
Chapter 14

Additional econometric techniques for financial research
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Conducting an Event Study
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What is an Event Study?
• Event studies are extremely common in finance and in
research projects!

• They represent an attempt to gauge the effect of an
identifiable event on a financial variable, usually stock returns

• So, for example, research has investigated the impact of
various types of announcements (e.g., dividends, stock splits,
entry into or deletion from a stock index) on the returns of
the stocks concerned

• Event studies are often considered to be tests for market
efficiency:

• If the financial markets are informationally efficient, there
should be an immediate reaction to the event on the
announcement date and no further reaction on subsequent
trading days

• The “modern” event study literature began with Brown
(1968) and by Fama et al. (1969).

‘Introductory Econometrics for Finance’ c© Chris Brooks 2018 3



Event Studies: Background

• We of course need to be able to define precisely the dates on
which the events occur, and the sample data are usually
aligned with respect to this

• If we have N events in the sample, we usually specify an
‘event window’, which is the period of time over which we
investigate the impact of the event

• The length of this window will be set depending on whether
we wish to investigate the short- or long-run effects

• It is common to examine a period comprising, say, ten trading
days before the event up to ten trading days after as a
short-run event window, while long-run windows can cover a
month, a year, or even several years after
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Event Studies: Background (Cont’d)

• MacKinlay (1997) shows that the power of event studies to
detect abnormal performance is much greater when daily data
are employed rather than monthly, quarterly or annual data

• Intra-daily data are likely to be full of microstructure noise.
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Event Studies: The Event Window
• Define the return for each firm i on each day tduring the
event window as Rit

• We can conduct the following approach separately for each
day within the event window – e.g., we might investigate it for
all of 10 days before the event up to 10 days after (where t =
0 represents the date of the event and
t = −10,−9,−8, ...,−1, 0, 1, 2, ..., 8, 9, 10)

• We need to be able to separate the impact of the event from
other, unrelated movements in prices

• For example, if it is announced that a firm will become a
member of a stock index and its share price that day rises by
4%, but the prices of all other stocks also rise by 4%, it would
be unwise to conclude that all of the increase in the price of
the stock under study is attributable to the announcement

• So we construct abnormal returns, denoted ARit , which are
calculated by subtracting an expected return from the actual‘Introductory Econometrics for Finance’ c© Chris Brooks 2018 6



Event Studies: Abnormal Returns

• There are numerous ways that the expected returns can be
calculated, but usually this is achieved using data before the
event window so that the event is not allowed to
‘contaminate’ estimation of the expected returns

• Armitage (1995) suggests that estimation periods can
comprise anything from 100 to 300 days for daily observations
and 24 to 60 months when the analysis is conducted on a
monthly basis

• If the event window is very short then we are far less
concerned about constructing an expected return since it is
likely to be very close to zero over such a short horizon
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Event Studies: Abnormal Returns (Cont’d)

• In such circumstances, it will probably be acceptable to simply
use the actual returns in place of abnormal return

• The simplest method for constructing expected returns is to
assume a constant mean return, so the expected return is the
average return for each stock i which we might term R̄i

‘Introductory Econometrics for Finance’ c© Chris Brooks 2018 8



Event Studies: The Market Model

• A slightly more sophisticated approach is to subtract the
return on a proxy for the market portfolio that day t from the
individual return

• This will certainly overcome the impact of general market
movements in a rudimentary way, and is equivalent to the
assumption that the stock’s beta in the market model or the
CAPM is unity

• Probably the most common approach to constructing
expected returns, however, is to use the market model

• This constructs the expected return using a regression of the
return to stock i on a constant and the return to the market
portfolio:

Rit = αi + βiRmt + uit
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Event Studies: The Market Model (Cont’d)

• The expected return for firm i on any day t during the event
window would then be calculated as the beta estimate from
this regression multiplied by the actual market return on day t.
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Event Studies: The Market Model 2

• In most applications, a broad stock index such as the FTSE
All-Share or the S&P500 would be employed to proxy for the
market portfolio

• This equation can be made as complicated as desired – for
example, by allowing for firm size or other characteristics –
these would be included as additional factors in the regression
with the expected return during the event window being
calculated in a similar fashion

• A final further approach would be to set up a ’portfolio’ of
firms that have characteristics as close as possible to those of
the event firm – for example, matching on firm size, beta,
industry, book-to-market ratio, etc. – and then using the
returns on this portfolio as the expected returns
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Event Studies: Hypothesis Testing

• The hypothesis testing framework is usually set up so that the
null to be examined is of the event having no effect on the
stock price (i.e. an abnormal return of zero)

• Under the null of no abnormal performance for firm i on day t

during the event window, we can construct test statistics
based on the standardised abnormal performance

• These test statistics will be asymptotically normally distributed
(as the length of the estimation window, T, increases)

ARit ∼ N(0, σ2(ARit))

where σ2(ARit) is the variance of the abnormal returns, which
can be estimated in various ways

• A simple method is to use the time-series of data from the
estimation of the expected returns separately for each stock.
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Event Studies: Hypothesis Testing 2

