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CHALLENGES IN BIOCATALYSIS

natural products as excellent scaffolds for the synthesis of pharmaceuticals

or even good candidates as drug molecules themselves

but

disadvantages isolation:

§ natural sources often provide only marginal concentrations of the desired compound

§ no diversity, no analogues

disadvantages total synthesis:

§ complexity of the target often requires multiple complex chemical steps
which limits the overall achievable yield
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TODAY'S MENU

second session on "challenges"

§ mutasynthesis

§ semisynthesis

§ metabolic engineering

potential solution: exploit biosynthesis for synthetic
organic purposes
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Manipulated biosynthesis

gene encodes biosynthesis and interconnection of organic building blocks

snapshot of gene encoding a polyketide natural product

enzymes for macrolide
synthesis

enzymes for arene
synthesis

connecting
enzymes
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Manipulated biosynthesis

precursor-directed biosynthesis

snapshot of gene encoding a polyketide natural product
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mutasynthesis

blocked mutant: snapshot of gene encoding a polyketide natural product
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aminocoumarin antibiotics
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§ clo gene encodes for clorobiocin biosynthesis in Streptomyces roseochromogenes

§ novobiocin and clorobiocin potent against methicillin-resistant Staphylococcus strains

clorobiocin

Pojer, Li, Heide, Microbiol. 2002, 148, 3901-3911.
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aminocoumarin antibiotics

§ clo gene encodes for clorobiocin biosynthesis in Streptomyces roseochromogenes

Pojer, Li, Heide, Microbiol. 2002, 148, 3901-3911.
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Pojer, Li, Heide, Microbiol. 2002, 148, 3901-3911.

aminocoumarin antibiotics

§ S. roseochromogenes DcloR blocked mutant unable to produce clorobiocin

§ in presence of hydroxybenzoates, S. roseochromogenes DcloR strain
restores production including biosynthesis of natural product analogues
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CDA 
(calcium-dependent antibiotic)

non-ribosomal peptides

Hojati, Milne, Harvey, Gordon, Borg, Flett, Wilkinson, Hayes, Smith, Micklefield, Chem. Biol. 2002, 9, 1175-1187.

§ complex cyclic peptides featuring numerous non-natural amino acids
§ requires non-ribosomal peptide synthetase + amino acid production genes
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Hojati, Milne, Harvey, Gordon, Borg, Flett, Wilkinson, Hayes, Smith, Micklefield, Chem. Biol. 2002, 9, 1175-1187.

non-ribosomal peptides

Chemistry & Biology
1178

Figure 3. Organization of the CDA Biosynthetic Gene Cluster
aNRPS-encoding genes; bgenes predicted to be involved in the biosynthesis of amino acid precursors or the amino acid tailoring enzymes;
cgenes proposed to be involved in the biosynthesis of the epoxyhexanoyl fatty acid side chain; dputative resistance genes; eputative regulation
genes; fthose genes which exhibit little or no similarity to genes of known function, or exhibit similarity with genes of known function but have
no obvious role in CDA biosynthesis, resistance, or regulation.

in fact the major metabolites produced by this strain genes exist beyond these boundaries that might be in-
volved in regulation, resistance, or transport of CDAwhen cultivated on solid medium (ONA). The structures

of these metabolites, which were determined using UV, from the cell has been considered [19] and cannot be
excluded at this stage. It is, however, notable that aNMR, and mass spectrometry, differ from the b-series

of CDA [9] by the presence of an unusual Z-2,3-dehyro- recent global microarray-based study of gene expres-
sion identified the genes SCO3210-3249 as a specifictryptophan residue rather than L-tryptophan at the C

terminus. Few nonribosomal peptides have been re- cluster that is upregulated during the transition to CDA
production [20]; this would fit the boundaries inferredported that contain !Trp [14, 16]. On the basis of this

work, the structure of CDA3a (1480 Da) [9] can also be here on the basis of predicted function.
assigned (Figure 1). Thus, seven CDA variants have been
isolated so far. The most structurally modified peptide,

Biosynthetic Origins of CDA PrecursorCDA2a, probably constitutes the ultimate product of the
Building BlocksCDA biosynthetic pathway.
Adjacent to SCO3249, encoding the ACP homolog, are
genes encoding "-ketoacyl-ACP synthase (KAS)-II and
-III homologs (SCO3248 and SCO3246), respectively.Organization of the CDA Gene Cluster

