Lecture 8

Lecturer: G. S. Paraoanu
Department of Applied Physics, School of Science, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland

I. QUANTIZATION OF ELECTRICAL NETWORKS

DiVincenzo's Criteria:

1. A scalable physical system with well characterized qubit
2. The ability to initialize the state of the qubits to a simple fiducial state
3. Long relevant decoherence times
4. A "universal" set of quantum gates
5. A qubit-specific measurement capability

Harmonic Oscillator:

The harmonic oscillator is an important primer for studying quantum circuits. In particular, we will see that the canonical position and momentum in a classical harmonic oscillator are analogues of charge and flux in an LC circuit.

We consider a pendulum of length ℓ and mass m that subtends an angle θ with respect to the center.

The kinetic energy is $T=\frac{1}{2} m v^{2}=\frac{1}{2} m \ell^{2} \dot{\theta}^{2}$, and the potential energy is $V=m g h$, where $h=(1-\cos \theta) \ell$. Considering only small θ, we have $h \approx\left(1-1+\frac{\theta}{2}\right) \ell=\ell \frac{\theta}{2}$. Therefore, the potential energy is $V=\frac{1}{2} m g \ell \theta^{2}$. Since the Lagrangian is $L \equiv T-V$, the Lagrangian of our system is

$$
\begin{equation*}
L=\frac{1}{2} m \ell^{2} \dot{\theta}^{2}-\frac{1}{2} m g \ell \theta^{2} \tag{1}
\end{equation*}
$$

Upon introducing generalized coordinates q and p :

$$
\begin{gather*}
q \equiv \ell \theta \tag{2}\\
p \equiv \frac{\partial L}{\partial \dot{q}} \approx \frac{\partial}{\partial \dot{q}}\left(\frac{1}{2} m \dot{q}^{2}-\frac{m g}{2 \ell} q^{2}\right)=m \dot{q}=m \ell \dot{\theta} \tag{3}
\end{gather*}
$$

The Euler-Lagrange equation is

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\frac{L}{q}=0, \tag{4}
\end{equation*}
$$

and since $T(q)=0$, i.e., there is no dependence of the kinetic energy on q, only \dot{q}, we have $\frac{\partial L}{\partial q}=-\frac{\partial V}{\partial q}$. Further, since $p=\frac{\partial L}{\partial \dot{q}}$, we have

$$
\begin{equation*}
\frac{d p}{d t}=-\frac{\partial V}{\partial q} . \tag{5}
\end{equation*}
$$

Now, inserting Eq. 2 and Eq. 3 into Eq. 4, we have

$$
\begin{equation*}
\dot{p}=-m g \theta . \tag{6}
\end{equation*}
$$

However, directly differentiating 3 with respect to time, yields

$$
\begin{equation*}
\dot{p}=m \ell \ddot{\theta} . \tag{7}
\end{equation*}
$$

Upon equating Eq. 6 and Eq. 7, we have

$$
\begin{equation*}
m \ell \ddot{\theta}+m g \theta=0 \tag{8}
\end{equation*}
$$

i.e., the equation of motion:

$$
\begin{equation*}
\ddot{\theta}+\frac{g}{\ell} \theta=0 . \tag{9}
\end{equation*}
$$

Taking as a usual trial function $\theta=C \exp (i \omega t)$, where $C \neq 0$ is a constant, and ω is the angular frequency, Eq. 9 becomes:

$$
\begin{equation*}
\left(-\omega^{2}+\frac{g}{\ell}\right) C \exp (i \omega t)=0 \tag{10}
\end{equation*}
$$

This valid at all t only iff

$$
\begin{equation*}
-\omega^{2}+\frac{g}{\ell}=0 \tag{11}
\end{equation*}
$$

This is the so-called characteristic polynomial of the linearized equation of motion, and solving for ω we find the natural angular frequency of small vibrations of the pendulum:

$$
\begin{equation*}
\omega=\sqrt{g / \ell} . \tag{12}
\end{equation*}
$$

Starting from energy considerations, we have derived the eigenfrequency of the system!