• We could define as being the variance of the residuals from the
market model, which could be calculated for example using

σ̂2(ARit) =
1

T − 2

T
∑

t=2

û2it

where T is the number of observations in the estimation
period

• If instead the expected returns had been estimated using
historical average returns, we would simply use the variance of
those
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Event Studies: Hypothesis Testing 2 (Cont’d)

• Sometimes, an adjustment is made to σ̂2(ARit) that reflects
the errors arising from estimation of α and β in the market
model

• Including the adjustment, the variance in the previous
equation becomes

σ̂2(ARit) =
1

T − 2

T
∑

t=2

(

û2it +
1

T

[

1 +
Rmt − R̄m

σ̂2
m

])
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Event Studies: Hypothesis Testing 3

• We can then construct a test statistic by taking the abnormal
return and dividing it by its corresponding standard error,
which will asymptotically follow a standard normal
distribution:

ˆSAR it =
ÂR it

[σ̂2(ARit)]1/2
∼ N(0, 1)

where ˆSAR is the standardised abnormal return, which is the
test statistic for each firm i and for each event day t
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Event Studies: Cumulative Abnormal Returns
• It is likely that there will be quite a bit of variation of the
returns across the days within the event window

• We may therefore consider computing the time-series
cumulative average return (CAR) over a multi-period event
window (for example, over ten trading days) by summing the
average returns over several periods, say from time T1 to T2:

ˆCAR i (T1,T2) =

T2
∑

t=T1

ÂR it

• The variance of this CAR will be given by the number of
observations in the event window plus one multiplied by the
daily abnormal return variance calculated previously:

σ̂2(CARi(T1,T2)) = (T2 − T1 + 1)σ̂2(ÂR it)

• This expression is essentially the sum of the individual daily
variances over the days in T 1 to T 2 inclusive.
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Event Studies: A Test Statistic for the CAR

• We can now construct a test statistic for the cumulative
abnormal return as we did for the individual dates, which will
again be standard normally distributed:

ˆSCAR i (T1,T2) =
ˆCAR i (T1,T2)

[σ̂2(CARi(T1,T2))]1/2
∼ N(0, 1)

• It is common to examine a pre-event window (to consider
whether there is any anticipation of the event) and a
post-event window – in other words, we sum the daily returns
for a given firm i for days t − 10 to t − 1, say.
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Event Studies: Averaging Returns Across Firms
• Typically, some of the firms will show a negative abnormal
return around the event when a positive figure was expected

• But if we have N firms or N events, it is usually of more
interest whether the return averaged across all firms is
statistically different from zero than whether this is the case
for any specific individual firm

• We could define this average across firms for each separate
day t during the event window as

ÂRt =
1

N

N
∑

i=1

ÂR it

• This firm-average abnormal return will have variance given by
1/N multiplied by the average of the variances of the
individual firm returns:

σ̂2(ARt) =
1

N2

N
∑

i=1

σ̂2(ARit)
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Event Studies: Averaging Returns Across Firms 2

• Thus the test statistic (the standardised return) for testing
the null hypothesis that the average (across the N firms)
return on day t is zero will be given by

ˆSARt =
ÂRt

[σ̂2(ARt)]1/2
=

1
N

∑N
i=1 ÂR it

[ 1
N2

∑N
i=1 σ̂

2(ARit)]1/2
∼ N(0, 1)

‘Introductory Econometrics for Finance’ c© Chris Brooks 2018 19



Event Studies: Averaging Returns Across Firms and
Time

• We can aggregate both across firms and over time to form a
single test statistic for examining the null hypothesis that the
average multi-horizon (i.e. cumulative) return across all firms
is zero

• We would get an equivalent statistic whether we first
aggregated over time and then across firms or the other way
around

• The CAR calculated by averaging across firms first and then
cumulating over time could be written:

ˆCAR(T1,T2) =

T2
∑

t=T1

ÂRt

‘Introductory Econometrics for Finance’ c© Chris Brooks 2018 20



Event Studies: Averaging Returns Across Firms and
Time (Cont’d)

• Or equivalently, if we started with the CARi(T1,T2)
separately for each firm, we would take the average of these
over the N firms:

ˆCAR(T1,T2) =
1

N

N
∑

i=1

ˆCAR i (T1,T2)
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Event Studies: Averaging Returns Across Firms and
Time 2

• To obtain the variance of this CARi(T1,T2) we could take
1/N multiplied by the average of the variances of the
individual CARi :

σ̂2(CAR(T1,T2)) =
1

N2

N
∑

i=1

σ̂2(CARi (T1,T2))

• And again we can construct a standard normally distributed
test statistic as:

ˆSCAR(T1,T2) =
ˆCAR(T1,T2)

[σ̂2(CAR(T1,T2))]1/2
∼ N(0, 1)
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Event Studies: Cross-Sectional Regressions
• It will often be the case that we are interested in allowing for
differences in the characteristics of a sub-section of the events
and also examining the link between the characteristics and
the magnitude of the abnormal returns

• For example, does the event have a bigger impact on small
firms? Or on firms which are heavily traded etc.?