The chromosomal location of the CDA gene cluster was KAS-III is likely to catalyze the first condensation reac-
tion of acetyl and malonyl units, resulting in acetoacetyl-first identified using degenerate probes against known

conserved motifs of nonribosomal peptide synthetases ACP, while KAS-II is likely to catalyze the second con-
densation reaction to give "-ketohexanoyl-ACP. Genes(NRPSs) [8]. Targeted disruption of the putative NRPSs

demonstrated their role in CDA biosynthesis. Regions encoding the other FAS enzymes, acetyl and malonyl
transacylases, "-ketoacyl reductase, "-hydroxyacyl de-within the CDA cluster were sequenced at UMIST, after

which the entire cluster and indeed the whole genome hydratase, as well as an enoyl reductase [21] are absent
from the cluster. Presumably, these enzymes are re-were sequenced at the Sanger Institute (Cambridge, UK)

[1]. The 82 kb CDA cluster (Figure 3) is located within cruited from primary metabolism and are responsible
for the synthesis of the fatty acid side chain precursor,the “core” region of the linear chromosome and consists

of at least 40 ORFs. The cluster is contained on the hexanoyl-ACP 1 (Figure 4A). hxcO (SCO3247) encodes a
protein similar to many acyl-CoA oxidases, which utilizeoverlapping cosmids ScE8-ScE63-ScE29 (SCO3210-

3249) [18]. Using the publicly accessible sequence annota- flavin adenine dinucleotide (FAD) in the desaturation of
acyl-CoAs to trans-enoyl-CoAs during fatty acid degra-tion (http://www.sanger.ac.uk/Projects/S_coelicolor/) and

the results of more detailed similarity searches (see Ex- dation [21]. This suggests that hexanoyl-ACP 1 is first
hydrolyzed to hexanoic acid, transformed to hexanoyl-perimental Procedures) performed on the deduced pro-

tein sequences encoded by each ORF, putative func- CoA 2, which is then desaturated by the hxcO gene
product, hexanoyl-CoA oxidase (HxcO), to give trans-tions of the gene products are suggested (Table 1). From

this, and taking into account the structure of CDA, a hexenoyl-CoA 3. This would necessitate the involvement
of a FAS thioesterase (TE) and acyl-CoA synthetasehypothesis for the mode of CDA biosynthesis is pro-

posed. At the boundaries of the cluster are genes encod- (ACS) [21], both of which may be recruited from primary
metabolism.ing DAHP synthetase (SCO3210) and acyl carrier protein

(ACP) (SCO3249) homologs. The possibility that other In close proximity, hcmO encodes a protein with typi-
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Hojati, Milne, Harvey, Gordon, Borg, Flett, Wilkinson, Hayes, Smith, Micklefield, Chem. Biol. 2002, 9, 1175-1187.
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polyketides

§ vastly complex family of natural products
§ structural features can include both highly functionalized aliphatics as well as aromatics
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polyketides

§ biosynthesis for all different polyketides based on one very simple principle
ü Claisen condensation + follow-up chemistry, 
ü all located in Polyketide Synthase multienzyme complex (PKS)

fatty acid synthase
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polyketides

§ biosynthesis for all different polyketides based on one very simple principle
ü Claisen condensation + follow-up chemistry, 
ü all located in Polyketide Synthase multienzyme complex (PKS)

polyketide synthase: various modules with optional KR/DH/ER activities
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polyketides

Thus, here we describe the first structural snapshots—to our knowledge—
of a full-length PKS module in different functional states.

Overall structure of the PKS module
The cryo-EM structure of the 328 kilodalton (kDa) dimeric PikAIII with
the intramodule ACP5 bearing a Ppant arm (holo-PikAIII) (Extended
Data Figs 1b, c, 5a–d) reveals an arch-shaped symmetric dimer, with the
homodimeric KS5 at the dome supported on either side through a post
formed by an AT5 followed by KR5 at the base (Fig. 2a–c). The ACP5

domains, which fit unambiguously into their corresponding densities
(Fig. 2d), are found to populate two distinct positions in a ,1:1 ratio,
one near KR5, and one near AT5 (Fig. 2 and Extended Data Fig. 4). In
both conformers the remaining domains display identical configura-
tions. Bottom-up liquid chromatography/Fourier transform ion cyclo-
tron resonance mass spectrometry (LC/FT-ICR MS) established that
the Ppant arm was present at a high level (Extended Data Fig. 5a–d),
suggesting that the distinct ACP5 locations are not attributable to the
presence or absence of this post-translational modification. In addition,
multiple-reference-supervised classification tests could not detect a statis-
tically significant fraction of holo-PikAIII dimers with the two ACP5

domains in non-equivalent positions, that is, one near the AT5 and the
other near the KR5, providing evidence for concerted ACP5 movement.

