

Jan Goetz
Lecture notes on PHYS-C0254 Quantum Circuits

www.meetiqm.com

About me: From science to startups

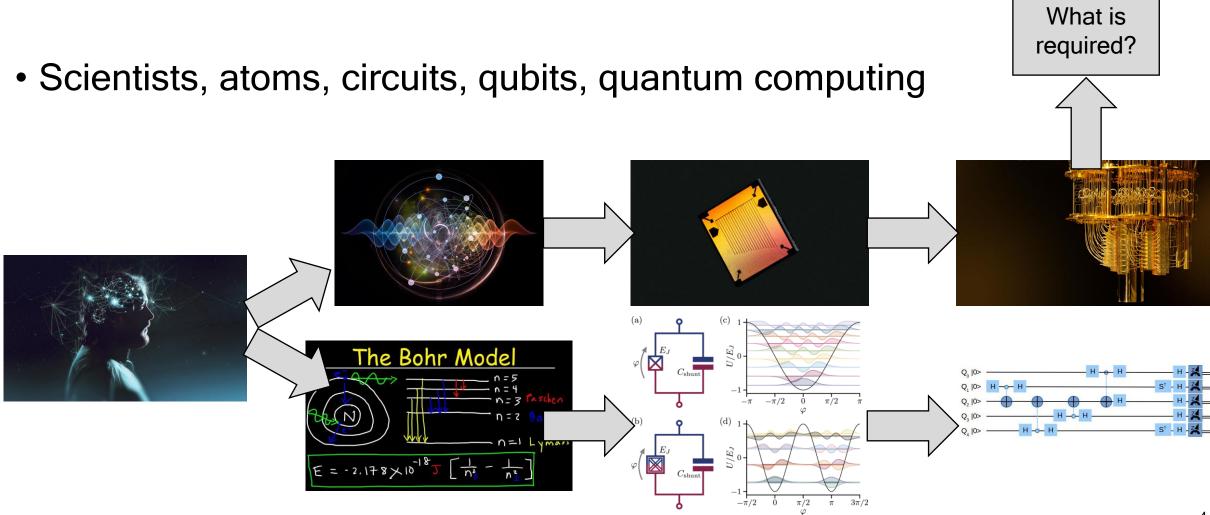
- Originally from Neuss (near Cologne, GER)
- 2006 2011: Physics student in Munich (TUM)
- 2012 2017: PhD student in Munich (WMI)
- 2017 2019: Marie-Curie Fellow in Helsinki (Aalto)
- 2019 today: Co-founding CEO of IQM
- 2021 today: Board Member EIC &QuIC
- I like dogs
- I like sports
- I have strong eye rings (but I sleep well)
- I like standing at the bar
- I am a team person (collaboration)
- I can give away tasks (trust)
- I like making big plans (ambition)

IQM in brief

Quantum-computer scale-up

- Providing quantum computers based on superconducting technology
- DeepTech Scale Up, > 140 people strong
- Secured > M70 EUR funding
- Offering:
 - On-premises systems for research and supercomputing centers
 - · 2 systems sold, 1 delivered
 - HPC integration of quantum computers
 - Co-design approach for application-specific quantum computers

How does everything fit into the big picture?



Di Vincenzo Criteria and where you can find them in this course

Statement of the criteria

- 1. A scalable physical system with well characterized qubit
- 2. The ability to initialize the state of the qubits to a simple fiducial state
- 3. Long relevant decoherence times
- 4. A "universal" set of quantum gates
- 5. A qubit-specific measurement capability

Agenda for lectures 7-11

- 7. Quantization of electrical networks
 - a. Harmonic oscillator: Lagrangian, eigenfrequency
 - b. Transfer step: LC oscillator, Legendre transform to Hamiltonian
 - d. Quantization of oscillators
- 8. Superconducting quantum circuits
 - a. Qubits: Transmon qubit, Charge qubit, Flux qubit 1st DiVincenzo criteria
 - b. Circuit-QED: Rabi model
 - c. Rotating Wave approximation: Jaynes-Cummings model
- 9. Single-qubit operations:
 - a. Initialization 2nd DiVincenzo criteria
 - b. Readout 5th DiVincenzo criteria
 - c. Control:T1, T2 measurements, Randomized benchmarking 3rd DiVincenzo criteria
- 10. Two-qubit operations: Architectures for 2-qubit gates 4th DiVincenzo criteria
 - a. iSWAP
 - b. cPhase
 - c. cNot
- 11. Challenges in quantum computing
 - a. Scaling
 - b. SW-HW gap
 - c. Error-correction