• To do this, calculate the abnormal returns as desired and then
to use these as the dependent variable in a cross-sectional
regression of the form

ARi = γ0 + γ1x1i + γ2x2i + . . . + γMxMi + wi

where ARi is the abnormal return for firm i, xji , (j=1,..., M)
are a set of characteristics thought to influence the abnormal
returns, γj measures the impact of the corresponding variable
j on the abnormal return, and wi is an error term

• We can examine the sign, size and statistical significance of γ0
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Event Studies: Cross-Sectional Dependence

• A key assumption when the returns are aggregated across
firms is that the events are independent of one another

• Often, this will not be the case, particularly when the events
are clustered through time

• For example, if we were investigating the impact of index
recompositions on the prices of the stocks concerned,
typically, a bunch of stocks will enter into an index on the
same day, and then there may be no further such events for
three or six months

• The impact of this clustering is that we cannot assume the
returns to be independent across firms, and as a result the
variances in the aggregates across firms will not apply since
these derivations have effectively assumed the returns to be
independent across firms so that all of the covariances
between returns across firms could be set to zero.
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Event Studies: Cross-Sectional Dependence -
Solutions

• An obvious solution would be not to aggregate the returns
across firms, but simply to construct the test statistics on an
event-by-event basis and then to undertake a summary
analysis of them (e.g., reporting their means, variances,
percentage of significant events, etc.)

• A second solution would be to construct portfolios of firms
having the event at the same time and then the analysis
would be done on each of the portfolios

• The standard deviation would be calculated using the
cross-section of those portfolios’ returns on day t (or on days
T1 to T2, as desired)
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Event Studies: Cross-Sectional Dependence -
Solutions (Cont’d)

• This approach will allow for cross-correlations since they will
automatically be taken into account in constructing the
portfolio returns and the standard deviations of those returns

• But a disadvantage of this technique is that it cannot allow
for different variances for each firm as all are equally weighted
within the portfolio.
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Event Studies: Changing Variances of Returns

• Often the variance of returns will increase over the event
window

• Either the event itself or the factors that led to it are likely to
increase uncertainty and with it the volatility of returns

• As a result, the measured variance will be too low and the null
hypothesis of no abnormal return during the event will be
rejected too often

• To deal with this, Boehmer et al. (1991), amongst others,
suggest estimating the variance of abnormal returns by
employing the cross-sectional variance of returns across firms
during the event window
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Event Studies: Changing Variances of Returns
(Cont’d)

• Clearly, if we adopt this procedure we cannot estimate
separate test statistics for each firm

• The variance estimator would be:

σ̂2(ARt) =
1

N2

N
∑

i=1

(ÂR it − ÂRt)
2

• The test statistic would be calculated as before.
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Event Studies: Weighting the Stocks

• Another issue is that the approach as stated above will not
give equal weight to each stock’s return in the calculation

• The steps outlined above construct the cross-firm aggregate
return and then standardise this using the aggregate standard
deviation

• An alternative method would be to first standardise each
firm’s abnormal return (dividing by its appropriate standard
deviation) and then to aggregate these standardised abnormal
returns
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Event Studies: Weighting the Stocks (Cont’d)

• If we take the standardised abnormal return for each firm, we
can calculate the average of these across the N firms:

ˆSARt =
1

N

N
∑

i=1

ˆSAR it

• If we take this SARt and multiply it by
√
N, we will get a test

statistic that is asymptotically normally distributed and which,
by construction, will give equal weight to each SAR:√
NSARt ∼ N(0, 1).
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Event Studies: Long Event Windows
• Event studies are joint tests of whether the event-induced
abnormal return is zero and whether the model employed to
construct expected returns is correct

• If we wish to examine the impact of an event over a long
period we need to be more careful about the design of the
model for expected returns

• Over the longer run, small errors in setting up the asset
pricing model can lead to large errors in the calculation of
abnormal returns and therefore the impact of the event

• A key question is whether to use cumulative abnormal returns
(CARs) or buy-and-hold abnormal returns (BHARs)

• There are important differences between the two:
– BHARs employ geometric returns rather than arithmetic

returns in calculating the overall return over the event period
of interest

– Thus the BHAR can allow for compounding whereas the CAR
does not.
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Event Studies: Buy-and-Hold Abnormal Returns

• A formula for calculating the BHAR is

ˆBHAR i = [ΠT2
t=T1

(1 + Rit)− 1]− [ΠT2
t=T1

(1 + E (Rit))− 1]

• If desired, we can then sum the BHARi across the N firms to
construct an aggregate measure.