Superconducting LC oscillator:

Once you understand the harmonic oscillator, you can easily apply the concept
Let us consider a classical superconducting LC oscillator. The electrical energy will oscillate between the potential energy stored in the capacitor U, and the kinetic energy associated with the magnetic flux in the coil $\Phi=L I$, where L is the inductance of the coil, and $I=-\dot{Q}$ is the current (direction consistent with the figure below).

From the above circuit figure, we also see that the voltage drop across the inductor is U; hence, from Lenz's law we have $\dot{\Phi}=U$. Therefore,

$$
\begin{equation*}
U=L \dot{I} \tag{13}
\end{equation*}
$$

And since the instantaneous power fed into an electric circuit is simply the product of the voltage across circuit times the current flowing into the positive voltage node, we have

$$
\begin{equation*}
P=U \dot{Q} \tag{14}
\end{equation*}
$$

The electrical kinetic energy in the coil is then

$$
\begin{equation*}
T=\int_{t_{0}}^{t_{1}} P d t=\int_{t_{0}}^{t_{1}} U I d t=\int_{t_{0}}^{t_{1}}(L \dot{I}) I d t=\int_{0}^{I} L I^{\prime} d I^{\prime}=\frac{1}{2} L I^{2}=\frac{\Phi^{2}}{2 L} \tag{15}
\end{equation*}
$$

and the electrical potential energy stored in the capacitor is

$$
\begin{equation*}
V=\int_{t_{0}}^{t_{1}} P d t=\int_{t_{0}}^{t_{1}} U \dot{Q} d t=\int_{t_{0}}^{t_{1}} U\left(\frac{d Q}{d t} d t\right)=\int_{0}^{Q} \frac{Q^{\prime}}{C} d Q^{\prime}=\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} Q U=\frac{1}{2} C U^{2} . \tag{16}
\end{equation*}
$$

From Eq. 15 and Eq. 16 we have $T=\frac{1}{2} L I^{2}=\frac{1}{2} L \dot{Q}^{2}$ and $V=\frac{1}{2} C U^{2}=\frac{Q^{2}}{2 C}$.
The Lagrangian is therefore

$$
\begin{equation*}
L=T-V=\frac{1}{2} L \dot{Q}^{2}-\frac{Q^{2}}{2 C} . \tag{17}
\end{equation*}
$$

To find the equation of motion, we choose the generalized coordinates

$$
\begin{gather*}
q=Q \tag{18}\\
p \equiv \frac{\partial L}{\partial \dot{q}}=L \dot{Q}=-L I=-\Phi . \tag{19}
\end{gather*}
$$

Indeed the equation of motion is

$$
\begin{equation*}
\ddot{Q}+\frac{1}{L C} Q=0 \tag{20}
\end{equation*}
$$

where the natural angular frequency of oscillations is

$$
\begin{equation*}
\omega=\frac{1}{\sqrt{L C}} \tag{21}
\end{equation*}
$$

Compare this with $\omega=\sqrt{g / \ell}$ for the pendulum.

To summarize, the pendulum and LC oscillator analogues are

$$
\begin{array}{r}
\text { Momentum } \hat{p} \longleftrightarrow \text { Charge } \hat{q} \\
\text { Position } \hat{x} \longleftrightarrow \text { Flux } \hat{\Phi} \\
\text { Mass } m \longleftrightarrow \text { Capacitance } C \\
\text { Resonance frequency } \omega_{r} \longleftrightarrow \quad \omega_{r}=\sqrt{\frac{1}{L C}}
\end{array}
$$

Legendre transformation to Hamiltonian:

The general definition for a Hamiltonian is

$$
\begin{equation*}
H \equiv \dot{q} p-L . \tag{22}
\end{equation*}
$$

We take the total time derivative to analyze the system dynamically

$$
\begin{equation*}
\frac{d H}{d t}=\ddot{q} p+\dot{q} \dot{p}-\frac{\partial L}{\partial q} \dot{q}-\frac{\partial L}{\partial \dot{q}} \ddot{q}-\dot{L} . \tag{23}
\end{equation*}
$$