Agenda for today

- 7. Quantization of electrical networks
 - a. Harmonic oscillator: Lagrangian, eigenfrequency
 - b. Transfer step: LC oscillator, Legendre transform to Hamiltonian
 - d. Quantization of oscillators

a.

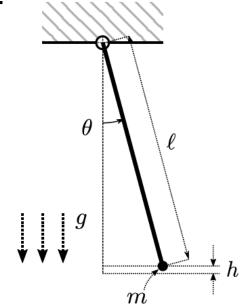


Figure 1: Classical pendulum.

b.

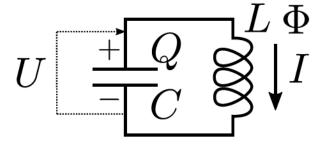


Figure 2: Superconducting LC oscillator.

C.



General note: Harmonic oscillators

 General note: In physics, many phenomena can be explained by harmonic oscillators. They are the standard tool in our physics toolbox.

 Usually, there are two important variables involved like position and momentum, x and p.

• One can often find analogies where two system variables are equivalent to *x* and *p*. For example, in an LC oscillator these are charge and flux.

Short review: Lagrangian & Hamiltonian

 During this course, Lagrangian and Hamiltonian mechanics are used for analyzing quantum computing circuits.

 Recall that the Lagrangian is defined as the kinetic energy T minus the potential energy V:

$$L \equiv T - V$$
.

• Quite often the Hamiltonian is representing the total energy of the system:

$$H=T+V.$$

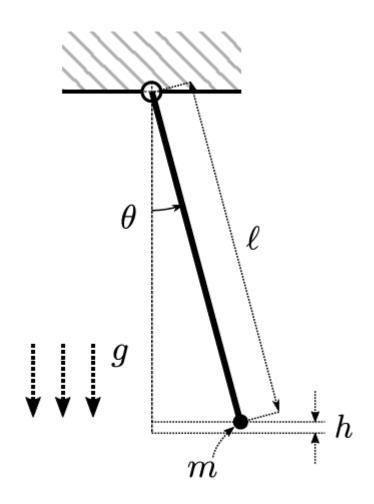


Figure 1: Classical pendulum.

The Euler-Lagrange equation states

Since T does not depend on q
$$\frac{\partial L}{\partial q} = -\frac{\partial V}{\partial q}$$
 Since $p = \partial L/\partial \dot{q}$ we obtain Newton's equation of motion
$$dp = \partial V$$

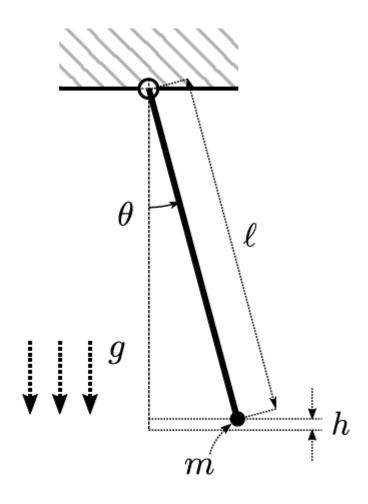


Figure 1: Classical pendulum.

