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Lyases – features

enzymes of class EC 4 catalyze the cleavage of chemical bonds (non-hydrolytic!)
(...and of course, like always, some can do the reverse reaction) 
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Aldol-catalyzing enzymes

§ mainly involved in biosynthesis and degradation of sugars and related biomolecules

§ 2 major classes that differ in their basic activation mode
ü class I mechanism: enamine catalysis or
ü class II mechanism: enolate catalysis
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Aldol-catalyzing enzymes

§ mainly involved in biosynthesis and degradation of sugars and related biomolecules

§ 2 major classes that differ in their basic activation mode
ü class I mechanism: enamine catalysis or
ü class II mechanism: enolate catalysis
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General activation modes
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General activation modes

class II aldolase: enolate catalysis

His

2-O3PO
O

OH

R H

O

2-O3PO
O

R

OH

OH

* *

phosphate binding
pocket

Zn2+
His

His
His

Glu

OO

HO

Tyr

Zn2+

His His

His

Glu

O
O HO

Tyr

O2-O3PO

OHH H

Zn2+

HisHis

His

Glu

O
HO O

Tyr

2-O3PO O

OH

H
OR

Glu

O
HO

Zn2+

His

HisO2-O3PO

OH

OH
R

–OTyr



Jan Deska
Bioorganic
Chemistry

General activation modes

class II aldolase: enolate catalysis
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General activation modes

class II aldolase: enolate catalysis
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General activation modes

class II aldolase: enolate catalysis
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2-Deoxyribose-5-phosphate aldolase

DERA (Lactobacillus brevis)

§ homo dimer, 259 amino acids per subunit
(other organisms exploit tetrameric DERAs)

§ class I aldolase

§ independent on cofactors or metal ions

§ physiological role: catabolism of glycosides and
deoxyribonucleotides

§ catalyzes the reversible cross-aldol reaction
between acetaldehyde and other acceptor
aldehydes
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Aldolases: synthetic applications

Synthesis of the statin core structure

Greenberg, Varvak, Hanson, Wong, Huang, Chen, Burk, Proc. Natl. Acad. Sci. 2004, 101, 5788-5793.
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Aldolases: synthetic applications

Synthesis of azasugars
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Aldolases: synthetic applications
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Aldolases: synthetic applications

Synthesis of azasugars

Dean, Greenberg, Wong, Adv. Synth. Catal. 2007, 349, 1308-1320.
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Aldolase biomimetics

Enamine-based biomimetics as the mother of Organocatalysis

based on stoichiometric enamine chemistry
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Aldolase biomimetics

The Hajos-Parrish-Eder-Sauer-Wiechert reaction

§ first highly enantioselective organocatalytic reaction
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Aldolase biomimetics

The Hajos-Parrish-Eder-Sauer-Wiechert reaction
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General Aldol catalysis

O

(solvent)

+
H

O N
H

COOH

DMF, 4 °C

O OH

97%, 96% ee

high enantioselectivity (List 2000)

List, Lerner, Barbas, J. Am. Chem. Soc. 2000, 122, 2395-2396.
Northrup, MacMillan, J. Am. Chem. Soc. 2002, 124, 6798-6799.
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General Aldol catalysis
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Nobel Prize 2021 in Chemistry

David W. C. MacMillan
Princeton, USA

“for the development of asymmetric organocatalysis”

Benjamin List
Max-Planck-Institut Mülheim, Germany
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General Aldol catalysis
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General Aldol catalysis
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General Aldol catalysis

Houk, Martin, List, J. Am. Chem. Soc. 2003, 125, 2475-2479.
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General Aldol catalysis

Houk, Martin, List, J. Am. Chem. Soc. 2003, 125, 2475-2479.
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Aldolase biomimetics

syn-selective aldol reactions

Ramasatry, Zhang, Tanaka, Barbas J. Am. Chem. Soc. 2007, 129, 288-289.
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Aldolase biomimetics

syn-selective aldol reactions

Ramasatry, Zhang, Tanaka, Barbas J. Am. Chem. Soc. 2007, 129, 288-289.
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Aldolase biomimetics

syn-selective aldol reactions

Kano, Yamaguchi, Maruoka, Angew. Chem. Int. Ed. 2007, 46, 1738-1740.

