Aalto University
School of Electrical
Engineering

ELEC-E8126: Robotic Manipulation Kinematic redundancies

Ville Kyrki
21.3.2022

Learning goals

- Understand modeling and characteristics of redundant kinematic chains.
- Understand how redundancy can be used to address e.g. singularities, joint limits or obstacles.

Kinematic redundancy

- Kinematically redundant manipulator has more than minimal number of degrees of freedom to complete its task.
- Thus, same task configuration can be achieved with infinitely many joint configurations.
- Why are kinematically redundant manipulators interesting?

Kinematic redundancy

- Kinematically redundant manipulator has more than minimal number of degrees of freedom to complete its task.
- Thus, same task configuration can be achieved with infinitely many joint configurations.
- Why are kinematically redundant manipulators interesting?
- Secondary tasks: e.g. avoid singularities, avoid joint limits, avoid obstacles, optimize motion.

Example: 6-DOF manipulator, translation task

- 6-DOF serial manipulator
- Only translation of e-e needs to be controlled in position.
- Orientation can be ignored.
- How many degrees of motion does the robot have?
- How many are constrained by task?
- Is the system redundant?

Inverse differential kinematics

- Remember: Forward differential kinematics

$$
\dot{\boldsymbol{x}}=J(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}}
$$

- What is the inverse of this?
- When is it non-unique?
- What are the other solutions?

Inverse differential kinematics

- Remember: Forward differential kinematics

$$
\dot{\boldsymbol{x}}=J(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}}
$$

- What is the inverse of this? $\quad \dot{\theta}=J^{-1}(\boldsymbol{\theta}) \dot{\boldsymbol{x}} \quad \dot{\boldsymbol{\theta}}=J^{+}(\boldsymbol{\theta}) \dot{\boldsymbol{x}}$
- When is it non-unique?
- What are the other solutions?

$$
\dot{\boldsymbol{\theta}}=J^{+}(\boldsymbol{\theta}) \dot{\boldsymbol{x}}+\left(I-J^{+}(\boldsymbol{\theta}) J(\boldsymbol{\theta})\right) \dot{\boldsymbol{\theta}}_{0}
$$

anything

Null space revisited

$$
\dot{\boldsymbol{\theta}}=J^{+}(\boldsymbol{\theta}) \dot{\boldsymbol{x}}+\left(I-J^{+}(\boldsymbol{\theta}) J(\boldsymbol{\theta})\right) \dot{\boldsymbol{\theta}}_{\mathbf{0}}
$$

can also be written

$$
\dot{\boldsymbol{\theta}}=J^{+}(\boldsymbol{\theta}) \dot{\boldsymbol{x}}+N N^{+} \dot{\boldsymbol{\theta}}_{0}
$$

- N is null space of $J(\boldsymbol{\theta})$
- Set of vectors $N=\left\{\boldsymbol{n}_{1}, \boldsymbol{n}_{2}, \ldots\right\}$
- such that $J(\boldsymbol{\theta}) \boldsymbol{n}_{\boldsymbol{i}}=\mathbf{0}$

Internal (self) motion example

- Task: 2-D position.

Note: Internal motion is a changing combination of joint velocities (and accelerations).

Using internal motions

- Why did we want internal motions?
- How? Two approaches:
- Optimize performance criteria. 4

We'll look at this a bit closer.

- Add more tasks. 4

But first an example of this.

- Both approaches only move in null space of primary task.

$$
\dot{\boldsymbol{\theta}}=J^{+}(\boldsymbol{\theta}) \dot{\boldsymbol{x}}+I-J^{+}(\boldsymbol{\theta}) J(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}}_{0}
$$

Using null space with extra tasks Example: joint-limit avoidance

- Use null-space to avoid joint limits

$$
\dot{\boldsymbol{\theta}}=J^{+}(\boldsymbol{\theta})_{\boldsymbol{x}} \dot{\boldsymbol{x}}+k_{J} P W\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{M A X}\right)
$$

Optimizing performance criteria

- Consider we want to minimize some joint-dependent criterion $H(\boldsymbol{\theta})$ that can be expressed analytically and is differentiable
- How to write a controller to move joints towards minimum of H ?

$$
\dot{\boldsymbol{\theta}}=J^{+}(\boldsymbol{\theta}) \dot{\boldsymbol{x}}+\left(I-J^{+}(\boldsymbol{\theta}) J(\boldsymbol{\theta})\right) \dot{\boldsymbol{\theta}}_{0}
$$

Optimizing performance criteria

- Consider we want to minimize some joint-dependent criterion $H(\boldsymbol{\theta})$ that can be expressed analytically
- How to write a controller to move joints towards minimum of H ?

$$
\dot{\boldsymbol{\theta}}=-k_{H} \nabla H(\boldsymbol{\theta})
$$

- Now substitute to velocity controller:

$$
\dot{\boldsymbol{\theta}}=J^{+}(\boldsymbol{\theta}) \dot{\boldsymbol{x}}-k_{H}\left(I-J^{+}(\boldsymbol{\theta}) J(\boldsymbol{\theta}) \mid \nabla H(\boldsymbol{\theta})\right.
$$

Performance criteria examples

- Joint-limit avoidance
- Propose criteria!
- Singularity avoidance
- E.g. manipulability

$$
H(\boldsymbol{\theta})=\sqrt{\left|J(\boldsymbol{\theta}) J^{T}(\boldsymbol{\theta})\right|}
$$

Connection: In-hand motions / Kinematic and actuator redundancies

- Remember the grasping constraint?

$$
J \dot{\boldsymbol{\theta}}=G^{T} V_{O}
$$

- Kinemator redundancy - null space of J.
- Internal motions.
- Actuator redundancy - null space of G.
- Internal forces.

Summary

- Redundancies can be used to resolve additional tasks without sacrificing primary task.
- Redundancies are especially useful to avoid joint limits and singularities.

Next time: Learning in manipulation

- Readings:
- Kroemer et al., "A review on robot learning for manipulation", secs. 1-3.
- Link available on course website.