The kinetic energy is

$$T = \frac{1}{2}mv^2 = \frac{1}{2}m\ell^2\dot{\theta}^2$$

The potential energy is

$$V = mgh = mg\ell (1 - \cos \theta) \approx \frac{1}{2} mg\ell \theta^{2}$$

$$L \equiv T - V.$$

We introduce generalized coordinates p and q

$$q = \ell \theta ,$$

$$p \equiv \frac{\partial L}{\partial \dot{q}} \approx \frac{\partial}{\partial \dot{q}} \left(\frac{1}{2} m \dot{q}^2 - \frac{mg}{2\ell} q^2 \right) = m \dot{q} = m\ell \dot{\theta}$$

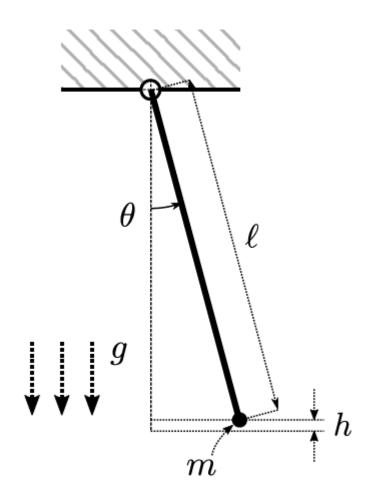


Figure 1: Classical pendulum.

Applying our example to the Euler-Lagrange equation gives

$$\dot{p} = -mg\theta$$

In addition, we can independently differentiate *p* wrt time:

$$\dot{p} = m\ell \ddot{\theta}$$

Together this yields:

$$m\ell\,\ddot{\theta} + mg\theta = 0\,,$$

$$\ddot{\theta} + \frac{g}{\ell}\theta = 0.$$

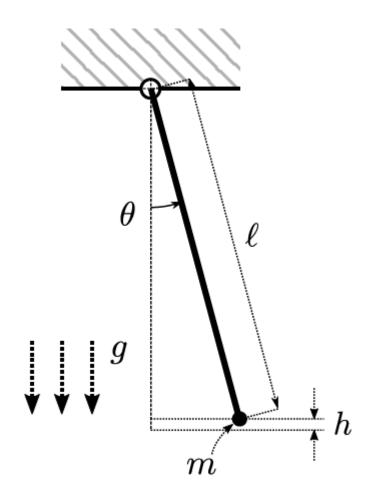


Figure 1: Classical pendulum.

Because we are smart, we chose the trial function

$$\theta = C \exp(i\omega t)$$

Inserting this function into differential equation yields:

$$i^2\omega^2 C \exp(i\omega t) + \frac{g}{\ell} C \exp(i\omega t) = 0$$

Solving this equation provides the well-known result:

$$\omega = \sqrt{g/\ell}$$

Key takeaway: Starting from energy considerations, we can derive the eigenfrequency of the system

Agenda for today

- 7. Quantization of electrical networks
 - a. Harmonic oscillator: Lagrangian, eigenfrequency
 - b. Transfer step: LC oscillator, Legendre transform to Hamiltonian
 - d. Quantization of oscillators

a.

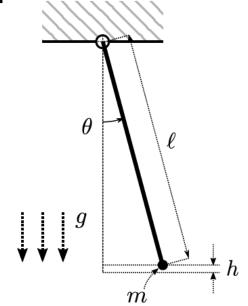


Figure 1: Classical pendulum.

b.

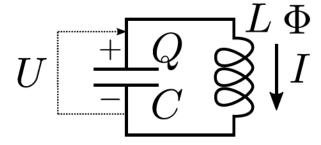
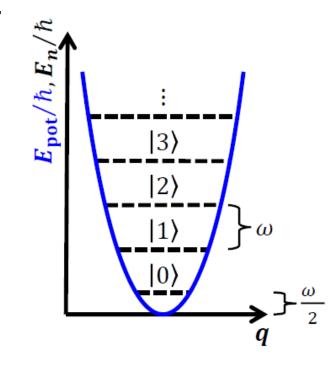


Figure 2: Superconducting LC oscillator.

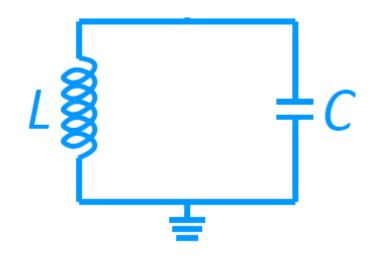
C.