by destabilization of Zimmerman-Traxler arrangement

H

O
+

NMP, r.t.
H

O

CO2Et

OH

99%, 95% ee, 72% syn

H CO2Et

O

C4H9C4H9

NH

NHSO2CF3

Organocatalysis
DOI: 10.1002/anie.200604640

syn-Selective and Enantioselective Direct Cross-Aldol Reactions
between Aldehydes Catalyzed by an Axially Chiral Amino
Sulfonamide**
Taichi Kano, Yukako Yamaguchi, Youhei Tanaka, and Keiji Maruoka*

The aldol reaction has long been recognized as one of the
most fundamental tools for the construction of new carbon–
carbon bonds.[1] In this area, the cross-aldol reaction between
two different aldehydes is known to be often problematic
because of undesired side reactions, including dehydration of
the product, self-aldol reaction, and multiple addition of the
enolate to the aldol product. To date, however, several cross-
aldol reactions using aldehyde-derived metal enolates, includ-
ing silyl enol ethers as nucleophile and/or non- or slowly
enolizable aldehydes as electrophile, have been reported,[2–9]

and some rare examples of the catalytic asymmetric version of
this reaction have recently been developed.[10–16] For example,
the diastereo- and enantioselective cross-aldol reaction
between aldehydes and silyl enol ethers was first accom-
plished by Denmark et al. with chiral Lewis base catalysts,[10]

and very recently Kobayashi and co-workers demonstrated
the chiral Lewis acid catalyzed diastereo- and enantioselec-
tive reaction using aldehyde-derived enecarbamates as an
activated aldehyde nucleophile.[11] With these methods, both
the syn and anti diastereomers, respectively, were formed in a
highly enantioselective fashion. On the other hand, to the best
of our knowledge, most organocatalytic direct enantioselec-
tive cross-aldol reactions of aldehydes, first reported by
MacMillan and co-workers, provide predominantly anti aldol
adducts,[12–17] albeit with only a few exceptions giving syn
adducts.[12d] In this context, we have been interested in the
possibility of developing a syn-selective direct cross-aldol

reaction between two different alde-
hydes by using a chiral organocata-
lyst. Herein we wish to report such a
syn-selective and enantioselective
direct cross-aldol reaction catalyzed
by an axially chiral amino sulfona-
mide of type (S)-1.

Our strategy is based on the recent observation that a
direct asymmetric Mannich reaction is catalyzed by the
axially chiral amino sulfonamide (S)-1 to give the anti product
predominantly, which is a minor diastereomer in the proline-
catalyzed reaction.[18] Since it would be difficult for anti
enamine A, which is generated from a donor aldehyde and
(S)-1, to react with an acceptor aldehyde that is activated by
the distal acidic proton of the triflamide of (S)-1, the cross-
aldol reaction catalyzed by (S)-1 would be expected to
proceed through syn enamine intermediate B, thus giving the
desired unusual syn product as shown in Scheme 1.

We first examined the reaction between 4-nitrobenzalde-
hyde and hexanal in the presence of 5 mol% (S)-1 in various
solvents at room temperature, and the results are summarized
in Table 1. Unfortunately, the reaction in less polar solvents
such as dioxane, toluene, and CH2Cl2 gave the cross-aldol
product 2 in poor yield with low stereoselectivities (Table 1,
entries 1–3). In the case of acetonitrile, only a trace amount of
2 was observed, although syn-2 was slightly dominant over
anti-2 (Table 1, entry 4). While the use of DMSO, which is a
common solvent for aldol reactions catalyzed by proline or
related organocatalysts,[13a, 15] led to the formation of the
desired syn-2 in a highly diastereo- and enantioselective
manner, the yield was still low (Table 1, entry 5). When the
amide solvents N,N-dimethylformamide (DMF) and N-meth-
ylpyrrolidone (NMP) were used, the desired syn-2 was
obtained in moderate yield with excellent diastereo- and
enantioselectivity (Table 1, entries 6 and 7). Accordingly,

Scheme 1. Possible transition states for the enantioselective direct
cross-aldol reaction catalyzed by (S)-1.