Further, we take $p \equiv \partial L / \partial q$, and $d p / d t=\dot{p}$, as $p=p(t)$ only.
Therefore, the total time derivative of the Hamiltonian is

$$
\begin{equation*}
\frac{d H}{d t}=\ddot{q} p+\dot{q} \dot{p}-\frac{\partial L}{\partial q} \dot{q}-p \ddot{q}-\dot{L} \tag{24}
\end{equation*}
$$

Simplifying this formula further yields

$$
\begin{equation*}
\frac{d H}{d t}=\dot{q}\left[\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\frac{\partial L}{\partial q}\right]-\dot{L} . \tag{25}
\end{equation*}
$$

Since the Lagrangian is time-independent, $\dot{L}=0$, due to the Euler-Lagrange equation, we have

$$
\begin{equation*}
\frac{d H}{d t}=0 \tag{26}
\end{equation*}
$$

That is to say, the Hamiltonian is a constant of motion, i.e., energy is conserved in the system.

Furthermore, in terms of our generalized coordinates, Eq. 22 is

$$
\begin{equation*}
H=\dot{Q}(L \dot{Q})-\left(\frac{1}{2} L \dot{Q}^{2}-\frac{Q^{2}}{2 C}\right)=\frac{1}{2} L \dot{Q}^{2}+\frac{Q^{2}}{2 C} \tag{27}
\end{equation*}
$$

Further, from our standard definitions, we have

$$
\begin{equation*}
H=\frac{\Phi^{2}}{2 L}+\frac{Q^{2}}{2 C} . \tag{28}
\end{equation*}
$$

Therefore, the Hamiltonian represents the total energy of the system

$$
\begin{equation*}
H=T+V . \tag{29}
\end{equation*}
$$

We have derived the total energy of the system starting from the Lagrangian. This is necessary to derive energy quantization!

$\underline{\text { Quantization of Oscillators }}$

Quantization means we see the effects of single particles of excitations or excitations, e.g. the photoelectric effect, where the electromagnetic field is quantized and hence the energy $E=\hbar \omega$ is quantized.

- In a harmonic oscillator, the energy is quantized equidistantly.
- Energy quantization can be seen as counting the number of photons stored in the oscillator.

In quantum mechanics, variables are replaced by operators, i.e.

$$
\begin{aligned}
& q \rightarrow \hat{q}: \mathcal{H} \rightarrow \mathcal{H} \\
& p \rightarrow \hat{p}: \mathcal{H} \rightarrow \mathcal{H}
\end{aligned}
$$

some examples being the charge \hat{q} and flux $\hat{\Phi}$ operators.
For practical reasons, we often use matrix representations, e.g.,

$$
q_{k \ell}=\left\langle e_{k}\right| \hat{q}\left|e_{\ell}\right\rangle
$$

Generically, an operator acting on a state is a matrix times a vector and may be represented as

$$
\left(\begin{array}{c}
(O \psi)_{1} \tag{30}\\
(O \psi)_{2} \\
\vdots \\
(O \psi)_{i} \\
\vdots
\end{array}\right)=\left(\begin{array}{ccccc}
O_{11} & O 12 & \cdots & O_{1 j} & \cdots \\
O_{21} & O_{22} & \cdots & O_{2 j} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
O_{i 1} & O_{i 2} & \cdots & O_{i j} & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right)\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\vdots \\
\psi_{j} \\
\vdots
\end{array}\right)
$$

Two conjugate variables obey the commutation relation:

$$
\begin{equation*}
[\hat{p}, \hat{q}] \equiv \hat{p} \hat{q}-\hat{q} \hat{p}=-i \hbar \tag{31}
\end{equation*}
$$