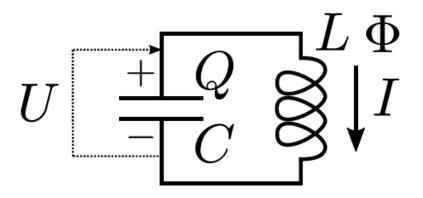


General note: LC oscillators

 General note: Once you understand the harmonic oscillator, you can easily apply the concept to any other oscillator.

```
\begin{array}{ll} \operatorname{Momentum} \hat{p} & \longleftrightarrow \operatorname{Charge} \hat{q} \\ \operatorname{Position} \hat{x} & \longleftrightarrow \operatorname{Flux} \widehat{\varPhi} \\ \operatorname{Mass} m & \longleftrightarrow \operatorname{Capacitance} C \\ \operatorname{Resonance} \operatorname{frequency} \omega_{\Gamma} \longleftrightarrow \omega_{\Gamma} = 1/\sqrt{LC} \end{array}
```





We assume an electrical circuit consisting of inductance L and capacitance C. The charge stored in the capacitor is

$$Q = CU$$

The power fed into the circuit is P = UI and consequently

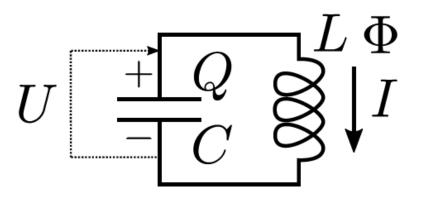
$$P = U\dot{Q}$$

Figure 2: Superconducting LC oscillator.

Hence, the potential energy stored in the system is

$$V = \int_{t_0}^{t_1} P \, dt = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} Q U = \frac{1}{2} C U^2$$

For the magnetic flux F in a coil, it holds that



$$\Phi = LI$$

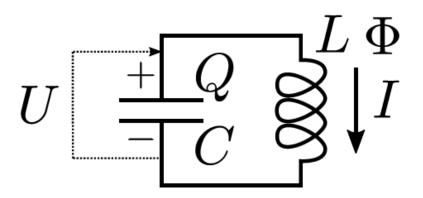
Lenz law tells us that

$$\dot{\Phi} = U$$

Figure 2: Superconducting LC oscillator.

Hence, the kinetic energy stored in the system is

$$T = \int_{t_0}^{t_1} P \, dt = \int_{t_0}^{t_1} UI \, dt = \frac{1}{2} LI^2 = \frac{\Phi^2}{2L}.$$



To apply Lagrangian mechanics, we use the previous results

$$V = \frac{1}{2}CU^2 = \frac{Q^2}{2C}$$
, $T = \frac{1}{2}LI^2 = \frac{1}{2}L\dot{Q}^2$,

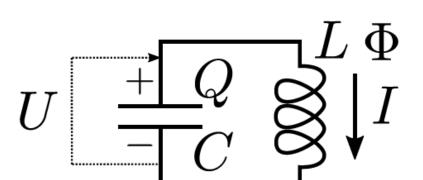
allowing us to write the Lagrangian as

$$L = T - V = \frac{1}{2}L\dot{Q}^2 - \frac{Q^2}{2C}$$
.

Figure 2: Superconducting LC oscillator.

To derive the equation of motion, we again introduce generalized coordinates

$$q = Q$$
,
$$p \equiv \frac{\partial L}{\partial \dot{q}} = L\dot{Q} = -LI = -\Phi \ .$$



Remind yourself again of Euler-Lagrange:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \right) = \frac{\partial L}{\partial q}$$

Using the above results gives the equation of motion for charge:

$$\ddot{Q} + \frac{1}{LC}Q = 0$$

Figure 2: Superconducting LC oscillator.

