Bio Engineered Bacteria for Cancer Treatment

Paola Argumedo, Renate De Vreede, Gábor Kovács, Kassian Armbruster

22 March 2022

Topics of Discussion

- Problem Definition
- Treatment
- E.coli genetic engineering
- BioBricks design

Problem Definition

[1]

[2]

Interleukin-2 (Aldesleukin)

E. coli

Biobrick design

How does the system work?

- Inputs: hypoxia and high lactate
- Output: Aldeslukin (treatment)

The treatment gene is in constant repression by 2 different proteins, and our inputs cancel the repression state.

Truth table and circuit design

Lactate	Hypoxia	Output
0	0	0
1	0	0
0	1	0
1	1	1

Hypoxia state circuit

Aalto University School of Chemical Engineering

Lactate circuit

Aalto University School of Chemical Engineering

Final
 plasmid Design

- Cloned on pUC19 vector
- totalling 8004 bp
- Common for E. coli
- With Amp resistance
- 54 bp multiple cloning site polylinker

GCF_000001405.39 or TETRAN

- Human Tetracycline
- Encodes a member of the major facilitator superfamily of transporter proteins
- Efflux of organic anions, including the non-steroidal anti-inflammatory drugs indomethacin and diclofenac

promoter of LIdR

- Natural promoter with 2 operators
- It regulates the expression of the IIdPRD operon

- Involved in L-lactate metabolism

[4] http://parts.igem.org/Part:BBa_K1847008
Aalto University School of Chemical Engineering

promoter TetR

Based on regulatory elements that control the activity of the tetracyclineresistance operon

Other promoters

Usually used in E. coli vectors to produce GFP

- Promoter SrpR
- 5000 RFU
- Promoter PhIF
- Consecutive promoters family
- Promoter J23100
- 2 different RBS
- 10000 RFU

Aalto University
School of Chemical Engineering

HlyA signal peptide

Carried by alpha-hemolysin extracellular media export system

- HlyB
- HlyD
- ToIC

Aalto University School of Chemical Engineering

Thank you for your attention

References

- Zhou, S. et al. (2018). Tumour-targeting bacteria engineered to fight cancer. Nature Reviews Cancer, 18, 727-743.
- Yang, L. V. (2017). Tumor Microenvironment Metabolism. International Journal of Molecular Sciences, 18(12).
- Jiang, B. (2017). Aerobic glycolysis and high level concentration of lactate in cancer metabolism and microenvironment. Genes \& Diseases, 14;4(1), 25-27.
- Thomas, S., Barry Holland, I., Schmitt, L. (2014). The Type 1 secretion pathway- the hemolysin system and beyond. Biochimica et Byophysica Acta, 1843, 1629-1641
- Das, A. T., Tenenbaum, L., \& Berkhout, B. (2016). Tet-on systems for doxycycline-inducible gene expression. Current Gene Therapy, 16(3), 156-167. https://doi.org/10.2174/1566523216666160524144041
- New England Biolabs. (s/f). PUC19 vector. Neb.Com. Recovered march 2022, de https://international.neb.com/products/n3041-puc19-vector
- Part:BBa K3320006 - parts.Igem.Org. (s/f). Igem.Org. Recovered march 2022, de http://parts.igem.org/Part:BBa K3320006
- Homo sapiens chromosome 4, GRCh38.p13 Primary Assembly - Nucleotide - NCBI. (n.d.). Nih.Gov. Retrieved March 25, 2022, from https://www.ncbi.nlm.nih.gov/nuccore/NC 000004.12?report=genbank\&from=122451470\&to=122456725\&strand =true
- Team:Amazonas-Brazil/description. (n.d.). Igem.Org. Retrieved March 25, 2022, from https://2019.igem.org/Team:Amazonas-Brazil/Description
- https://www.ncbi.nlm.nih.gov/gene/10227

