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1 Introduction

In this third lecture, I embed a model of learning and experimentation in
some simple economic models. The first part takes a first look of the inter-
action between buyers and sellers when the quality of the products sold
is uncertain. The key economic question relates to the intertemporal divi-
sion of the costs and benefits of exploration between buyers and sellers.
The presentation is based on Bergemann and Valimaéki (2000)

The second main topic is a model of contracting in the principal agent
setting when the success probability of the agent’s effort is learned over
time. We go over the simplest model without informational asymmetries
between the contracting parties, but since I have the notes written for the
case where the agent’s decisions are unobservable to the principal, I in-
clude material on that case too. Free disposal applies to that part (last part
of Bergemann and Hege (2005), Horner and Samuelson (2013), and Halac,
Kartik, and Liu (2016)).



2 Experimentation in Markets

2.1

The Model

Two sellers provide quality differentiated products to a unit mass of
identical buyers with unit demand in each period.

The incumbent supplies a product with known quality, while the
quality supplied by the entrant is initially unknown.

The value of the established product is s per period and the new
product has a value of either 7, or ry with r;, < s <rg.

Let 1« be the common prior probability that the new product has
value ry and denote the expected quality by r (p) := prg+(1 — p) rp.

Marginal costs of production are identical and normalized to zero.

Firm j chooses price p’ in period ¢ € {1,2}, where j = 0 indexes the
entrant, and j = 1 the incumbent.

The net utility of a purchase to the buyer is the (expected) quality of
the product minus its current price.

Buyers and sellers maximize the sum of their per period payoffs.

The revelation of uncertainty takes an extremely simple form. If a
fraction x of the buyers experiment with the new product, then its
true quality is revealed to all agents in the second period with prob-
ability .

With the complementary probability, no new information arrives.



2.2

Analysis: second period

If full experimentation occurs in the first period, i.e., = 1, then with
probability ;:, the new product is worth 7 in the second period.

The second period prices are given by Bertrand competition: p3 =
ry — s and p} = 0, and all buyers purchase from the entrant.

With probability 1—y, the quality is low and the second period prices
are p? = 0 and p} = s — r, and all buyers purchase from the incum-
bent.

Conditional on full experimentation in the first period, the expected
second period profits for the two firms are 72 = u(ry — s) and 73 =

(1—p) (s — ).

If there is no experimentation in the first period, then second period
prices are given by

py = max {r () — 5,0} and pj = max {s —r (u),0},
and the firm with positive price sells to the entire market.

We assume for the rest of this section that r () < s. This implies that
from a myopic point of view, experiments are costly.



2.3

Analysis: first period

The first period equilibrium prices, pj and pi, are found by backward
induction.

Since each consumer is of measure zero, the future payoff of an indi-
vidual buyer is independent of her current product choice.

The equilibrium condition under Bertrand pricing requires then that
the buyer be indifferent between the two offers:

r(p) —py=5—p (1)

and hence the price differential has to be equal to the (expected) qual-
ity difference.

Moreover, we require that the non selling firm be indifferent between
selling and not selling at equilibrium prices.

Prices satisfying this requirement are called cautious.

With the linearity of the payoffs in z, either all buyers or none buy
from the new firm in equilibrium.

The values of ;. at which experimentation occurs in equilibrium are
characterized by two conditions.

1. The incumbent must prefer to concede the market in the first
period and to make sales in the second period if the new good
fails in the first period:

prs—r(p)<(—p(s—rp).
With cautious pricing, this holds as an equality and

pr=p(ru —s). )



2. Second, the entrant has to make nonnegative expected profits
by selling today and betting on a favorable resolution of uncer-
tainty tomorrow:

po + p(re —s) > 0. 3)

* The values of y that satisfy (1)-(3) induce experimentation in the first
period.

¢ Conditions (1)-(3) imply that:
po=p(ry —s)+r(p) —s>—plry — s).

Hence experimentation occurs in equilibrium whenever

S—Tr
(rg—rp)+2(rg —s)

Pz =

* On the other hand, the socially efficient policy requires experimen-
tation whenever current costs of experimentation are outweighed by
future gains:

p(ra —s) = s—r(p), or
S —Tyr

(TH—’I“L)—F(’I“H—S)'

B> o=

* Aspu* < fi, we conclude that the cautious equilibrium exhibits exces-
sive experimentation.