[*] Dr. T. Kano, Y. Yamaguchi, Y. Tanaka, Prof. K. Maruoka
Department of Chemistry
Graduate School of Science
Kyoto University
Sakyo, Kyoto 606-8502 (Japan)
Fax: (+81)75-753-4041
E-mail: maruoka@kuchem.kyoto-u.ac.jp

[**] This work was partially supported by a Grant-in-Aid for Scientific
Research on Priority Areas “Advanced Molecular Transformation of
Carbon Resources” from the Ministry of Education, Culture, Sports,
Science, and Technology, Japan.

Supporting information for this article is available on the WWW
under http://www.angewandte.org or from the author.

Communications

1738 ! 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2007, 46, 1738 –1740
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Aldolase biomimetics

replacement of acceptor = other a-functionalizations of aldehydes and ketones

Imine acceptors = Mannich reaction

Hayashi, Tsuboi, Ashimine, Urushima, Shoji, Sakai, Angew. Chem. Int. Ed. 2003, 42, 3677-3680.
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Aldolase biomimetics
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Modern enamine catalysis

proline as template for the development of next generation organocatalysts
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Modern enamine catalysis

alpha-functionalization of aldehydes and ketones
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Modern enamine catalysis

alpha-functionalization of aldehydes and ketones
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Modern enamine catalysis

enamine activation in radical chemistry
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Modern enamine catalysis

enamine activation in radical chemistry

H

O

N

N
H

O

Bn
TFA

(NH4)2Ce(NO3)6
LiCl

THF, –10 °C

CHO

H

Cl

85%, 95% ee, 8:1 dr

N
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O
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N N
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+
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N N

Bn O

+

+ Cl–
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Beeson, Mastracchio, Hong, Ashton, MacMillan, Science 2007, 316, 582-584.
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Remember the acyloin reaction?

Acyloin reaction

§ PDCs also catalyze C-C-coupling between a-ketoacids and aldehydes

§ biochemical equivalent to the Benzoin reaction
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2 x
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OH

cat. NaCN

H
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CN

benzoin

OH

CN
+ PhCHO

O–O
H

CN

+ CN–

OHNaCN

H2O

OH

CN

N
cyanohydrine

H+

OH
NH2

OH
R

or

O

R = H, alkyl, OH

§ formal addition of HCN 
yields cyanohydrines

§ analogous to Stetter
amino acid synthesis 
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Cyanohydrine-converting enzymes

§ hydroxynitrile lyases (EC 4.2.1.x) mainly found in higher plants

§ main role: defence mechanisms based on cyanogenesis

§ 2 major classes that differ in their dependence on FAD

ü FAD not acting as redox mediator in these enzymes

O

OR

HO
HO

OH
O

CN

Ph hydrolase

R = H:
β-D-Glc:

prunasin
amygdalin

– sugar

HO

CN

Ph
hydroxynitrile

lyase

– sugar
PhCHO + HCN

§ cheap sources for HNLs: almonds, cherry, manioc, rubber tree
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Serine-Histidine-Aspartate: Catalytic triade

mechanism in e.g. 
manioc and Hevea sp.

Sharma, Nand Sharma, Bhalla, Enzyme Microb. Technol. 2005, 37, 279-294.
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Synthetic applications: addition of HCN to aldehydes

Bracco, Busch, von Langermann, Hanefeld, Org. Biomol. Chem. 2016, 14, 6375-6389.

calcium pantothenate: important
animal feed additive

sold as Cymbalta
selective serotonine reuptake inhibitor

(antidepressant)

O

HHO
Prunus amygdalus

HNL (V317A)

HCN, buffer
pH 2.5 OH

CNHO
nitrile

hydrolysis

spontaneous
lactonization O O

OH

(R)-pantolactone
99% ee

Prunus aremeniaca
HNL

HCN, buffer
pH 4

duloxetine

S CHO S
CN

OH

S
O

NHMe

99% ee
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Synthetic applications: HCN-free hydrocyanations?

Bracco, Busch, von Langermann, Hanefeld, Org. Biomol. Chem. 2016, 14, 6375-6389.

acetone cyanohydrine as masked HCN

R H

O almond meal

iPr2O, buffer
pH 4.5

CNHO

R CN

OH
+ +

O

O

O C3H7

OH
OH

OH

stagonolide B

O

H11C5 O

OH

cytospolide E

HO

also here: reversibility is the key