• BHARs have been advocated, amongst others, by Barber and
Lyon (1997) and Lyon et al. (1999) because they better
match the ‘investor experience’

• CARs represent biased estimates of the actual returns received
by investors

• However, by contrast, Fama (1998) in particular argues in
favour of the use of CARs rather than BHARs.
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Event Studies: Buy-and-Hold Abnormal Returns 2

• BHARs seem to be more adversely affected by skewness in the
sample of abnormal returns than CARs because of the impact
of compounding in BHARs

• In addition, Fama indicates that the average CAR increases at
a rate of (T2 − T1) with the number of months included in
the sum, whereas its standard error increases only at a rate
√

(T2 − T1)

• This is not true for BHARs where the standard errors grow at
the faster rate (T2 − T1) rather than its square root

• Hence any inaccuracies in measuring expected returns will be
more serious for BHARs as another consequence of
compounding.
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Event Studies: Event Versus Calendar Time

• All of the procedures discussed above have involved
conducting analysis in event time

• An alternative approach involves using calendar time, which
involves running a time-series regression and examining the
intercept from that regression

• The dependent variable is a series of portfolio returns, which
measure the average returns at each point in time of the set
of firms that have undergone the event of interest within a
pre-defined measurement period before that time.
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Event Studies: Event Versus Calendar Time 2

• So, for example, we might choose to examine the returns of
firms for a year after the event that they announce cessation
of their dividend payments

• Then, for each observation t, the dependent variable will be
the average return on all firms that stopped paying dividends
at any point during the past year

• One year after the event, by construction the firm will drop
out of the portfolio

• Hence the number of firms within the portfolio will vary over
time and the portfolio will effectively be rebalanced each
month

‘Introductory Econometrics for Finance’ c© Chris Brooks 2018 35



Event Studies: Event Versus Calendar Time 2
(Cont’d)

• The explanatory variables may be risk measures from a factor
model

• The calendar time approach will weight each time period
equally and thus the weight on each individual firm in the
sample will vary

• This may be problematic and will result in a loss of power if
managers time events to take advantage of misvaluations.
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Event Studies: Small Samples and Non-normality

• The test statistics presented in the previous section are all
asymptotic, and problems may arise either if the estimation
window (T) is too short, or if the number of firms (N) is too
small when the firm-aggregated statistic is used

• Outliers may cause problems, especially in the context of
small samples

• Bootstrapped standard errors could be used in constructing
t-statistics

• Another strategy for dealing with non-normality would be to
use a non-parametric test
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Event Studies: Small Samples and Non-normality
(Cont’d)

• Such tests are robust in the presence of non-normal
distributions, although they are usually less powerful than
their parametric counterparts

• We could test the null hypothesis that the proportion of
positive abnormal returns is not affected by the event

• In other words, the proportion of positive abnormal returns
across firms remains at the expected level.
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Event Studies: A Non-parametric Test

• We could then use the test statistic, Zp:

Zp =
[p − p∗]

[p∗(1− p∗)/N]1/2

• where p is the actual proportion of negative abnormal returns
during the event window and p∗ is the expected proportion

• Under the null hypothesis, the test statistic follows a binomial
distribution, which can be approximated by the standard
normal distribution

• p∗ is calculated based on the proportion of negative abnormal
returns during the estimation window.

• Tests of the CAPM and the Fama-French Methodology
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Tests of the CAPM and the

Fama-French Methodology
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Testing the CAPM: The Basics

• The most commonly quoted equation for the CAPM is

E (Ri ) = Rf + βi [E (Rm)− Rf ]

• So the CAPM states that the expected return on any stock i is
equal to the risk-free rate of interest, Rf , plus a risk premium.

• This risk premium is equal to the risk premium per unit of
risk, also known as the market risk premium, [E (Rm)− Rf ],
multiplied by the measure of how risky the stock is, known as
‘beta’, βi

• Beta is not observable from the market and must be
calculated, and hence tests of the CAPM are usually done in
two steps:

– Estimating the stock betas
– Actually testing the model

• If the CAPM is a good model, then it should hold ’on
average’.
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Testing the CAPM: Calculating Betas

• A stock’s beta can be calculated in two ways – one approach
is to calculate it directly as the covariance between the stock’s
excess return and the excess return on the market portfolio,
divided by the variance of the excess returns on the market
portfolio:

βi =
Cov(Re

i ,R
e
m)

Var(Re
m)

where the e superscript denotes excess return

• Alternatively, and equivalently, we can run a simple time-series
regression of the excess stock returns on the excess returns to
the market portfolio separately for each stock, and the slope
estimate will be the beta:

Re
i ,t = αi + βiR

e
m,t + ui ,t
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Testing the CAPM: The Second Stage Regression

• Suppose that we had a sample of 100 stocks (N=100) and
their returns using five years of monthly data (T=60)

• The first step would be to run 100 time-series regressions (one
for each individual stock), the regressions being run with the
60 monthly data points

• Then the second stage would involve a single cross-sectional
regression of the average (over time) of the stock returns on a
constant and the betas:

R̄i = λ0 + λ1βi + vi

where R̄i is the return for stock i averaged over the 60 months
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Testing the CAPM: The Second Stage Regression
(Cont’d)

• Essentially, the CAPM says that stocks with higher betas are
more risky and therefore should command higher average
returns to compensate investors for that risk

• If the CAPM is a valid model, two key predictions arise which
can be tested using this second stage regression: λ0 = Rf and
λ1 = [Rm − Rf ].
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Testing the CAPM: Further Implications

• Two further implications of the CAPM being valid:
– There is a linear relationship between a stock’s return and its

beta
– No other variables should help to explain the cross-sectional

variation in returns

• We could run the augmented regression:

R̄i = λ0 + λ1βi + λ2β
2
i + λ3σ

2
i + vi

where β2
i is the squared beta for stock i and σ2

i is the variance
of the residuals from the first stage regression, a measure of
idiosyncratic risk

• The squared beta can capture non-linearities in the
relationship between systematic risk and return

• If the CAPM is a valid and complete model, then we should
see that λ2 = 0 and λ3 = 0.