2.4 Discussion

* This inefficiency can be traced to the divergence of the private cost
from the social cost of experiments in equilibrium.

e The social benefit, j(ry — s), coincides with the entrant’s private ben-
efit.

* The social cost is given by the myopic losses, s — ().

* The private cost of supporting the experiment, i.e. the negative price
that the entrant has to quote, is

po=r(u) —s+pu(rg —s).

e The additional term y (7 — s) is the price of the incumbent, and thus
reflects his informational gain through cautious pricing.

* The failure of the buyers to take the future surplus extraction into
account reduces the private cost to finance experimentation.

¢ In contrast to the duopoly, where the identity of the benefiting seller
depends on the outcome of the experiment, a monopoly would ex-
tract the social surplus at every stage and the equilibrium would be
efficient.

* More insight into the discrepancy between the efficient and the equi-
librium allocation may be obtained by considering the case where
all buyers act collectively and make purchases as a cooperative as in
Bergemann and Valimaéki (1996).

* In equilibrium, the cooperative is indifferent between the two prod-
ucts at current prices.

* Hence the price differential is equal to the sum of the quality dif-
ferential and the change in the continuation payoff resulting from
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experimentation,

po—pi =71 () —s+pus+(L—p)rp—r(p)=r(p)—s—pn(rg —s). (4

By cautious pricing, p; equals the expected gain from experimenta-
tion for the incumbent when the entrant is selling in the first period.

* Notice that with the cooperative, the expected losses from experi-
mentation for the buyer equal exactly the incumbent’s expected gain.

¢ The equilibrium condition (4) then shows that the private cost of
experimentation for the entrant coincides with the social cost pj =
r (n) — s, and efficiency follows.
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3 Incentives for Experimentation

The starting point is the simplest contracting model following the work
of Holmstrom and Tirole. The agent is risk-neutral, but limited liability
constraints prevent her from buying the franchise outright.

We take a look at how dynamics on learning the profitability of a joint
project affect efficient and second-best contracting. The real benefit of this
modeling comes in dynamic models, where unobservable actions by the
agent allow for possibly misco-ordinated beliefs between the two parties.
It is a major surprise that the model remains tractable. Unfortunately, we
have to leave those models for further courses, but I include some material
on them here as a teaser.

3.1 Bergemann and Hege
3.1.1 Setup

* An entrepreneur, the agent, owns a project.

* The project requires funding that must be obtained from a investor,
the principal.

* Cost of funds proportional to amount given.
¢ Short term contracting, risk neutrality, limited liability.

¢ The returns from the project are contractible but the agent is subject
to moral hazard.

¢ She may invest or divert the money she gets from the principal.
¢ Discrete-time, infinite horizon, common discount factor, § < 1.

* Project is of unknown quality.



* Good project is completed in each period with a probability that is
proportional to the amount invested. Bad project is never completed.

¢ Ex ante symmetric information about the project.

* ¢ is the posterior probability that an uncompleted project in ¢ is
good.

Timing

* At the beginning of period ¢, agent proposes investment amount a,
and a share s; of the returns for herself and (1 — s;) for the principal.

e Principal accepts or rejects the offer, d; € {0, 1}. If accepts, then pays
ca; upfront to the agent.

e Agent decides whether to invest or not i; € {0, a;}.
* Project completion observed.

Stage Payoffs

* A completed project yields R and the agent and principal get s, R and
(1 — s¢) R respectively.

* Expected payoffs if (s;, a;) is proposed and accepted:

o if i, = a; agent: a;q;s, R, principal: a;q; (1 — s;) R — cay

o if i, = 0, agent gets ca, and principal gets —ca;.
Strategies

e Histories are defined as usual: A is an arbitrary fixed history.
* b= (htilv QAt—1, St—1, dt—la it—l) S H'and H := U?iOHt.
* s: H — [0,1] and we write often s (h') .
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* a: H — [0,a] witha < 1, and we write a (h') .

d: H x[0,1] x [0,a] — {0,1}.

i: H x[0,1] x [0,a@] — {0, a:}. Note that there is no investment deci-
sion if d; = 0.