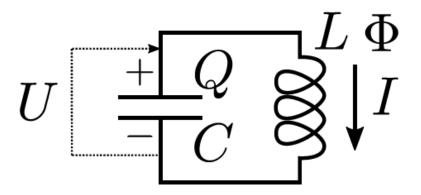
Using a similar ansatz for the trial function yields the resonance frequency

$$\omega = \frac{1}{\sqrt{LC}} \quad \stackrel{\text{Pendulum:}}{\longleftarrow} \quad \omega = \sqrt{g/\ell}$$

Key takeaway: Starting from energy considerations, we can derive the eigenfrequency of the system

Legendre transformation to Hamiltonian*

Hamiltonian gives two 1st order differential equations, while Euler Lagrange gives one 2nd order



The general definition for a Hamiltonian is

$$H \equiv \dot{q}p - L.$$

We take the total time derivative to analyze the system dynamics:

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \ddot{q}p + \dot{q}\dot{p} - \frac{\partial L}{\partial q}\dot{q} - \frac{\partial L}{\partial \dot{q}}\ddot{q} - \dot{L}$$

Figure 2: Superconducting LC oscillator.

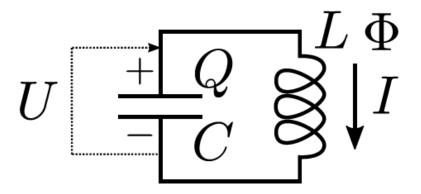
To solve this equation, we use

$$p \equiv \partial L/\partial \dot{q}$$

$$p = p(t) \text{ only, so } dp/dt = \dot{p}$$

Legendre transformation to Hamiltonian*

Hamiltonian gives two 1st order differential equations, while Euler Lagrange gives one 2nd order



Using the above terms in the total time derivative yields

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \ddot{q}p + \dot{q}\dot{p} - \frac{\partial L}{\partial q}\dot{q} - p\ddot{q} - \dot{L}$$

Simplifying this formula further results in

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \dot{q} \left[\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} \right] - \dot{L}$$

Figure 2: Superconducting LC oscillator.

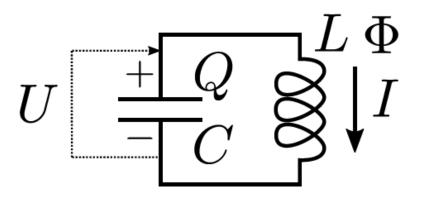
The Lagrangian is time independent and due to Euler Lagrange, the parentheses are also zero, hence

$$\frac{\mathrm{d}H}{\mathrm{d}t} = 0$$

We find that the Hamiltonian is a constant of motion, i.e. energy is conserved in the system

Legendre transformation to Hamiltonian*

Hamiltonian gives two 1st order differential equations, while Euler Lagrange gives one 2nd order



We can use the general definition for the Hamiltonian to find

$$H = \dot{Q}(L\dot{Q}) - \left(\frac{1}{2}L\dot{Q}^2 - \frac{Q^2}{2C}\right) = \frac{1}{2}L\dot{Q}^2 + \frac{Q^2}{2C}$$

Inserting the standard definitions, we find

$$H = \frac{1}{2}LI^2 + \frac{Q^2}{2C} = \frac{\Phi^2}{2L} + \frac{Q^2}{2C}$$

Figure 2: Superconducting LC oscillator.

Hence, the Hamiltonian represents the total energy of the system

$$H=T+V$$
.

Key takeaway: Starting from Lagrangian, we can derive the total energy of the system. This is necessary to derive energy quantization.

Agenda for today

- 7. Quantization of electrical networks
 - a. Harmonic oscillator: Lagrangian, eigenfrequency
 - b. Transfer step: LC oscillator, Legendre transform to Hamiltonian
 - d. Quantization of oscillators

a.

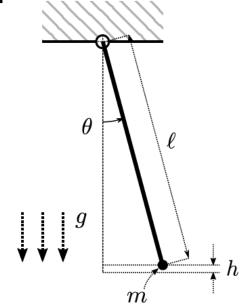


Figure 1: Classical pendulum.

b.