The KS5–AT5 configuration in the complete PikAIII module resem-
bles an earlier proposed PKS model28 but is strikingly different from the
configuration of the excised KS–AT di-domains6,7,21 (Extended Data
Fig. 6a) and the mammalian FAS22 (Fig. 2e). In full-length PikAIII, each
AT is rotated by ,120u relative to its position in the FAS and excised

KS–ATs, and forms an extensive interface with KS5 (Extended Data
Fig. 7a). In this arrangement, AT5 and the following KR5 domain reside
below KS5, creating a single ACP5 reaction chamber in the centre of the
PikAIII dimer, with the AT and KR active sites facing the chamber. The
characteristic long and narrow shape of the PikAIII reaction chamber
is probably crucial for excluding ACPs of other modules, thus provid-
ing a mechanism to maintain biosynthetic fidelity.

The three-dimensional maps of PikAIII reveal weak density for the
post-ACP5 dimerization helices (Extended Data Fig. 6b, c) and no den-
sity for the interdomain connecting loops, either because of insufficient
resolution, disorder, or a combination of both. Nevertheless, linker lengths
and distance limitations indicate that each AT5–KR5 post includes domains
of the same chain, while each AT interfaces with the KS of the opposite
polypeptide (Fig. 1 and Extended Data Fig. 6d). The linker from KR5

to ACP5 (43 amino acids) is long enough to facilitate ACP interaction
with the KS of either subunit, suggesting that other types of steric con-
straints may limit each ACP to interact with the KS domain of the oppo-
site monomer, as reported for a DEBS module29,30. Only the KS5–AT5

linker (15 amino acids) is too short, requiring an additional eight amino
acids to span the shortest distance between a KS5 carboxy terminus and
an AT5 amino terminus (70 Å). This observation suggests that some
amino acids at the AT N terminus of excised KS–ATs may be part of
the KS–AT linker in the full module. While the resolution of the EM
maps does not allow us to confirm this hypothesis, several lines of evi-
dence indicate that the KS5–AT5 interaction is associated with structural
rearrangements at the domain interface. First, this is the only region
of domain clashes between the crystal structures rigidly docked in the
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Figure 1 | Modular polyketide synthase for pikromycin. The six modules of
the pikromycin PKS, comprising PikAI–IV polypeptides, sequentially elongate
and modify a polyketide intermediate. A polyketide product, either 10-dml
from module 5 or nbl from module 6, is off-loaded by the TE domain of the final
module, PikAIV. Modules are differently coloured. Circles represent protein
domains (KS, AT, DH, ER, KR and ACP; KSQ is a decarboxylase; KR* is

inactive), and docking domains are shown as jagged ends. PikAIII schematic:
the 1,562-amino-acid PikAIII polypeptide, selected for this study, is shown with
functional domains in contrasting colours, used throughout, and linker
peptides identified by residue ranges. The N- and C-terminal docking domains
are shown as helices, as are the post-ACP dimerization helices.
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here: pikromycin PKS

Dutta, Whicher, Hansen, Hale, Håkansson, Sherman, Smith, Skiniotis, Nature 2014, 510, 512.



Jan Deska
Bioorganic
Chemistry

Mutasynthesis

polyketide synthase: various modules with optional KR/DH/ER activities

points of interference for polyketide mutasynthesis

§ pre-PKS (early stage mutasynthesis):

ü modified starter units (precursor directed or via knock-down)

§ PKS mutasynthesis:

ü knock-down or manipulation of single units within modules

ü control of degree of saturation, methylation or chiral centres

§ post-PKS modifications:

ü many functionalizations (halogenations, methylations, etc) occur after the actual PKS

ü control over degree of functionalization
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ansamitocin mutasynthesis
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ansamitocin mutasynthesis
Actinosynnema pretiosum AHBA blocked mutant
ü introduction of modified starters
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ansamitocin mutasynthesis
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Taft, Harmrolfs, Nickeleit, Heutling, Kiene, Malek, Sasse, Kirschning, Chem. Eur. J. 2012, 16, 880.
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ansamitocin mutasynthesis
Actinosynnema pretiosum AHBA blocked mutant
ü introduction of modified starters
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ansamitocin mutasynthesis

Actinosynnema pretiosum asm12/asm21 blocked mutant
ü asm12 encodes chlorination, asm21 encodes carbamoylation
ü interruption of the post-PKS functionalization

Eichner, Knobloch, Hermane, Schulz, Sasse, Spiteller, Taft, Kirschning, Angew. Chem. Int. Ed. 2012, 51, 752.
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§ sometimes, compounds are too complex to be synthesized but too scarce to be 
isolated from natural sources. 

§ Therefore, biosynthetic intermediates are isolated and used as starting material for 
"fine-tuning" through organic synthesis

ü e.g. synthetic penicillins, paclitaxel,...
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§ sometimes, compounds are too complex to be synthesized but too scarce to be 
isolated from natural sources. 

§ Therefore, biosynthetic intermediates are isolated and used as starting material for 
"fine-tuning" through organic synthesis

ü e.g. synthetic penicillins, paclitaxel,...
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§ sometimes, compounds are too complex to be synthesized but too scarce to be 
isolated from natural sources. 