For pedagogical purposes, it is convenient to transform systems into the basis of number states (give matrix representation of a)

$$
a^{\dagger}=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & \cdots \tag{32}\\
\sqrt{1} & 0 & 0 & \cdots & 0 & \cdots \\
0 & \sqrt{2} & 0 & \cdots & 0 & \cdots \\
0 & 0 & \sqrt{3} & \cdots & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \cdots \\
\vdots & \vdots & \vdots & \cdots & \sqrt{n} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

$$
a=\left(\begin{array}{ccccccc}
0 & \sqrt{1} & 0 & 0 & \cdots & 0 & \cdots \tag{33}\\
0 & 0 & \sqrt{2} & 0 & \cdots & 0 & \cdots \\
0 & 0 & 0 & \sqrt{3} & \cdots & 0 & \cdots \\
0 & 0 & 0 & 0 & \ddots & \vdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \cdots & \sqrt{n} & \cdots \\
0 & 0 & 0 & 0 & \cdots & 0 & \ddots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

These can be interpreted as ladder operators raising and lowering the excitation number

$$
\begin{gather*}
\hat{a} \equiv \frac{\omega_{r} C \hat{\Phi}+i \hat{q}}{\sqrt{2 \omega_{r} C \hbar}} \quad \text { is the annihilation operator. } \tag{34}\\
\hat{a}^{\dagger} \equiv \frac{\omega_{r} C \hat{\Phi}-i \hat{q}}{\sqrt{2 \omega_{r} C \hbar}} \quad \text { is the creation operator. } \tag{35}
\end{gather*}
$$

Their product gives the excitation number of a system

$$
\begin{equation*}
\hat{n} \equiv \hat{a}^{\dagger} \hat{a} \tag{36}
\end{equation*}
$$

Quantization of the LC oscillator

For the superconducting resonator, we have

$$
\begin{equation*}
\hat{H}=\frac{\hat{p}^{2}}{2 L}+\frac{\hat{q}^{2}}{2 C} \tag{37}
\end{equation*}
$$

We aim to diagonalize H into a form involving only one operator. This can be achieved via a change of variables:

$$
\begin{equation*}
\hat{p}=\sqrt{\frac{\hbar \omega L}{2}}\left(\hat{a}+\hat{a}^{\dagger}\right), \quad \hat{q}=\sqrt{\frac{\hbar \omega C}{2}} i\left(\hat{a}-\hat{a}^{\dagger}\right) \tag{38}
\end{equation*}
$$

where ω is a free scalar parameter, which we will choose later. The square root factors have been inserted for convenience.

Note that $\left(\hat{a}+\hat{a}^{\dagger}\right)$ and $i\left(\hat{a}-\hat{a}^{\dagger}\right)$ are Hermitian and independent.
Eq. is now

$$
\begin{align*}
\hat{H}=\frac{\left[\sqrt{\frac{\hbar \omega L}{2}}\left(\hat{a}+\hat{a}^{\dagger}\right)\right]^{2}}{2 L}+ & \frac{\left[\sqrt{\frac{\hbar \omega C}{2}} i\left(\hat{a}-\hat{a}^{\dagger}\right)\right]^{2}}{2 C} \tag{39}\\
=\frac{\hbar \omega}{4}\left(\hat{a} \hat{a}^{\dagger}\right. & \left.+\hat{a}^{\dagger} \hat{a}+\hat{a} \hat{a}^{\dagger}+\hat{a}^{\dagger} \hat{a}\right) \tag{40}\\
& =\frac{\hbar \omega}{2}\left(\hat{a} \hat{a}^{\dagger}+\hat{a}^{\dagger} \hat{a}\right) . \tag{41}
\end{align*}
$$

Using $\left[\hat{a}, \hat{a}^{\dagger}\right]=1$, it follows that $\hat{a} \hat{a}^{\dagger}=\hat{a}^{\dagger} \hat{a}+1$, we obtain

$$
\begin{equation*}
\hat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right) \tag{42}
\end{equation*}
$$

This tells us that the total energy of the system is given by vacuum fluctuations $(+1 / 2)$ and the number of photons stored at frequency ω !

References