Is there any loss in not considering mixed strategies?
Beliefs on Project Quality

* Discrete-time exponential bandit (good news case).

* Bad project never completed, good completed with probability pro-
portional to investment.

* ¢(h') := ¢ is the probability that the project is good.
@ (1 — i)

I — quiy 7
where we require that i, € {0,a:},a; < 1.

qt+1 =

* Hence conditional on positive investment and no completion, project
quality is updated downwards, g1 < ¢:.

textbfSolution Concept Histories determine posterior beliefs for project
quality ¢; = g (h') .

Definition 1. A variable x (k') is a state variable for the model if after any
two histories A!, h such that z (h!) = z (ﬁt> the continuation games fol-

lowing h' and A! are identical.
In this game, ¢ (h') is clearly a state variable.

Definition 2. A strategy o (k') is Markovian if o (h') = o (z (h')) .
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We write s (¢:), a(q), d (g, St,ar) , i (g, s¢, a;) for Markovian strategies

in this game.

Definition 3. A Markov Perfect Equilibrium (MPE) is a subgame perfect
equilibrium where all players use Markovian strategies.

Exercise 1. Show by an example that this is different from defining MPE

as any equilibrium in the game where the players have only Markovian

strategies. Hint: use a repeated extensive form game where the game ends

with a probability determined by stage actions (really a stochastic game).

3.1.2 Observable Investments

Benchmark: Certain Project

In this case we have ¢; = 1.
If we insist on Markovian equilibria, s; = s,a; = a for all ¢.

Principal breaks (at least) even if agent invests and

(1—5)aH—ca2001‘52R_c

Agent invests if

V(a) =asR+ (1 —a)dV (a) > ca+ 0V (a).

The equality is the promise keeping constraint and the inequality is
the incentive compatibility condition for investing.

V (a) can be solved from the equality with break-even contract for

Rfc):

principal (i.e. s = =%




¢ Hence IC can be written as:

da (R —¢)
e > AR TO
R=2e2 10500
or |5
< —2
‘=5 (= 2)
or 5
ac
> 2 : 5
R > c—|—1_5 (5)
 Hence it is optimal to set a = @ if R > 2c+ 2% and a = a* =
=0 (R — 2¢) otherwise.

e If inequality (5) holds at @ = @, we say that we are in the high return

case.
Uncertain Project Quality

e Assume now that ¢y < 1.

¢ After any period with investments i, = a; > 0 ¢14+1 < ;.

e Ifi, =0, then ¢;,1 = .

¢ Under Markovian strategies, a,+1 = a; and s;41 = s, if i, = 0.

¢ Hence we can write incentive compatibility for the agent (with break-
even for the principal):

Vi) = ae (@R —¢) + (1 — arq) 0V (qe41) > car + 6V (q) -

* Suppose that incentive compatibility with a;;; = @ binds at g.;;.
Then

ca
Vv =—.
(qe+1) 1-35
* A necessary and sufficient condition for incentive compatibility in ¢
is then: _ _
ca ca
a = l—aq)d——>ca+0 .
a(@R—c)+(1—aq) 2@t
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* But this is just the condition for the high return case at return ¢, R.
and scale ¢;a and hence high return projects satisfy the condition for
high enough ¢;.

¢ The critical ¢ above which the project gets full funding is

. 2c(1-9)
TR0 -6)—dac

o If the project does not get full funding, then
ar (@R —c¢) + (1 — arqe) 5?5215 = cay + 6lcit

5

* From this one sees that since ¢, is decreasing, the maximal level of
funding consistent with incentive compatibility is decreasing in ¢.

Exercise 2. Will the project be abandoned in finite time? We know that ¢,
drifts downwards but so does a;. It is easy to see that a, converges to 0, but
will the boundary ¢ = 2¢ be reached?

Theorem 1. The game has a unique MPE where high return projects are
funded at full speed in the beginning. Low return projects receive limited
and restricted funding over time.

