given
this value function. This is done by a standard verification argument. Un-
der the Gittins Index policy, the above conjectured value function satisfies
the Bellman equation of the problem.
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Computing Gittins Index for Examples
Pandora’s boxes

• Weitzman (1979), Econometrica (Pandora’s boxes) asks how one sched-
ules the search for a prize (only one prize can be claimed) when there
are k statistically independent boxes characterized by the value of
the prize and the probability of finding a price in the box (vk, pk).

• By now we know how to answer this. Compute Gittins indices for
all boxes and open them in the decreasing sequence of the indices.

• Properties of the optimal sequence: Suppose pkvk = plvl for some
k, l, i.e. if these were the only boxes, the decision maker would be
indifferent. Which should be opened first?

• Formulate the problem so that it fits our model above.

• Each arm starts in sk0

• If arm k is chosen, it gives an immediate expected return of pkvk

• If k is chosen, then skt = H for all t with probability pk and skt = L for
all t with probability 1− pk

• xk
t = vk for all t if skt = H and xk

t = 0 for all t if skt = L.

• Observe that if the arm is tried once, all uncertainty for that arm is
immediately resolved.

• δ < 1 the discount factor.

• Compute the Gitttins index as follows: Let V k(sk0,M) be the value
function of the auxiliary problem.

V (L,M) = M for all M ≥ 0, V (H,M) =
v

1− δ
for all M ≤ v

1− δ
.
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M = pkvk + δ(pkV (H,M) + (1− pk)V (L,M))

= pkvk + δ

(
pk

vk

1− δ
+ (1− pk)M

)
,

or

M =
pkvk(1 + δ)

(1− δ)(1− δ + pkδ)
,

or

(1− δ)M =
pkvk

1− δ + pkδ
.

• Observe that as δ → 1, (1− δ)M → vk.

• Observe also that

(1− δ)M − pkvk =
δ(1− pk)pkvk

1− δ + pkδ
> 0.

• Therefore there is always value to experimentation.

• How far does this generalize?

• Key property required for Index Theorem to work: Outside option
for each alternative must stay constant.

• Simple generalizations fails this property: Choice of multiple arms
simultaneously. Switching costs between arms.

• Generalizations that can be handled: Arms branching into different
arms.

3 Comments

I have only talked about the standard Bayesian optimization approach to
the bandit problem. While this is the standard approach in economic the-
ory, the most active area of related research is within the computer science
community.
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That literature is more interested in finding a good solution that is eas-
ily implemented (i.e. using fast algorithms) and that performs well under
a set of different scenarios. For anybody interested in models of learning
(from the cs point of view), I strongly recommend two recent books:

Bandit Algorithms by Tor Lattimore and Csaba Szepesvári (available
at https://tor-lattimore.com/downloads/book/book.pdf)

and
Introduction to Multi-Armed Bandits by Aleksandrs Slivkins (available

at https://arxiv.org/pdf/1904.07272.pdf).
This literature uses as a performance criterion the minimization of re-

gret: Find a policy that does well relative to a class of reference policies.
For the original casino problem of the introduction to this lecture, a good
set of reference policies might be the policies under full information. Re-
gret then measures the difference between a suggested policy and the best
reference policy (finite horizon, but without discounting). If the per period
regret converges fast to zero as the horizon of the problem increases, then
we can say that the policy performs well.

Thompson sampling is a very nice algorithm that does very well in
terms of its expected regret. The idea is very simple, For each arm, com-
pute the posterior probability that it is the best alternative and choose the
arm for the next period with this posterior probability. The challenge is
of course, how to implement the Bayesian updating computationally efi-
ciently for this case.

Even though the Gittins Index policy is very nice, I should mention that
the class of problems where it can be applied is quite limited. Bergemann
and Välimäki (2001) show that if two or more alternatives are selected
simultaneously, then following Gittins Indices is not the optimal policy.
Bergemann and Välimäki (2008) contains discussions of economic models
using bandits. Banks and Sundaram (1994) shows how switching costs be-
tween arms cause problems and Doval (2018) is a recent example showing
that the problem is hard with inspection costs.
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Classic references on the Bayesian approach are Berry and Fristedt (1985),
and Gittins, Glazerbrook, and Weber (2011).
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