‘Introductory Econometrics for Finance’ c© Chris Brooks 2018 45



Testing the CAPM: A Different Second-Stage
Regression

• It has been found that returns are systematically higher for
small capitalisation stocks and are systematically higher for
‘value’ stocks than the CAPM would predict.

• We can test this directly using a different augmented second
stage regression:

R̄i = α+ λ1βi + λ2MVi + λ3BTMi + vi

where MVi is the market capitalisation for stock i and BTMi

is the ratio of its book value to its market value of equity

• Again, if the CAPM is a valid and complete model, then we
should see that λ2 = 0 and λ3 = 0.
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Problems in Testing the CAPM

These are numerous, and include:

– Non-normality – e.g. caused by outliers can cause problems
with inference

– Heteroscedasticity – some recent research has used GMM or
another robust technique to deal with this

– Measurement errors since the betas used as explanatory
variables in the second stage are estimated – in order to
minimise such measurement errors, the beta estimates can be
based on portfolios rather than individual securities

– Alternatively, the Shanken (1992) correction can be applied to
adjust the standard errors for beta estimation error.
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The Fama-MacBeth Approach

• Fama and MacBeth (1973) used the two stage approach to
testing the CAPM outlined above, but using a time series of
cross-sections

• Instead of running a single time-series regression for each
stock and then a single cross-sectional one, the estimation is
conducted with a rolling window

• They use five years of observations to estimate the CAPM
betas and the other risk measures (the standard deviation and
squared beta) and these are used as the explanatory variables
in a set of cross-sectional regressions each month for the
following four years
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The Fama-MacBeth Approach (Cont’d)
• The estimation is then rolled forward four years and the
process continues until the end of the sample is reached

• Since we will have one estimate of the lambdas for each time
period, we can form a t-ratio as the average over t divided by
its standard error (the standard deviation over time divided by
the square root of the number of time-series estimates of the
lambdas).

• The average value of each lambda over t can be calculated
using:

λ̂j =
1

TFMB

TFMB
∑

t=1

λ̂j ,t , j = 1, 2, 3, 4

where TFMB is the number of cross-sectional regressions used
in the second stage of the test, the j are the four different
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The Fama-MacBeth Approach (Cont’d)

parameters (the intercept, the coefficient on beta, etc.) and
the standard deviation is

σ̂j =

√

√

√

√

1

TFMB − 1

TFMB
∑

t=1

(λ̂j ,t − λ̂j)2

• The test statistic is then simply
√
TFMB λ̂j/σ̂j , which is

asymptotically standard normal, or follows a t-distribution
with TFMB − 1 degrees of freedom in finite samples.
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Fama-MacBeth: Their Key Results

• We can compare the estimated values of the intercept and
slope with the actual values of the risk-free rate (Rf ) and the
market risk premium [Rm − Rf ], which are, for the full-sample
corresponding to the results presented in the table, 0.013 and
0.143 respectively.

• The intercept and slope parameter estimates (the lambdas)
have the correct signs but they are too small

• Thus the implied risk-free rate is positive and so is the
relationship between returns and beta

• Both parameters are significantly different from zero, although
they become insignificant when the other risk measures are
included as in the second row of the table

• It has been argued that there is qualitative support for the
CAPM but not quantitative support.

‘Introductory Econometrics for Finance’ c© Chris Brooks 2018 51



Fama-MacBeth: A Results Table

• It is also worth noting from the second row of the table that
squared beta and idiosyncratic risk have parameters that are
even less significant than beta itself in explaining the
cross-sectional variation in returns.

Fama and MacBeth’s Results on Testing the CAPM

Model λ̂0 λ̂1 λ̂2 λ̂3

Model 1: CAPM 0.0061∗ 0.0085∗

(3.24) (2.57)
Model 2: Augmented CAPM 0.0020 0.0114 -0.0026 0.0516

(0.55) (1.85) (-0.86) (1.11)

Notes: t-ratios in parentheses; ∗ denotes significance at the 5% level. Source:

Fama and MacBeth (1973), numbers extracted from their Table 3.
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The Fama-French Methodology

• The ‘Fama-French methodology’ is a family of related
approaches based on the notion that market risk is insufficient
to explain the cross-section of stock returns

• The Fama-French and Carhart models seek to measure
abnormal returns after allowing for the impact of the
characteristics of the firms or portfolios under consideration