Definition 4. A subgame perfect equilibrium of a repeated game is called
weakly renegotiation proof if none of its continuation equilibrium payoff
vectors is Pareto dominated by any other continuation equilibrium payoff
vector.

Exercise 3. Prove or disprove that all weakly renegotiation proof equilibria
induce the same path as the unique MPE.

Exercise 4. Can you find subgame perfect equilibria that leave the princi-
pal a positive payoff?

13



3.1.3

Unobservable Investment

Suppose next that the investment decision is unobservable to the
principal.

Question: How to define Markovian strategies? Not straightforward
since the players observe different histories.

The belief of the agent about project quality can always be required

to depend on her own investment decisions alone.
The principal has really a belief over the agent’s beliefs..

Public history now is h° and hl, = (hfp_l, a;_1,S¢-1,ds—1). Notice that
i;—1 is missing from the public history.

After a deviation, the agent has a belief that differs from the belief
(about her belief) based on public history.

Markovian strategies of the principal are unaffected by deviations in
investments.

Let ¢* denote the agent’s belief computed based on the full experi-
mentation history.

Let ¢” be the belief over agent’s belief given public history.

On equilibrium path ¢” (h}) = ¢# (k') = ¢ (h%) =: ;.

Definition 5. (a*, s*, d*,i*) is a Markov Perfect equilibrium if the players

use Markovian strategies:



and ¢* (k') is computed using Bayes’ rule and i*.

* Note that on equilibrium path, both players choose actions based on
the common public belief on the quality of the project ¢;.

* Notice also that we must allow the agent to condition her decisions
on both beliefs.

¢ Issue: How to deal with beliefs following observable deviations by
the agent? Can these be used to generate additional sequential equi-
libria? In Horner and Samuelson, this issue does not arise since the
principal makes the offers.

Analysis

e Break-even for the investor:

a’ (1 —5y)arR > cay.
* Assuming this binds, we have incentive compatibility for agent:

a(qi'R — ) + (1 — arqi") 6V (g1, afyy) > car + 6V (g5, @41) -

* The value functions are calculated for the pair of public and private
beliefs. On path, these coincide and we will write ¢; and V' (¢/1, ¢/ ) =
V' (gi+1) from now on for equilibrium path beliefs. Off path beliefs af-
ter not investing are given by widehatqi:, = q.

* We look for a Markov equilibrium where the agent conditions her
observable actions on the public information only.

* By this assumption, all future equilibrium offers are unaffected by
the current decision to not invest.
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The payoff to the agent from any belief ¢, from the equilibrium path
offers is:

Qt[at (]_ - St) R+(1—at>at+15 (1 — St-l—l) R+(1 — at) (1 - at+1) at+252 (1 - St+2) R+

Therefore the payoff is linear in ¢ for a fixed sequence of offers and
we have:
~ di
Vv (QtI:-17 Qiﬁ-l) =—V (C]t+1) .
Gt+1
Hence the incentive compatibility condition is much simplified:
q
@R — 2¢ > ——0V (qu11)
gt+1
where we have used Bayes’ rule:
q

(1 —aq) = (1 — @) —.
G+1
Again when funding is restricted, incentive constraint binds and we

have a nice difference equation.

Together with the Bellman equation

Vi(g) = ar(g: R — ¢) + (1 — asqe) 0V (qi11)

we can write a differential equation in (ay, ¢;)

1 1 G R
= - 0—(1—=96 —1 .
- dt+1 (2%“ ( ) < 2¢ >>

This can be solved for the unique g consistent with full funding at

ay = Q41 = Q.

It can be shown that 2 < g < 1 if either

dac 2 —2a
) > <
)R > 20%—1_5and(5_2_a or
dac 2 —2a
Y < 2 > .
i) R < C+1_5and6—2_a

In the first case, a; is decreasing over time, in the second case, it is

increasing over time.
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3.2 Horner and Samuelson

e Still short term contracting: consider sequential equilibria of the game.
* Unobservable investment case.
* Make the principal the proposer.

* Consider continuous time limit. Notice that the game is defined in
discrete time, but its properties for small A are analyzed using dif-
ferential equations.