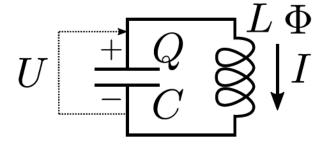
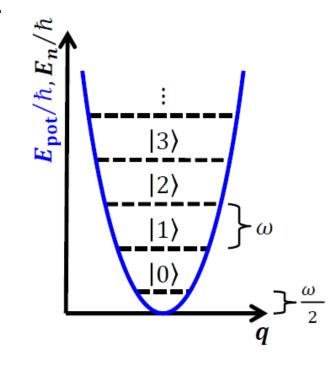
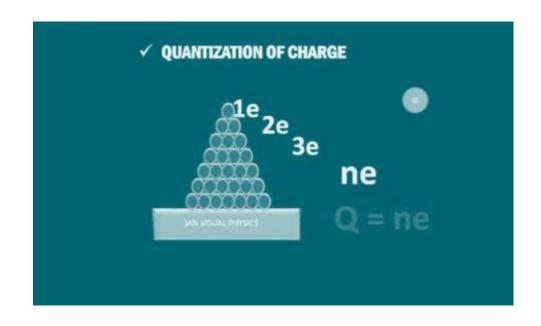


Figure 2: Superconducting LC oscillator.

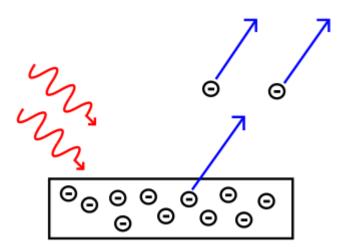
C.



Classical → Quantum



Photoelectric effect \rightarrow Electromagnetic field is quantized \rightarrow Energy is quantized: $E = \hbar \omega$.



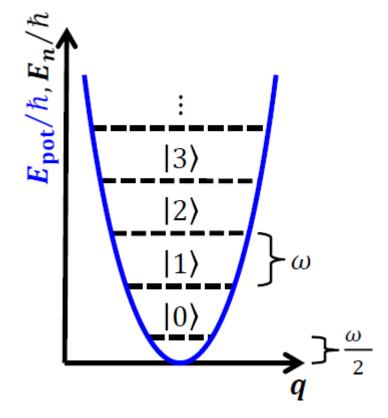
General note: Quantization of oscillators

 General note: Quantization means we see the effect of single particles or excitations.

In a harmonic oscillator, the energy is quantized equidistantly.

 Energy quantization can be seen as counting the number of photons stored in the oscillator.

Quantization of an oscillator



Examples

In quantum mechanics, variables are replaced by operators:

$$q \to \widehat{q}: \mathcal{H} \to \mathcal{H}$$
,

$$p \to \widehat{p} : \mathcal{H} \to \mathcal{H}$$
,

Charge \hat{q} Flux $\hat{\varPhi}$

For practical reasons, we often use matrix representations

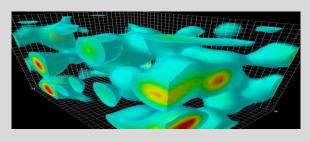
$$q_{k\ell} = \langle e_k | \, \widehat{q} \, | e_\ell \rangle$$

$$\begin{pmatrix} (O\psi)_1\\ (O\psi)_2\\ \dots\\ (O\psi)_i\\ \dots \end{pmatrix} = \begin{pmatrix} O_{11} & O_{12} & \dots & O_{1j} & \dots\\ O_{21} & O_{22} & \dots & O_{2j} & \dots\\ \dots & \dots & \dots & \dots & \dots\\ O_{i1} & O_{i2} & \dots & O_{ij} & \dots\\ \dots & \dots & \dots & \dots & \dots \end{pmatrix} \begin{pmatrix} \psi_1\\ \psi_2\\ \dots\\ \psi_j\\ \dots \end{pmatrix}$$

Two conjugate variables follow the commutation relation

$$[\widehat{p},\widehat{q}] \equiv \widehat{p}\widehat{q} - \widehat{q}\widehat{p} = -i\hbar$$

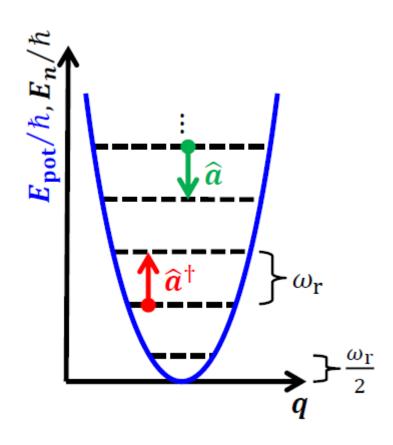
Vacuum fluctuations:



R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

IQM * Details in lecturenotes-EQS_Helsinki_2019.pdf

Quantization of an oscillator



For pedagogical reasons, it is convenient to transform systems into the basis of number states (give matrix representation of a)

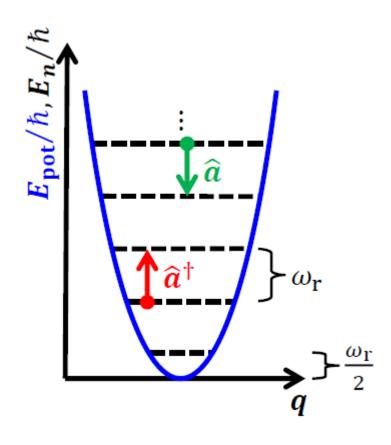
$$a^{\dagger} = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & \dots \\ \sqrt{1} & 0 & 0 & \dots & 0 & \dots \\ 0 & \sqrt{2} & 0 & \dots & 0 & \dots \\ 0 & 0 & \sqrt{3} & \dots & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \dots \\ 0 & 0 & 0 & \dots & \sqrt{n} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \end{pmatrix}$$

$$a = \begin{pmatrix} 0 & \sqrt{1} & 0 & 0 & \dots & 0 & \dots \\ 0 & 0 & \sqrt{2} & 0 & \dots & 0 & \dots \\ 0 & 0 & 0 & \sqrt{3} & \dots & 0 & \dots \\ 0 & 0 & 0 & 0 & \ddots & \vdots & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \sqrt{n} & \dots \\ 0 & 0 & 0 & 0 & \dots & 0 & \ddots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

These can be interpreted as ladder operators raising and lowering the excitation number

$$\hat{a} \equiv \frac{\omega_r c \hat{\Phi} + i \hat{q}}{\sqrt{2\omega_r c \hbar}}$$
 is the annihilation operator $\hat{a}^{\dagger} \equiv \frac{\omega_r c \hat{\Phi} - i \hat{q}}{\sqrt{2\omega_r c \hbar}}$ is the creation operator

Quantization of an oscillator



→ When applied to a Fock state, \hat{a} annihilates a photon inside the oscillator

$$\hat{a}|n\rangle = \sqrt{n}|n-1\rangle$$

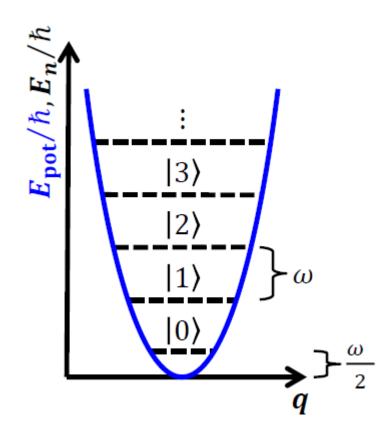
 \rightarrow When applied to a Fock state, \hat{a}^{\dagger} creates a photon inside the oscillator

$$\hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$$

Their product gives the excitation number of a system

$$\hat{n} \equiv \hat{a}^{\dagger} \hat{a}$$

Quantization of the LC oscillator



For the superconducting resonator, we have

$$\widehat{H} = \frac{\widehat{p}^2}{2L} + \frac{\widehat{q}^2}{2C} \ .$$

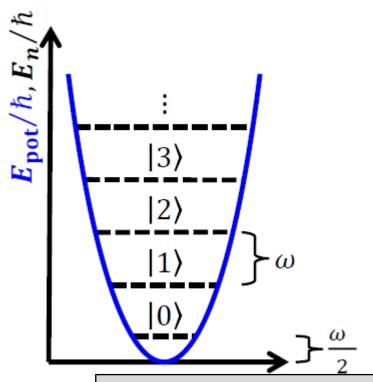
We aim to diagonalize H into a form involving only one operator. This can be done by a change of variables.

$$\widehat{p} = \sqrt{\frac{\hbar \omega L}{2}} \left(\widehat{a} + \widehat{a}^{\dagger} \right) , \ \widehat{q} = \sqrt{\frac{\hbar \omega C}{2}} i \left(\widehat{a} - \widehat{a}^{\dagger} \right) .$$

Here ω is a free scalar parameter, which we will choose later. The square root factors have been inserted for convenience.

$$(\hat{a} + \hat{a}^{\dagger})$$
 and $\hat{i}(\hat{a} - \hat{a}^{\dagger})$ are Hermitian and independent.