• It is widely believed that small stocks, value stocks, and
momentum stocks, outperform the market as a whole

• If we wanted to evaluate the performance of a fund manager,
it would be important to take the characteristics of these
portfolios into account to avoid incorrectly labelling a
manager as having stock-picking skills.
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The Fama-French (1992) Approach
• The Fama-French (1992) approach, like Fama and MacBeth
(1973), is based on a time-series of cross-sections model

• A set of cross-sectional regressions are run of the form

Ri ,t = α0,t + α1,tβi ,t + α2,tMVi ,t + α3,tBTMi ,t + ui ,t

where Ri ,t are again the monthly returns, βi ,t are the CAPM
betas, MVi ,t are the market capitalisations, and BTMi ,t are
the book-to-price ratios, each for firm i and month t

• So the explanatory variables in the regressions are the firm
characteristics themselves

• Fama and French show that size and book-to-market are
highly significantly related to returns

• They also show that market beta is not significant in the
regression (and has the wrong sign), providing very strong
evidence against the CAPM.
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The Fama-French (1993) Approach

• Fama and French (1993) use a factor-based model in the
context of a time-series regression which is run separately on
each portfolio i

Ri ,t = αi + βi ,MRMRFt + βi ,SSMBt + βi ,VHMLt + ǫi ,t

where R i,t is the return on stock or portfolio i at time t,
RMRF, SMB, and HML are the factor mimicking portfolio
returns for market excess returns, firm size, and value
respectively

• The excess market return is measured as the difference in
returns between the S&P 500 index and the yield on Treasury
bills (RMRF)
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The Fama-French (1993) Approach (Cont’d)

• SMB is the difference in returns between a portfolio of small
stocks and a portfolio of large stocks, termed ‘Small Minus
Big

• HML is the difference in returns between a portfolio of value
stocks and a portfolio of growth stocks, termed ‘High Minus
Low’.
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The Fama-French (1993) Approach 2

• These time-series regressions are run on portfolios of stocks
that have been two-way sorted according to their
book-to-market ratios and their market capitalisations

• It is then possible to compare the parameter estimates
qualitatively across the portfolios i

• The parameter estimates from these time-series regressions
are factor loadings that measure the sensitivity of each
individual portfolio to the factors

• The second stage in this approach is to use the factor loadings
from the first stage as explanatory variables in a
cross-sectional regression:

R̄i = α+ λMβi ,M + λSβi ,S + λVβi ,V + ei
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The Fama-French (1993) Approach 2 (Cont’d)

• We can interpret the second stage regression parameters as
factor risk premia that show the amount of extra return
generated from taking on an additional unit of that source of
risk.
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The Carhart (1997) Approach

• It has become customary to add a fourth factor to the
equations above based on momentum

• This is measured as the difference between the returns on the
best performing stocks over the past year and the worst
performing stocks – this factor is known as UMD –
‘up-minus-down’

• The first and second stage regressions then become
respectively:

Ri ,t = αi + βi ,MRMRFt + βi ,SSMBt + βi ,VHMLt

+βi ,UUMDt + ǫi ,t

R̄i = α+ λMβi ,M + λSβi ,S + λVβi ,V + λUβi ,U + ei
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The Carhart (1997) Approach (Cont’d)

• Carhart forms decile portfolios of mutual funds based on their
one-year lagged performance and runs the time-series
regression on each of them

• He finds that the mutual funds which performed best last year
(in the top decile) also had positive exposure to the
momentum factor (UMD) while those which performed worst
had negative exposure

• More recent research adds a variety of other factors using the
same framework.
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Extreme Value Theory
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Extreme Value Theory: An Introduction

• Conventional statistical models are based upon estimates of
the average or typical behaviour of a series

• Such models often perform poorly when the focus switches to
extreme events

• In particular, statistics based on a normal distribution will
systematically under-estimate the probability of extreme
events in most financial time series as they cannot capture the
fat tails

• Extreme value distributions are sufficiently flexible that they
can capture these fat tails much more accurately
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Extreme Value Theory: An Introduction (Cont’d)

• For example, a normal distribution would suggest the
probability of a return of -10.84% or lower in a 30-year period
on A-rated corporate bonds is 0.00008%, whereas based on an
extreme value distribution it is 1.4% (source: Levine, D.
(2009) Modelling tail behavior with extreme value theory Risk
Management Society of Actuaries 17, 15-18).
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Extreme Value Theory: Two Frameworks

• There are two broad approaches to parameter estimation
under extreme value theory: the block maximum framework
and the peaks over threshold (POT) framework

• The block maximum framework involves separating the
observations into blocks and taking the maximum from each
block as constituting the extreme data points

• The POT framework specifies an arbitrary high threshold and
any observed value of the series exceeding this is defined as
being an extreme data point

• In each case there are three classes of distributions which
normalised versions of these extremes could follow
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Extreme Value Theory: Two Frameworks (Cont’d)

• For the block maximum they are called the Weibull, Gumbel,
and Frechét distributions while the corresponding distributions
under the POT approach are the ordinary Pareto, exponential
and beta distributions respectively.
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PDFs for the Weibull, Gumbel and Frechét
Distributions

!