* Must show (and H&S do show) that equilibrium behavior in the
discrete models converges to the behavior given by the differential
equations.

* Size of the project fixed.

* Do areally careful analysis with the fine details related to Markovian
equilibria.

e If you are interested in the area of dynamic incentives, this is very
educational reading.

3.2.1 Setup

* Principal proposes, agent accepts or rejects and decided whether to
invest if accept. Otherwise timing as before.

e Time interval between periods A — 0,6 = (1 —rA).
¢ Probability of success from a good project is AA.

* Public belief conditional on experimentation evolves according to

G = — g (1 - Qt) .

17



Principals payoff v (¢) on equilibrium path must satisfy:
v(g) = AaR (1 —s(q@) —c) A+ (1—=rA) (1= A@A) v (g+a) -
Taking limits:
(r+Agv(g) = AR (1—5(q)) —c—Ag(1—q)v'(q)-
Agent'’s payoff:
w(g) = AgRs(g) A+ (1=7A) (1= AGA) w (grsa)
— bt =) (W) + (-1 i)

qt+A

The first equality is the promise keeping constraint and the second is
the binding incentive compatibility constraint.

By shirking, the agent can consume cA and remain more optimistic

and hence w (¢1+4) is adjusted by 2 as already discussed in Berge-

mann and Hege.
Taking limits gives:

0 = MRs(q)— A1 —q)w' (q) — (r + \g) w(q)
= c— A1 =@ uw' (q) — (r+ Q) w(q) +  w(q)

since by Bayes’ rule:

i (1) waea) =X (- 9w o).

A=0\ G+

3.2.2 Results

Analysis can be done using these three differential equations for v (¢) , w (¢)

and s (¢q) . Experimentation must stop at
2c

1= Xr

in complete analogy with Bergemann and Hege.
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3.3

s (¢q) can be easily eliminated by summing the principal’s and the
agent’s Bellman equation.

Boundary conditions for v (¢) and w (q) :
v(g) =w(g) =0.

Solving these equations gives a limiting solution for some parameter
values. The constraint is that v (¢) and w (¢) must be nonnegative for
all g € [g, 1].

This does not always happen. The cases where this is violated corre-
spond to the cases where dynamic agency cost is high.

The remedy to this: Principal delays, i.e. makes offers that are not
accepted on equilibrium path.

Horner and Samuelson continue from here to analyze the entire set
of Markovian and non-Markovian strategies.

A rich set of dynamic possibilities emerges.

Halac, Kartik and Liu
Back to the full contracting setting: long-term contracts.

Add an element of adverse selection: agent knows her own success
probability.

Discrete-time and potentially infinite horizon.
Risk neutrality, no limited liability.

Hence the physical environment is similar, but the economic model-
ing is very different.

This is really screening over time where moral hazard by the agent
shapes the dynamic screening contracts.

19



3.3.1

3.3.2

Model

In each stage, agent chooses to work or shirk a; € {0,1} Working is
at cost ¢ > 0 per period.

The project is good with prior probability gq.

The agent has a type § € {L, H} determining her success probability
M with M > AL

Agent knows her own type but the principal assigns prior 7 to the
type being good.

Good project succeeds with probability a;\? if the agent is of type 6.

Notice that as before, the project must be good and the agent must
work for the project to succeed with positive probability.

The reward to the principal from a completion is R.

Contracting

At the beginning of the game, the principal offers a contract C' =
(T, Wy, b,1), where T is the effective length of the contract, W} is
the initial payment to/from agent, b = (b1, ...,br) is a sequence of
bonuses contingent on success and | = (I, ..., lr) is a sequence of
penalties imposed on the agent for not completing the project.

Notice that there is a lot of redundancy in the specification of the con-
tracts: Initial payment together with a sequence of bonuses (bonus
contract) or initial payment with only penalties imposed (clawback
contract) would be sufficient. This is an easy exercise and Proposi-
tion 1 in the paper.
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3.3.3 Payoffs

¢ Conditional on a contract C, agent type 6, and a sequence of actions
a = (a;)]_,,the payoff to the principal can be written as

T
1 (C,a) = —Wo—(1—q0)25tzt
=1

s<t

+o Z o' [H 1 - asAG)] [aA’ (R — b)) — (1 — a\) 1] .