Quantization of the LC oscillator



The previous Hamiltonian becomes

$$\widehat{H} = \frac{\left[\sqrt{\frac{\hbar\omega L}{2}}\left(\widehat{a} + \widehat{a}^{\dagger}\right)\right]^{2}}{2L} + \frac{\left[\sqrt{\frac{\hbar\omega C}{2}}i\left(\widehat{a} - \widehat{a}^{\dagger}\right)\right]^{2}}{2C}$$

$$= \frac{\hbar\omega}{4}\left(\widehat{a}\widehat{a}^{\dagger} + \widehat{a}^{\dagger}\widehat{a} + \widehat{a}\widehat{a}^{\dagger} + \widehat{a}^{\dagger}\widehat{a}\right)$$

$$= \frac{\hbar\omega}{2}\left(\widehat{a}\widehat{a}^{\dagger} + \widehat{a}^{\dagger}\widehat{a}\right).$$

Using $[\widehat{a}, \widehat{a}^{\dagger}] = 1$ it follows that $\widehat{a}\widehat{a}^{\dagger} = \widehat{a}^{\dagger}\widehat{a} + 1$

Key takeaway: The total energy of the system is given by vacuum fluctuations (+1/2) and the number of photons stored at frequency ω

$$\widehat{H} = \hbar\omega(\widehat{a}^{\dagger}\widehat{a} + \frac{1}{2})$$

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

Agenda for today (done)

- 7. Quantization of electrical networks
 - a. Harmonic oscillator: Lagrangian, eigenfrequency
 - b. Transfer step: LC oscillator, Legendre transform to Hamiltonian
 - d. Quantization of oscillators

a.

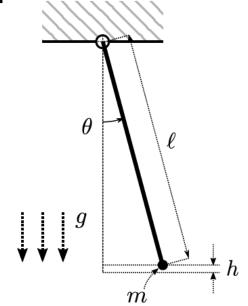


Figure 1: Classical pendulum.

b.

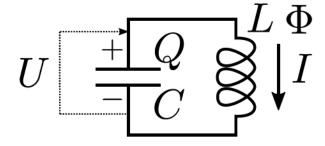
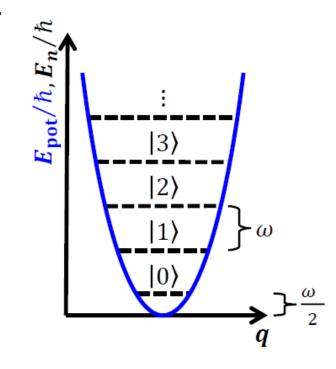
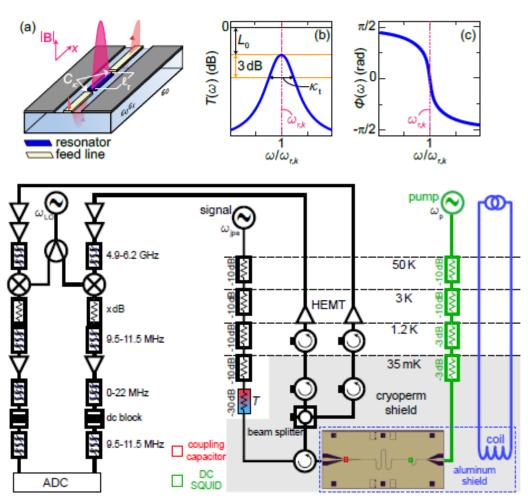


Figure 2: Superconducting LC oscillator.

C.



Add-on: Vacuum fluctuations & thermal photons (if time allows)



685 $R_{11}(\tau=0) \; (\mu W)$ 680 675 200 350 Vacuum fluctuations T (mK) (+1/2)

Figure 4.38: Schematics of the dual-path setup.