!"!!!#

!"!!$

!"!!$#

!"!!%

!"!!%#

!"!!&

!"!!&#

!"!!'

!"# !$# !%# !&# !'# ! $ % & ' # (

)*+,-.. /0-12-3 4-5,*..

‘Introductory Econometrics for Finance’ c© Chris Brooks 2018 66



The Peaks Over Threshold Approach

• The block maxima approach is rarely used since splitting the
data into blocks is inefficient unless the extremes happen to
be evenly spaced across the blocks

• To implement the peaks over threshold approach, we specify a
threshold U and calculate the values of the data points minus
the threshold:
ỹt = yt − U|yt > U

• As the threshold tends to infinity, a normalised version of ỹt
tends to the generalised Pareto distribution (GPD). The cdf of
the GPD can be written:

Gξ,σ(ỹt) =

{

1− (1 + ξỹt/σ)
−1/ξ if ξ 6= 0

1− exp[−ỹt/σ] if ξ = 0

where ξ is the shape parameter and σ is the scale parameter
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The Peaks Over Threshold Approach (Cont’d)

• The key parameter is ξ, sometimes also known as the tail
index, measuring how rapidly the tails decay.
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The Peaks Over Threshold Approach 2

• When ξ > 0, this corresponds to the fat-tailed case

• The tail index is the inverse of the number of degrees of
freedom in a t distribution so ξ = 1/v

• Typical estimates of v are of the order 4–6, suggesting
plausible value of ξ would be 0.1–0.2

• The choice of the threshold U is tricky and involves a
trade-off

• If the threshold is too big in absolute value (too far into the
tail), the number of points classified as extremes will be too
small leading to high standard errors for the parameter
estimates (ξ and σ)
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The Peaks Over Threshold Approach 2 (Cont’d)

• If the threshold is too small in absolute value (too near the
centre of the distribution), many points will be classified as
extremes when they are not, leading to biased parameter
estimates

• One way to resolve this trade-off is to estimate the parameters
for increasingly large values of U until they become stable.
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Parameter Estimation for Extreme Value
Distributions

• The parameters can be estimated by maximum likelihood

• The pdf for the value of yt over the threshold (for ξ 6= 0) is
given by:

gξ,σ(ỹt) =
1

σ

(

1 +
ξỹt
σ

)

−( 1
ξ
+1)

• Then we can form the joint density for all observations over
the threshold, NU :

LF (ξ, σ, ỹ1, ỹ2, . . . , ỹNU
) =

NU
∏

i=1

gξ,σ(ỹt) =

NU
∏

i=1

1

σ

(

1 +
ξỹt
σ

)

−( 1
ξ
+1)
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Parameter Estimation for Extreme Value
Distributions (Cont’d)

• The log likelihood would then be given by taking the natural
log of this and rearranging:

LLF (ξ, σ, ỹ1, ỹ2, . . . , ỹNU
) = −NU ln(σ)−

(

1

ξ
+ 1

) NU
∑

i=1

ln

(

1 +
ξỹ

σ

)
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Parameter Estimation for Extreme Value
Distributions 2

• Provided that ξ > −0.5, maximum likelihood estimators are
consistent and asymptotically normal

• But no analytical solutions exist and thus a numerical search
procedure is required

• Instead, it is common to use a non-parametric procedure to
estimate the shape parameter directly from the data

• The simplest approach is the Hill (1975) estimator
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Parameter Estimation for Extreme Value
Distributions 2 (Cont’d)

• If we order the exceedences over the threshold from the
largest to the smallest, ỹ1, ỹ2, . . . , ỹT , the Hill estimator of ξ
is given by

ξ̂ =
1

k − 1

k−1
∑

i=1

[ln(ỹ(i))− ln(ỹ(k))]

where k is an integer to be selected equal to the number of
observations in the tail.

‘Introductory Econometrics for Finance’ c© Chris Brooks 2018 74



Parameter Estimation for Extreme Value
Distributions 3

• Two further non-parametric estimators of ξ are due to
Pickands (1975)

ξ̂ =
1

ln(2)
ln

(

ỹ(k) − ỹ(2k)

ỹ(2k) − ỹ(4k)

)

and due to De Haan and Resnick (1980)

ξ̂ =
ln(ỹ(1))− ln(ỹ(k))

ln(k)

• If the shape parameter is estimated using one of the above
non-parametric techniques, we still need to estimate the scale
parameter, σ
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Parameter Estimation for Extreme Value
Distributions 3 (Cont’d)

• This can be achieved by plugging the given value of ξ into the
LLF and then estimating σ as the only free parameter using
maximum likelihood.