* Similarly, the payoff to agent of type 6 from contract C' and action
sequence a is

Ug(C,a) = Wo+(1—4qo)

lt — cat

Ma

+4qo Z 5 [H 1 — as)\e)] [at ()\th — c) + (1 — at)\e) lt} )

s<t
* We write say that I R’ is satisfied at C? for sequence a if
Ug (CO, a) > 0.
e We say that /C?? holds if
max ug (C’e,a) > max Ul (Cal,a> .
e We say that IC? holds if
a € arg max Uy (C?,d)

3.3.4 Benchmarks

First-Best
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If the agent operates the project herself, then she continues as long
as
@'RN > c.

Using Bayes’ rule for the belief after ¢ failures (and assuming agent
works in all prior period),

do (1 - )\G)t
qO(l —/\9)t+1 —qO.

0 _
Qi1 =

To get the optimal number of experiments for each type ¢/, take the
largest integer below the solution to

a0 (1— )" c

qo (]_ _/\g)t" + 1 — (o B RAG

o) ()

B In (1 — \9)

or

The key point to notice here is that ¢’ is not monotonic in \’.

This is natural. Higher A implies more accurate learning hence fewer
trials necessary to become pessimistic.

On the other hand, lower ) implies a smaller probability of getting
successes hence stopping at higher posteriors.

These two effects cannot be signed in general, i.e. it could be that

th > thortf > tH,

Since the principal can use only time to vary the contractual terms,
this makes it relatively hard to find appropriate single crossing con-
ditions for optimal screening contracts.

No Adverse Selection
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In that case, we have pure moral hazard.

With risk neutral agents and without limited liability, sell the project
to the agent at expected value

Hence first-best is achievable.

With limited liability, we would be in the long term contracting ver-
sion of Horner and Samuelson.

No Moral Hazard

* Suppose next that the type of the agent is unknown but the actions
are observable.

* Then the principal sees in each period a signal of the agent’s type
that is correlated with true type.

* This signal (success) has different distribution for the two types.

* Hence can use a Cremer-McLean -type contract to separate in period
t = 0 and extract all rent.

* Conclusion: to get an interesting problem, we need both adverse se-
lection and moral hazard (or different assumptions on limited liabil-

ity).
3.3.5 Second-Best
Case where t© < tH

* By Proposition 1, it is without loss of generality to use clawback con-
tracts C? = (7% W{,1%) .= (1%, W§,1%,1°) with b = 0 for all ¢.

* It is clear that the principal does not have to leave rent to low-type
agent.

23



e Hence the low type agent gets an initial payment Wy that covers
exactly the sum of expected penalties and costs of effort during the
implemented sequence of actions.

* High type agent gets an information rent since the probability of
avoiding future penalties from any period ¢t onwards is always larger
for the high type conditional on choosing the same sequence of ac-
tions at the low type (this is clearly just a lower bound for the infor-
mation rent).

* The main theorem in the paper gives the following characterization
to the optimal contract in this case.

Theorem 2. Assume t* > tL. Then there is an optimal clawback contract
where CH = (t7, W 1) with I, <0 < W, Il =0fort < t¥, and
oL = (fL, WE, ZL) with 7 < £ such that :

1. Forallt < 7",

" { —(1-0) S ift <7,

‘o —Srift =7
2. IR* binds.

3. Both agents work in all periods if they choose their own contract and
H works if she chooses the contract of L.

* Notice that stopping is efficient for H (no distortion on the top).
* L stops (weakly) too early (to reduce information rent going to H).

* H pays no penalties unless she fails to complete the process by the
efficient stopping time. This backloads the incentive effects of the
contract (i.e. gives the best incentives to work at stages where H is
the most pessimistic about the project).
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* The following comparative statics holds for the model:

Proposition 1. Assume ¢ > ¢*. The second-best stopping time for L is
weakly increasing in ¢y and weakly decreasing in c and 7.