§ Therefore, biosynthetic intermediates are isolated and used as starting material for 
"fine-tuning" through organic synthesis

ü e.g. synthetic penicillins, paclitaxel,...
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Nicolaou (1994)

46 steps from very basic 
compounds

OAc

O

O
OH

Holton (1994)

48 steps from patchoulene
oxide

Holton et al., J. Am. Chem. Soc. 1994, 116, 1599.
Nicolaou et al., Nature 1994, 367, 630.

highly potent tubulin binder

very successful anti-cancer drug
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§ sometimes, compounds are too complex to be synthesized but too scarce to be 
isolated from natural sources. 

§ Therefore, biosynthetic intermediates are isolated and used as starting material for 
"fine-tuning" through organic synthesis

ü e.g. synthetic penicillins, paclitaxel,...
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subsequent non-fermentative 
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modulation of pathways in microbial organisms
§ up- or downregulation of endogenous processes
§ creation of transgenic organisms carrying alien DNA

ü fine-tuning of the bugs to provide desired products in higher 
yield

ü or, deviate from the natural products to something the bug 
wouldn't want to produce otherwise
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Metabolic engineering

modulation of pathways in microbial organisms
§ up- or downregulation of endogenous processes
§ creation of transgenic organisms carrying alien DNA

ü fine-tuning of the bugs to provide desired products in higher 
yield

ü or, deviate from the natural products to something the bug 
wouldn't want to produce otherwise

poster child example: production of anti-malarial artemisinin
§ original producer: Artemisia annua (sweet wormwood)
§ artemisinin represents the benchmark medication against malaria
§ limited natural supply demands alternative producers

ü semisynthetic approach: via artemisinic acid in S. cerevisiae

Youyou Tu
Nobel Prize in 
Medicine, 2015
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Metabolic engineering
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production of anti-malarial artemisinin
§ original producer: Artemisia annua (sweet wormwood)
§ semisynthetic approach: via artemisinic acid in S. cerevisiae

Ro, Paradise, Ouellet, Fisher, 
Newman, Ndungu, Ho, Eachus, 
Ham, Kirby, Chang, Withers, Shiba, 
Sarpong, Keasling, Nature 2006, 
440, 940-943.
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production of anti-malarial artemisinin
§ original producer: Artemisia annua (sweet wormwood)
§ semisynthetic approach: via artemisinic acid in S. cerevisiae

Ro, Paradise, Ouellet, Fisher, 
Newman, Ndungu, Ho, Eachus, 
Ham, Kirby, Chang, Withers, Shiba, 
Sarpong, Keasling, Nature 2006, 
440, 940-943.

metabolic engineering requires:
1) upregulation of farnesyl synthesis
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production of anti-malarial artemisinin
§ original producer: Artemisia annua (sweet wormwood)
§ semisynthetic approach: via artemisinic acid in S. cerevisiae

Ro, Paradise, Ouellet, Fisher, 
Newman, Ndungu, Ho, Eachus, 
Ham, Kirby, Chang, Withers, Shiba, 
Sarpong, Keasling, Nature 2006, 
440, 940-943.

metabolic engineering requires:
1. upregulation of farnesyl synthesis
2. downregulation of sterol synthesis
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production of anti-malarial artemisinin
§ original producer: Artemisia annua (sweet wormwood)
§ semisynthetic approach: via artemisinic acid in S. cerevisiae

Ro, Paradise, Ouellet, Fisher, 
Newman, Ndungu, Ho, Eachus, 
Ham, Kirby, Chang, Withers, Shiba, 
Sarpong, Keasling, Nature 2006, 
440, 940-943.

metabolic engineering requires:
1. upregulation of farnesyl synthesis
2. downregulation of sterol synthesis
3. expression of synthase
4. expression of P450
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§ original producer: Artemisia annua (sweet wormwood)
§ semisynthetic approach: via artemisinic acid in S. cerevisiae
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Newman, Ndungu, Ho, Eachus, 
Ham, Kirby, Chang, Withers, Shiba, 
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isolation of artemisinic acid for
subsequent non-fermentative 
synthesis
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production of anti-malarial artemisinin
§ original producer: Artemisia annua (sweet wormwood)
§ semisynthetic approach: via artemisinic acid in S. cerevisiae
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Sarpong, Keasling, Nature 2006, 
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That's nice, right? But how far can you go?

Synthetic Biology & Metabolic Engineering can...

ü effectively regulate pathways that are intrinsic in 
life

ü access structures that already found somewhere
in nature

Synthetic Biology & Metabolic Engineering fails to...

§ provide solutions for truly synthetic targets

§ offer bio-based solutions for many traditional 
chemistries

§ engage in anything that lacks precedence in 
biosynthesis