‘Introductory Econometrics for Finance’ c© Chris Brooks 2018 76



Introduction to Value at Risk

• Value at Risk (VaR) is a method for measuring the financial
risk inherent in a portfolio or securities position

• It can be defined as the loss in financial terms that is expected
to occur over a given horizon with a given degree of
confidence

• Extreme value distributions can be effective for calculating
VaR as they estimate the probability of extreme events more
accurately than approaches not allowing for fat tails

• The delta-normal model for calculating VaR simply takes the
standard deviation of the portfolio returns data, σ, and
multiples it by the relevant quantile from the normal
distribution, Zα at the α significance level
VaRnotmal = σZα
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Introduction to Value at Risk (Cont’d)

• A second straightforward approach to calculating VaR is to
use historical simulation, which involves sorting the actual
historical portfolio returns and selecting the appropriate
quantile from the empirical distribution of ordered returns.
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Calculating Value at Risk using EVT

• Assume that the peaks over threshold approach is used and
that the parameters are ξ and σ. VaR is calculated as follows,
with a significance level of α and where N and NU are the
total number of data points and the number exceeding the
threshold U respectively

VaR = U +
σ̂

ξ̂

[

(

N

NU

α

)

−ξ̂

− 1

]

• If the block maximum approach is used, VaR can be calculated
using the following formula where m is the block length

VaR = µ̂+
σ̂

ξ̂

[

1− (−m ln(α))−ξ̂
]
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Calculating Value at Risk using EVT (Cont’d)

• EVT can be extended to the multivariate case to measure
common dependence and spillovers between extreme events in
time-series.
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The Generalised Method of

Moments
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The Method of Moments

• The method of moments is an alternative to OLS and
maximum likelihood used for estimating the parameters in a
model

• It works by computing the moments of the sample data and
then setting them equal to their population values based on
an assumed probability distribution for the latter

• If we have k parameters to estimate, we need k sample
moments

• If the observed data y follow a normal distribution with
population mean µ and population variance σ2, we need two
moment restrictions to estimate the two parameters
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The Method of Moments (Cont’d)

• The sample moments converge upon their population
counterparts asymptotically. Thus:

1

T

T
∑

t=1

yt − µ0 → 0 as T → ∞
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The Method of Moments 2

• The first sample moment is then found by taking the usual
sample average, ȳ :

1

T

T
∑

t=1

yt − µ0 = 0

• We would then adopt the same approach to match the second
moment

σ2 = E [(yt − µ0)
2]

• And thus:

1

T

T
∑

t=1

y2t − σ2 = 0
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The Method of Moments 2 (Cont’d)

• So we have:

σ̂2 =
1

T

T
∑

t=1

y2t − ȳ2 = 0.
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The Method of Moments 3

• If we had a more complex distribution than the normal, we
would match the third, fourth, . . ., moments until we had the
same number as parameters to estimate

• In the context of estimating the parameters of a regression
model, the method of moments relies on the assumption that
the T × k matrix of observations on the explanatory variables
is orthogonal to the disturbances:
E[utxt ] = 0

• Here there would be the same number of moment restrictions
as parameters to estimate

• If we let β∗ denote the true value of β, the vector of
parameters, then the moment conditions would be written as:

E [(yt − x ′tβ
∗)xt ] = 0
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The Generalised Method of Moments

• The conventional method of moments estimator requires us to
have the same number of moment conditions as parameters to
estimate

• This is unrealistic, and it is more likely that we will have an
over-identified system that has more moment restrictions than
parameters to estimate, in which case the method of moments
cannot be used

• But the GMM was developed by Hansen (1982) for precisely
this purpose

• When there are more moment restrictions than parameters to
estimate, we will have multiple solutions, and GMM selects
from among them the solution that minimises the variance of
the moment conditions
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The Generalised Method of Moments (Cont’d)

• Suppose that we have L moment conditions (l = 1, . . . , L) to
estimate k parameters in a vector β. The moment conditions
are

E [ml (yt , xt ;β)] = 0
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The Generalised Method of Moments 2

• We then estimate the parameters as those coming as close as
possible to satisfying the moment conditions. The parameter
vector estimator is

β̂GMM = argminβ m̂(β̂)′Wm̂(β̂)

where m̂(β̂) = (m̂1, . . . , m̂L) are the L moment conditions
(which will be a function of the estimated parameters, and W

is the weighting matrix are the L moment conditions and W is
the weighting matrix

• Is is possible to show that the optimal W is the inverse of the
variance-covariance matrix of the moment conditions

• Often, a two-step approach is used:
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The Generalised Method of Moments 2 (Cont’d)

• In the first stage, the weighting matrix is substituted by an
arbitrary choice that does not depend on the parameters (such
as the identity matrix)

• In the second stage, it is substituted by an estimate of the
variance given the parameter estimates from the first stage
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Over-identifying Restrictions and GMM

• For over-identified systems we can use the effective degrees of
freedom to test the over-identifying restrictions through a
Sargan J-test

• The null hypothesis is that all of the moment conditions are
exactly satisfied

• The test statistic, which asymptotically follows a chi-squared
distribution with L− k degrees of freedom is given by

m̂(β̂)′[EAV(m̂(β̂))]−1m̂(β̂)

where EAV is the estimated asymptotic variance

• If the null is rejected, it would indicate that the parameter
estimates are not supported by the data.
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