Sketch of the Proof

* For easier arguments, let I'? be the set of periods where agent of type
¢ makes a choice. In periods ¢ ¢ ', the agent is locked out (by a large
negative bonus, say). Consider w.l.o.g. only clawback contracts .

* The proof consists of a number of steps:

1. Atallt € T'*, af = 1 is without loss of generality. Proof: assume
af = 0 and make the (discounted) penalty in ¢ payable at the last
s € 'L such that s < ¢. Since aF = 0, the utility to L and the profit if
¢ = L is unchanged. The utility to H in the new contract is no larger
(why?) under the new contract. Hence the new contract satisfies the
constraints.

2. Write a relaxed program (RP 1) to maximize profit over contracts
where af = 1 and the incentive compatibility requirement is just
that

ust (c",a") > Ut (CF,a") .

In other words, incentive compatibility for H is required to hold
only relative to the alternative of choosing C* and working at all
t € T At the optimal solution to this problem, I R and IC*-* must
bind. Using these binding constraints, the program becomes one of
maximizing social surplus net of information rent for H subject to
ICH ICE and where af = 1 for all ¢ € I'". Call this program (RP 2).
Note that now the contract for each type can be solved separately.

3. 't = {1,.., Tt} for some TT. If not, then either move earlier the
serious periods (to fill any gap between serious periods) or terminate
the contract. One of these will increase profit.
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4. For each T, construct the unique sequence [; (T*) such that ICE
binds atall t € {1,...,7%}. Hint: backward induction.

5. Argue that at any solution (RP 2) must use the penalties from the
previous step. Otherwise one can reduce information rent for H.
Here the restriction to clawback contracts is of help.

6. Hence the solution to (RP 2) is found by maximizing over T*. Mono-
tone comparative statics -type argument to show that 7% < ¢~.

7. Using the fact that 7% < ¢* it can be shown that the optimal choice

for H given the contract constructed in 3-6 is such that it is optimal

L

for H to choose a;"" = 1 (period t action when having chosen con-

tract C*) for all ¢ < T'*.Furthermore it is optimal to maximize social
surplus on C* ,ie. TH =" Setting [l = 0 forall ¢t < T¥ and fixing
I}, to give agent H her information rent in expectation makes sure
that agent L does not choose C*.

Specific Comments
* Could be done using bonus contracts by Proposition 1.
¢ No problem without public observability of successes.

Case where t* < tH.

* Much harder because steps 6 and 7 fail in this case.
¢ Paper does not say much about the optimal solution.

* Undiscounted case is analyzed though.

3.3.6 General Comments

e The focus on X\’ as the source of incomplete information makes the
model hard to analyze (the two cases must be handled separately).
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* If we had the cost of effort or discounting as the uncertain variables,
the analysis would be much easier (to the point of being obvious).

* Maybe one could use these other sources of private information to
start the analysis with less restrictive contracting assumptions.

¢ Limited liability?

* Possibly considering dynamic contracting (one period contracts) as
in B&H and H&S.

3.4 Literature for Learning and Contracting

Papers related to repeated or long-term contracting under repeated moral
hazard

“Getting it Done: Dynamic Incentives to Complete a Project,” Robin Ma-
son and Juuso Viliméki, Journal of the European Economic Association,
2015, 13 (1), 62-97

“Breakthroughs, Deadlines, and Self-Reported Progress: Contracting for
Multistage Projects,” Brett Green and Curtis R. Taylor, American Economic
Review 2016, 106(12): 3660?3699.

“Dynamic Delegation of Experimentation,” Yingni Guo, American Eco-
nomic Review, 2016, 106(8):1969-2008.

“Experimentation in Organizations,” Sofia Moroni, unpublished, Novem-
ber, 2017.

“Collaborating,” Alessandro Bonatti and Johannes Horner, American Eco-
nomic Review, 2011.

”Career Concerns with Exponential Learning,” Alessandro Bonatti and Jo-
hannes Horner, Theoretical Economics, 2017.

Games with experimentation

A great survey:
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“Learning, Experimentation and Information Design,” Johannes Horner

and Andrzej Skrzypacz, Econometric Society World Congress.
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